
LONG-WAVELENGTH TURBULENCE CHARACTERISTICS, 
DYNAMICS, AND FLOWS IN TOKAMAK PLASMAS

George R. McKee 1

J. Candy2, R. Fonck1, C. Holland3, C. Petty2, M. Shafer4, 

A. White5, Z. Yan1 and the DIII-D Research Program

1 University of Wisconsin
2 General Atomics
3 University of California-San Diego
4 Oak Ridge National Laboratory
5 Massachusetts Institute of Technology

Gyrokinetics In Laboratory and Astrophysical Plasmas
Isaac Newton Institute for Mathematical Sciences

Cambridge, United Kingdom
19 July 2010



G. McKee - Gyrokinetics in Laboratory and Astrophysical Plasmas - 2010, Cambridge, UK

Turbulence plays a Central Role in Behavior and Performance 
of Magnetically-Confined Plasmas
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Nonlinear Dynamics
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Gyrokinetic Simulations

Measurements helping to 
validate models and 
understand transport 
behavior
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Outline

• Diagnostic capability for measuring 2D long-wavelength 
density turbulence with Beam Emission Spectroscopy (BES)

• Turbulence imaging and visualization

• Turbulence characteristics and parameters

• Spatiotemporal correlation and spectral characteristics

• Time-dependent zonal flows
– Zonal Flow/Geodesic Acoustic Modes

– Nonlinear energy transfer mediated by zonal flows

• Comparisons with nonlinear 3D gyrokinetic simulations
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Beam Emission Spectroscopy Measures Fluorescence of 
Heating Neutral Beam to Detect Local Density Fluctuations
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Collisionally-excited, Doppler-shifted
neutral beam fluorescence

Exploits Neutral Beam Heating Systems
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Beam Emission Spectroscopy Measures Fluorescence of 
Heating Neutral Beam to Detect Local Density Fluctuations
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Beam Emission Spectroscopy Measures Fluorescence of 
Heating Neutral Beam to Detect Local Density Fluctuations

Collisionally-excited, Doppler-shifted
neutral beam fluorescence

Exploits Neutral Beam Heating Systems
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Beam Emission Spectroscopy Measures Fluorescence of 
Heating Neutral Beam to Detect Local Density Fluctuations
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Collisionally-excited, Doppler-shifted
neutral beam fluorescence

Exploits Neutral Beam Heating Systems

Remotely Located Spectrometers



G. McKee - Gyrokinetics in Laboratory and Astrophysical Plasmas - 2010, Cambridge, UK

Beam Emission Spectroscopy Measures Fluorescence of 
Heating Neutral Beam to Detect Local Density Fluctuations
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Collisionally-excited, Doppler-shifted
neutral beam fluorescence

Exploits Neutral Beam Heating Systems

M
DSplus, shot = 142369, run = EFIT01, tim

e = 1410.00

Size of 8x8 
BES view:
~7x9 cm

ΔX≈1 cm
k⊥ρI < 1
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Turbulence Spectrum Evolves Dynamically During Discharge
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•
 Measurements obtained in

 Low Confinement-mode Discharges:

 
 Ip=1 MA, BT = -2.0 T

 
 Pinj = 5 MW, 
    
 ne,o=3x1019 m-3,

  Te,o=2.2 keV, Ti,o=2.7 keV

•   Coherent energetic particle 
  driven-modes observed early
  in plasma

•   Broadband turbulence evolves
 to quasi-steady phase

•
 Fluctuations markedly reduced

 in core region at LH transition

•
 Beam source oscillations can
 be isolated and subtracted

Cross Power Spectrum at
r/a=0.64 (ΔZ=1.2 cm)

Alfvén Eigenmodes Pedestal Fluctuations
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Example Turbulence Images from 8x8 BES Array
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Δt = 4 μs

See visualization
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Features Observed on Visualization

• Eddy structures exhibit ~1-2 cm correlation lengths (~10ρI)
– consistent with ensemble-averaged correlation functions

– Periodically, significantly larger structures appear

• Poloidal drift (“upwards” in visualization)
– Consistent with ExB drift in ion diamagnetic direction (co-current 

plasma rotation from neutral beams)

– Fluctuating radial and poloidal motion

• Turbulent eddy lifetimes ~10-20 μs

• Significant interaction of smaller and larger eddy structures
– Evidence of nonlinear interactions; internal energy transfer

