
Inverse cascades, zonal jets and 

turbulence/transport suppression in 

CHM model

Sergey Nazarenko, Warwick, UK

Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov,

1988-2010 



Drift waves in fusion 

devices

Rossby waves in atmospheres 

of rotating planets



Charney-Hasegawa-Mima 

equation

• Ψ – streamfunction (electrostatic potential).

• ρ – Deformation radius (ion Larmor radius).

• β – PV gradient (diamagnetic drift). 

• x – east-west (poloidal arc-length)

• y – south-north (radial length).
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Turbulence-ZF system. LH-transition

• Small-scale turbulence generates zonal flows

• ZF’s suppress waves 

• Hence transport barriers, LH  transition



Zonal Jets in Earth’s Atmosphere

Average oceanic winds on Earth (QSCAT)



Zonal Jets in Earth’s Oceans

Eddy-resolving simulation of Earths oceans (Earth Simulator Center/JAMSTEC)



Barotropic governor in GFD
• James and Gray’ 1986



Mechanisms of zonal flow generation:

• (part 1) Anizotropic inverse cascade

• (part 2) Modulational instability

(part 3) Feedback of ZF onto turbulence: 

turbulence suppression, LH transition



Part 1

ZF generation by anisotropic inverse cascades



• Ψ – streamfunction (electrostatic potential).

• ρ – Deformation radius (ion Larmor radius).

• β – PV gradient (diamagnetic drift). 

• x – east-west (poloidal arc-length)

• y – south-north (radial length).
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2D Euler equation



Conservation laws for Euler
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FjØrtoft’53 argument for 2D turbulence.

• Produce turbulence at kf and have two dissipation regions at k- and k+
separated by large inertial ranges.

• Production rates for energy and enstrophy are related as   kf
2 .

• If energy is dissipated at k+ at rate ~   then enstrophy is dissipated at a 
rate k+

2  >> kf
2    which is a contradiction. Therefore, energy must be 

dissipated at  k- – inverse energy cascade. 

• Similar ad absurdum argument is used to show that enstrophy cannot be 
dissipated at  k-, and therefore cascades forward in  k. 
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Rhines scale crossover

• Nonlinear=linear → Rhines
scale. 

• “Lazy 8” separates vortex-
dominated and wave-
dominated scales 
(Rhines’75, Holloway’84)

• Outside of lazy-8: 
Kraichnan’s isotropic
inverse cascade.

• Inside lazy-8 the cascade is 
anisotropic and dominated 
by triad wave resonances.
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Extra quadratic invariant on β-plane

• Balk, Nazarenko & Zakharov (1990) 

• Adiabatic for the original β-plane equation: requires small nonlinearity 
and possibly random phases.

• For case kρ >>1:



Anisotropic cascades in β-plane turbulence

• 3 cascades cannot be isotropic.

• Let us produce turbulence near some k0, surround it by a large non-
dissipative area and dissipate at large k and at small kx and small ky.

•Fjortoft’s argument separates the k-space into three non-intersecting sectors to 
which the energy, enstrophy and zonostrophy can cascade.

•Zonostrophy Φ forces energy E to the scales corresponding to zonal flows.



Numerics
• Pseudo-spectral, no dissipation.

• Initial condition:

Quantify cascades via trajectory 

Of centroids for E, Z and Φ:



Weak nonlinearity run, NL/L =k0
2/kβ

2=0.07

• Initial turbulence is well 

within the dumbbell.

• Because of slow weakly 

nonlinear evolution, we 

compare with a non-

conserved quantity (red).

• Energy and zonostrophy

are well conserved, 

enstrophy less well.



Weak nonlinearity run, NL/L =k0
2/kβ

2=0.07

• All three invariants 

cascade as predicted.

• Energy cascades to 

zonal scales along 

the boundary of its 

sector.

• Zonostrophy cascade 

is slightly anisotropic.



Strong nonlinearity run, NL/L =k0
2/kβ

2=0.7

• Initial turbulence is at the 

border of the dumbbell.

• Zonostropy is not 

conserved initially, but is 

conserved later.

• This is because the 

nonlinearity weakens as 

the inverse cascade enters 

into the dumbbell.



Strong nonlinearity run, NL/L =k0
2/kβ

2=0.7

• E, Z and Φ cascade 

similar to the weakly 

nonlinear case.

• Faster and less 

chaotic trajectories.

• Enstrophy and 

Zonostrophy 

cascades are almost 

isotropic.



Vorticity field
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Part 2: Modulational Instability

• These waves are solutions of CHM equation for any amplitude. Are 

they stable? (Lorentz 1972, Gill 1973).
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Instability dispersion relation
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Structure of instability as a function of M

Unstable region collapses onto the resonant curve. For small M 

the most unstable disturbance is not zonal.
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Nonlinear stage of modulational instability

Pinching of jets predicted by Manin & SN, 1994. Transport barriers.

Growth of the  q-mode compared to

predictions of linear stability. Zonal velocity profile (averaged over x).



Strong wave case (M = 10)

• Jet  pinch, roll-up into a double vortex street. After long time, the 

street breaks via a vortex pairing instability, leading to turbulence with 

a PV staircase structure.



Weak wave case (M = 0.1)

Original drift wave experiences self-focusing, but jets do not roll into 

vortices. Energy oscillates between 4-modes as predicted by the 4-mode 

truncation. At long time: transition to turbulence with inclined jets.



Ocean jets

• From Maximenko et al 2008.

• Slightly off-zonal jets.



Summary for part 2.

• MI of a travelling drift wave exists for any nonlinearity M. Two limits : 

Euler limit for M>>1 vs weak resonance interaction for M<<1.

• Most unstable disturbance is zonal for large M’s and an inclined wave 

for small M. Inclined jets are seen of small M for long-time nonlinear 

stage.

• ZF’s are mostly eastward due to the beta-effect.

• Nonlinear pinching of ZF’s (for any M). Simplest model for the 

transport barriers.

• Role of MI for broad initial wave spectra?



Part 3: LH transition

• Small-scale turbulence causes anomalous transport, hence L-mode.

• Negative feedback loop.

• Suppressed turbulence →no transport →improved confinement & H-mode.

Balk, SN and Zakharov 1990



Cartoon of nonlocal interaction

• Eddy scale L decreases via shearing by ZF

• Potential enstrophy Z is conserved.

• => Eddy energy E =Z L2 is decreasing

• Total E is conserved, => E is transferred from the eddy to ZF

• Wrong! Both smaller and larger L’s are produced. The energy of the 
eddy is unchanged. (Kraichnan 1976).

Victor P. Starr,Physics of Negative 

Viscosity Phenomena (McGraw Hill Book 

Co., New York 1968). 



Small-scale energy conservation

• Energy in SS eddies is conserved if they 

are initially isotropic (Kraichnan 1976)

• 1. Dissipation: ellipse cannot get too thin.

• 2. Anisotropic initial eddies



Wave instabilities

• Maximum on the kx-axis at kρ ~ 1.

• γ=0 line crosses k=0 point.

Access to stored free energy: 

GFD: Baroclinic instability.

In plasmas: ITG, ETG instablities.
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Forced CHM simulation
• Generation of ZF and 

suppression of small-scale 

turbulence

• Diffusion on k-space curves 

(as predicted in Balk et al 

1991)

• ZF saturation:
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Summary for all parts.

• ZF’s can be generated via modulational

instability  (for narrowband initial data) and by 

anisotropic inverse cascade (for broadband 

initial data)

• ZF’s suppress turbulence thereby causing 

transport barriers.

• All effects present in forced/dissipated  CHM 

model.

• Examine 2-potential models which includes 

instabilities.


