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Parallel Flow Instability

• Formulate local dispersion relation neglecting dissipation

– look for solution

– convective effect of perpendicular flow shear:

– PVG mode

– instability for:

– effect of background parallel flow shear asymmetric

• Dissipative terms act to damp perturbations far along field lines: demonstrate for M = χ = 0

– solution has form:

– simple harmonic

oscillator equation:

– eigenvalue condition:

n integer > 0

– large k modes dominated by viscosity: FLR effects excluded

• Twisting mode localised where perpendicular gradients

are small to minimise collisional dissipation

System Equations

• Analyse sheared slab, magnetic and flow fields: 

• Work in “twisting-shearing” representation [2]

– removes problems of shear and time dependence from background flow

– aligns coordinate lines with characteristics of plasma response: sound waves

• Take Boltzmann electron response; ions described by collisional fluid equations

– derived from gyro-kinetic equation in doubly sheared coordinates with flow

– normalise: 

– usual orderings:

– additional collisional orderings:

– expand in ω / ν : lowest order is perturbed Maxwellian

– closed equations for evolution of perturbed density δn, parallel 
velocity δV||, temperature δT from moment equations for particle,

parallel momentum and energy conservation

• Restrict to linear case, take fields                      

• Dissipation: 

• Drift frequencies characterise driving x-gradients:
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Introduction

• Experiments indicate tokamak turbulence is strongly affected by sheared flows

• Extensive theoretical work has been undertaken

– flow shear can tear apart turbulent eddies, suppressing turbulence

– not all shear flows are stabilising eg Parallel Velocity Gradient (PVG) instability

– beyond critical perpendicular shear PVG linearly stabilised: transient perturbations remain [1]

• Strong toroidal flows of tokamaks have both perpendicular and parallel shear

• What is the optimum shear flow for confinement – do we want ever more toroidal flow shear?

• Investigate effect of flow shear on Ion Temperature Gradient (ITG) and PVG instabilities in

sheared slab via dissipative fluid model: simple system allows clear interpretation

Conclusions

• Investigated ITG and PVG stability in a sheared field with parallel and perpendicular flow shear

• Instabilities are twisting modes, convected along the field by perpendicular sheared flow

• Parallel flow shear drives instability, having complex interaction with ITG drive

– sensitivity to angle of flow favourable for instability suppression in spherical tokamaks

• Modes convected faster than the sound speed, M > 1, are swept downstream to be damped

– indicating suppression if flow shear convection faster than characteristic propagation speed of mode?

• Only transitory growth occurs for M > 1, but for large M growth can be substantial

– mode decay slow; promotes subcritical turbulence?

Impact of Convection

• Anticipate rapid convection sweeps growing instabilities to dissipative region: forces decay

• Motivate by looking at characteristics of linear system

– waves coupled by finite RHS: does not change propagation speed

• Obtain analytic form of transitory solution for M >> 1,

– work in moving frame                       , expand in large parameter M

– look for solution with time dependent growth rate,              determines γ

– instability grows exponentially for amplification factor large

– s determined at                

– gives asymptotic form:

• Algebraic decay with time: amplified perturbation can linger
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Numerical Results

• Linear system solved numerically: 2nd-order upwind scheme, typical resolution ∆z = 0.1 

– growth rate maximised over k, consistency with orderings for              ; here 

• Vary flow, at fixed angle

– stability threshold seen at M = 1

– interplay of drives produces

regions of stability for M < 1

– sensitive to angle of flow

– lines show zero growth rate

• Evolution of perturbed fields

– density perturbation remains as particle transport is neglected
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