• Shearing of eddies from background sheared flow

• Features are not observed in time (ensemble) averaged 
correlations
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Fluctuation Spectra and Amplitude Vary Strongly with Radius
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Density Fluctuation
Amplitude Profile

• 
Density fluctuation amplitude in L-mode discharges shows wide dynamic 

 range across plasma radius

- Intense edge fluctuations routinely observed in L-mode plasmas

•
 Spectra Doppler-shifted to higher frequency towards core
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Turbulence Correlation Lengths ~ 10 Ion Gyroradii, consistent 
with gyrokinetic predictions
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2D Array Observes Full τ= 0 Spatial Cross Correlation 
Function

• Ensemble-averaged, time-resolved 2D cross correlation 
function assembled from individual 2-point cross-correlations

• Illustrates poloidal advection, and alignment of 2D grid to flux 
surfaces

• Point-Spread-Function (ΔX~1 cm) NOT deconvolved from data
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τ= -7 μs τ= 0 μs τ= +7 μs

0

1.0

-1.0
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Full τ= 0 Spatial Cross Correlation Function, S(kr,kθ) spectra 

measured with 2D 8x8 Array
• 2D correlation function exhibits 

wave-like poloidal structure 
and decaying radial structure
– Point Spread Function not yet 

applied

– Radially asymmetric function
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• 2D correlation function exhibits 
wave-like poloidal structure 
and decaying radial structure
– Point Spread Function 

Deconvolved

– Radially asymmetric function
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2D (Radial-Poloidal)
Correlation Function

S(kr,kθ)

Full τ= 0 Spatial Cross Correlation Function, S(kr,kθ) spectra 

measured with 2D 8x8 Array
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Spatiotemporal Features of Turbulence Scale with ρI
*, as 

Expected from Gyrokinetic Equations

• Fluctuation amplitude
– Scales as ñ/n~ρI*

• Radial Correlation 
Length
– Scales with ion 

gyroradius, ρI

• Decorrelation time

–τc~a/cs 
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Measured Wavenumber Spectra are Matched as ρI
* Varied

• Normalized spectra are nearly self-similar
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Theoretically-predicted Zonal Flows Thought Crucial to 
Mediating Fully Saturated Turbulence in Plasmas
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P. Diamond, S. Itoh, K. Itoh, T.S. Hahm, PPCF 47, R35 (2005).

•
 Regulate turbulence via fluctuating ErxBT (vθ) flows

	 -	 Observed in turbulence simulations

•
 Radially-localized, n=0, m=0,  electrostatic potential


 1) Zero-Mean-Frequency zonal flow(ZMF-ZF, Δf~νii < 10 kHz)

	 2) Geodesic Acoustic Mode (GAM, coherent, 10-20 kHz)

Reynolds
Stress

Shearing
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Time-Varying Turbulence Flows Measured Via 2D ñ with BES to 
Discern Zonal Flow Characteristics
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Time Delay Estimation
between poloidally-adjacent

channels:

1) Wavelet-based cross-

 phase (Δθ(t))

2) Time-resolved cross-

 correlation (τρ,max(t))

3) Dynamic Programming
(vector matching method)

Turbulence imaged with 
discrete channels deployed

on 2D grid

Vθ(R,Z,t)
on relevant time scale

(0 < f < 200 kHz)

Spectral and spatial analysis 
of vθ(R, Z, t)

to search for flow features
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Zonal Flow Features Observed in the Vθ Spectrum
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•
 Spectrum shows broad,

 low-frequency structure:

 -
 Peaks near zero

 
 frequency

 -
 Width, Δf~20 kHz

•
 GAM also clearly observed

 near f = 15 kHz

 -
 Observed on DIII-D and other

 
 experiments (JFT-2M,

 
 ASDEX, HL-2A,

 
 JIPP-TIIU, CHS)

•
 GYRO simulation of zonal

 flow spectrum exhibits

 qualitative similarity to

 measured spectrum

GAM
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Transition from a low-frequency Zonal Flow in core to a GAM-
dominated flow in edge region
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•
 Velocity spectra exhibit broad

 Zero-Mean-Frequency Zonal Flow

 spectrum for r/a < ~0.8

•
 Broad ZMF-ZF spectrum and GAM 

 superimposed near r/a=0.85

•
 Geodesic Acoustic Mode dominates

 spectrum for r/a > 0.9

 -     fGAM = cs/2πR

•
 Theory and simulation predict

 ZMF-ZF to dominate at lower q (core)

 while GAM dominates at higher q (edge)

