Parametric decay of Alfvén waves in oblique propagation: 1-D and 2-D hybrid simulations

Lorenzo Matteini
Observatoire de Paris, France
Simone Landi, Marco Velli, Luca Del Zanna
Florence University, Italy
and Petr Hellinger
Astronomy Institute, AS CR, Prague, Czech Republic
Abstract

The kinetic evolution of the parametric instability of a monochromatic Alfvén wave in oblique propagation with respect the ambient magnetic field is investigated, performing one-dimensional (1-D) and two-dimensional (2-D) hybrid simulations. We study the plasma response to the instability and we focus on the ion evolution under the effects of the parametric wave-wave coupling. We find that the parallel component of the mother wave is subject to a parametric decay which excites an ion-acoustic wave along the magnetic field and a backward propagating daughter Alfvén wave as in the usual instability for purely parallel waves. The acoustic wave generation supports the acceleration and formation of a velocity beam in the ion distribution, due to the non-linear trapping of resonant protons. Moreover, the instability leads to the generation of broad band oblique spectra of coupled Alfvénic and compressive modes with variable perpendicular wavevector; as a consequence the magnetic field after the saturation is characterized by a strong transverse modulation.
Parametric instability of Alfvén waves
 parallel propagation case
(large literature: theory and simulations in MHD, Hall-MHD, and kinetic regime)

Hybrid simulations: fluid electrons and kinetic ions

Parametric decay

three-wave coupling

Coupling of the mother wave with density fluctuations:
generation of an ion-acoustic mode and a backward propagating daughter Alfvén wave

\[k_0^- = k_0 - k_s \]
Evolution of ion distribution function

The non-linear evolution of the parametric instability of Alfvén waves including kinetic effects influences the ion dynamics with the formation of a velocity beam parallel to the magnetic field:

Modulational instability (Araneda et al. 2008, 2009), decay instability (Matteini et al. 2010), dispersive wave packets evolution (Velli et al, in prep.), and also Alfvénic cascade including the generation of ion-acoustic waves (Valentini et al. 2008).

Beam properties with different betas

Parametric decay of a monochromatic Alfvén wave
(Matteini et al. 2010, JGR)
Parametric decay of oblique Alfvén waves
(1-D results)

Linearly polarized mother wave Bz, propagating along x and with angle θ with respect B lying in the x-y plane

Table 1. Growth rate of parametric decay at various angles. For each angle we report the measured growth rate γ and the corresponding $\gamma_{\parallel} = \gamma / \cos(\theta)$

<table>
<thead>
<tr>
<th>Run</th>
<th>θ_{kB}</th>
<th>k_0</th>
<th>k_\parallel</th>
<th>k_\perp</th>
<th>γ</th>
<th>γ_{\parallel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30</td>
<td>0.21</td>
<td>0.33</td>
<td>0.12</td>
<td>0.007</td>
<td>0.008</td>
</tr>
<tr>
<td>B</td>
<td>45</td>
<td>0.21</td>
<td>0.33</td>
<td>0.12</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>0.21</td>
<td>0.33</td>
<td>0.12</td>
<td>0.004</td>
<td>0.008</td>
</tr>
</tbody>
</table>

The instability growth rate scales with $\cos(\theta)$
(in agreement with results of Del Zanna 2001 in MHD)
Parametric decay in 2-D and vdf evolution

Possibility to describe the coupling along and across B

Wave-wave interaction

Decay confirms the 1-D results

Wave-particle interaction

Generation of a velocity beam parallel to the magnetic field
2-D Fourier analysis of fields

Initial conditions

Linear phase of the instability

\[k_0 = k_{0\parallel} + k_{0\perp} \]

Decay still driven by a coupling parallel to B, but also generation of large spectra of oblique modes with variable k_\perp and fixed k_\parallel to conserve the initial mother wave energy and momentum

\[k_0^- = k_0 - k_s \]
2-D evolution of fields: density and magnetic field

Linear phase

- $D(t=1300)$
- Growth of ion-acoustic wave $\parallel B$

Saturation

- $B_z(t=1300)$
- Decay of the mother Alfvén wave propagating along x
- $B_z(t=2000)$
- Magnetic field after saturation is characterized by a strong transverse modulation
To study non-linear wave-particle interactions during the solar wind expansion, we perform numerical simulation using a hybrid code implemented with an expanding box model (Liewer et al. 2001, Hellinger et al. 2003).

Hybrid model: electrons are described as an isotropic massless fluid and protons (ions) as particles (Matthews 1994). The expanding box model assumes a radial linearly driven evolution with a constant expansion velocity; the transverse dimensions of the box (which co-moves with the wind) increase with distance (Grappin et al. 1993).

Spherical expansion

Expanding box

Adiabatic evolution for ions (CGL) and waves (WKB)

Self-consistent competition between the cooling driven by the expansion and the heating provided by wave-particle interactions and wave-wave instabilities
Parametric instability in the expanding solar wind

Evolution with distance of an initial spectrum of left-handed Alfvén waves

Wave energy decays faster than WKB prediction: dissipation by wave-wave and wave-particle interactions

Deviation from double adiabatic cooling; local heating
Shaping the proton vdf through wave-particle interactions

Velocity beam acceleration by parametric instability

Ion-cyclotron perpendicular heating
Evolution of proton temperature anisotropy in the expanding solar wind: simulations vs. observations

Wave-particle interactions regulate the evolution of the temperature anisotropy

Perpendicular heating by ion-cyclotron resonance and ion-beam instabilities

Role of temperature anisotropy driven instabilities

Fire Hose instabilities counteract the adiabatic cooling of the expansion
Evolution of magnetic fluctuations close to Parallel Fire Hose marginal stability

Also other instabilities contribute to the local generation of wave power: Oblique Fire Hose (Hellinger & Travnichek 2008), Mirror, Ion-cyclotron, and Ion-beam instabilities
Conclusions

• Parametric decay of oblique Alfvén waves in kinetic regime: similar evolution as in parallel propagation, smaller growth rate

• Acceleration of resonant proton by parallel ion-acoustic waves driven by the decay; generation of velocity beams along B

• In 2-D excitation of a large spectrum of oblique modes and strong transverse modulation of the magnetic field

• Parametric instabilities play a role in shaping proton distribution functions in the solar wind expansion