•
 High coherence, f/Δf > 20, indicates

 GAM lifetime (τGAM > 1 ms), two orders

 of magnitude longer

 than turbulence decorrelation time:

 
 τGAM >> τTurbulence (~10 µs)

r/a =
0.95
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GAM Exhibits Theoretically-Expected Temperature and Spatial 
Dependence

• Frequency scales closely with sound speed

• Velocity oscillation exhibits little or not poloidal phase shift
– |m|<3 , consistent with expected m=0

• Radial phase shift, finite radial wavenumber: kr ~ 1 cm-1 
– Finite shearing rate sufficient to affect turbulence, 
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Nonlinear Transfer of Energy Can be Measured Experimentally

• Consider a model of density evolution:

23

Coupling of flux to background
density gradient (source)

Nonlinear “three-wave” interactions
which exchange energy between
different space/timescales

Collisional
dissipation of
fluctuation
energy (sink)

C. Holland, UCSD
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GAM Interacts Nonlinearly with Ambient Turbulence:
Drives Forward Cascade of Energy to Higher Frequency

24

•
 All quantities are experimentally

 measured with 2D BES ñ data

•
 Strong interaction at |f - fʼ| = fGAM 

•
 Density fluctuations at f gain

 energy from poloidal density

 gradient fluctuations at fʼ = f - fGAM, 

 and lose energy to those at 

 fʼ = f + fGAM 

•
 Energy moves between n, dn/dy

 to higher f in steps of fGAM  

•
 Convection of density

 fluctuations by the GAM leads to

 a cascade of energy to higher f

•
 GAM plays an active role in

 mediating turbulence spectrum

Bispectrum measures 3-wave interactions

C. Holland, Phys. Plasmas 14, 2007
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Experimental Fluctuation Measurements are Quantitatively 
Compared with Nonlinear Simulations
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BES
“location” (x,y)

G
Y

RO
gridpointused

PSF
“center-of-m

ass”

GYRO, a Eulerian continuum
code, simulates plasma
turbulence and transport with
full physics and geometry,
experimental profiles

“Synthetic Diagnostics” model
measurement physics and diagnostic
parameters to allow quantitative
comparisons between simulation
and measurements

(Courtesy
J. Candy, R. Waltz, GA)
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Density Fluctuation Spectra from BES and GYRO are 
Compared at 2 Radii

• At mid-radial location (0.5), excellent agreement is found between 
measurement and simulation

• At outer location (0.75), GYRO underestimates measured fluctuation 
spectrum
– Turbulent diffusivities also underestimated by similar factor

26
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Independent,
quantitative
measures
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Spatial Correlations Exhibit Good Quantitative Comparison

• Radial and poloidal correlation functions in good overall agreement
– Poloidal correlations differ modestly

• Demonstrates the GYRO is reasonably correctly predicting scales

27

!

!

!

!

Radial Correlation Poloidal Correlation



G. McKee - Gyrokinetics in Laboratory and Astrophysical Plasmas - 2010, Cambridge, UK

Comparison of BES-GYRO 2D S(kr,kθ) Wavenumber Spectra 

Reveal Notable Differences

• 2D wavenumber spectra show that GYRO predicts a finite kr that is 
not observed experimentally
– Might reflect an exaggeration of ExB shear effect on turbulent structure, 

which is also consistent with underprediction of turbulent-driven energy 
fluxes
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Conclusion

• 2D Measurements providing key insights into the characteristics and 
dynamics of long-wavelength density turbulence

• Visualizations of turbulence demonstrate:
– Turbulence flow patterns

– Eddy interactions

– Shear effects

• Spectra typically peak near kr ≈ 0, kθ ≈ 1 cm-1, kθρI ≈ 0.3

– Largely consistent with expectations from gyrokinetics

– Correlation lengths scale with ρI

• Advanced analysis methods applied to 2D measurements reveal:
– Zonal flow/GAM features in the turbulence flow-field

– Nonlinear transfer of internal energy

• Quantitative comparisons with fully nonlinear simulations are providing 
critical information towards validating models of turbulent transport
– Find cases of good agreement, and those where improvements are required
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