Solar Wind electrons :

observations and basic physics

Milan Maksimovic, LESIA – Observatoire de Paris

Outline

- Observations
- Radial evolutions
- Basic physics & models
- Conclusions

GYPW01, Cambridge UK, 19-23 July 2010

Turbulence in the Solar Wind : Evidence for slope break in the electron range 、

The Solar Wind as Seen from the ecliptic

Helios, 1983

Ionized Hydrogen : \cdot ~1% of heavy ions • e-• H⁺ : ~95% (C, N, O, Ne, Mg, Fe) • H_e^{2+} : ~4% Slow Wind : • V ~ 200 à 600 km/s • $N_e \sim 5 \text{ à } 20 \text{ cm}^{-3}$ • $\rho V^2 \sim 2.1 \times 10^{-9} Pa$ • $T_e \sim 1 \text{ à } 3 \times 10^5 \text{ K} \rightarrow \text{V}_{\text{the}} \sim 2500 \text{ km/s}$ E ~ 10-20 eV \cdot T_p ~ 0.5 à 3 x10^5 K \rightarrow V $_{thp}$ ~ 40 km/s E ~ 0.5-1.5 keV

The Solar Wind as Seen from the ecliptic

Helios, 1983

Ionized Hydrogen : • ~1% of heavy ions • e-• H⁺ : ~95% (C, N, O, Ne, Mg, Fe) • H_e^{2+} : ~4% Slow Wind : • V ~ 200 à 600 km/s • N_e ~ 5 à 20 cm⁻³ $\cdot \rho V^2 \sim 2.1 \times 10^{-9} Pa$ \cdot T_e ~ 1 à 3 ×10⁵ K \rightarrow V_{the} ~ 2500 km/s E ~ 10-20 eV \cdot $T_{_{D}}$ ~ 0.5 à 3 $\times 10^{5}$ K \rightarrow V $_{thp}$ ~ 40 km/s E ~ 0.5-1.5 keV Fast Wind : • V ~ 600 à 800 km/s • N_e ~ 1 à 5 cm⁻³ $\cdot \rho V^2 \sim 2.6 \times 10^{-9} Pa$ \cdot T_e ~ 1 à 2 ×10⁵ K \rightarrow V_{the} ~ 2100 km/s E ~ 10-20 eV • T_p ~ 2 à 5 x10⁵ K \rightarrow V_{thp} ~ 80 km/s E ~ 1.5-3 keV

 <u>Protons</u>: transport moment, determine the viscosity

• <u>Electrons</u> : transport the heat & determine the conductivity

How do we measure particle distribution functions ?

- Velocity (energy) selection set by entrance grid Φ
- Look direction set by electro-optical geometry or S/C spining

Spacecraft charging effects

- Photoelectrons
- SW electrons

Typical $\Phi \sim 2$ to 10 Volts Electrons affected Ions not affected

Electron velocity distribution functions : 3 components : core, halo & strahl

Proton distribution functions

Heavy ions distribution functions

Radial evolutions

Evidences for both collisions and instabilities shaping the eVDFs

Similar for protons : Kasper et al., Hellinger et al.

Radial evolution of electron distribution functions Stverak et al., JGR, 2009

Core : bi-Maxwellian * flat-top

$$f_{c} = A_{c} \exp\left[-\frac{m}{2k} \left(\frac{1}{T_{c\perp}} v_{\perp}^{2} + \frac{1}{T_{c\parallel}} (v_{\parallel} - \Delta_{c})^{2}\right)\right],$$

Halo : bi- Kappa * (1-flat-top)

$$f_{h,\kappa} = A_h \left(1 + \frac{m}{k(2\kappa_h - 3)} \left(\frac{\nu_{\perp}^2}{T_{h\perp}} + \frac{\nu_{||}^2}{T_{h||}} \right) \right)^{-\kappa_h - 1}$$

Strahl : bi- Kappa * (1-flat-top) from antisunward dir.

$$f_s = A_s \left(1 + \frac{m}{k(2\kappa_s - 3)} \left(\frac{v_\perp^2}{T_{s\perp}} + D \frac{\left(v_{||} - \Delta_s\right)^2}{T_{s||}} \right) \right)^{-\kappa_s - 1}$$

Helios, Cluster, Ulysses

Strahl is transformed into halo with distance by particle/wave interactions ?

Similar to fast wind (Maksimovic et al. 2005)

eVDF extrapolated back to the sun

Some basic physics and models

Interplanetary electric potential

Interplanetary electric potential

The exospheric approach

Transsonic exospheric model

Particule simulation

Landi & Pantellini, A&A, 2001 & 2003

- * Spatially 1D, 3D particle velocities
- * Self-consistent E(r) field
- * Collisions with Coulombian cross section
- * "Thermostats" at r=0 and r=L

Analytical model

Pierrard et al., JGR, 1999 Dorelli & Scudder, GRL1999 & JGR 2003

Rosenbluth et al. [1957] Coulomb coll. operator

- The protons are treated as an infinitely massive, charge neutralizing background

- The heat flux is constant and carried entirely by the electrons.

Landi & Pantellini, A&A 2003 Lani et al., SW12, 2009

Increasing nb of collisions Solves the trapped electrons dilema

Extensive comparison between exospheric and kinetic collisional models Zouganelis et al., APJL 2005

Non-thermal distributions and

heat flux in the corona

Non-thermal distributions and

heat flux in the corona

Even with a weak Knundsen number (10⁻² à 10⁻⁴)

- ------ e- VDF with supra-thermal tails still exist at z = 0.1 Rs
- The classical Spitzer & Harm heat flux is not valid

Conclusions:

- Non Maxwellian e VDFs are always present in the Solar Wind

- The core / strahl structure seems to results from natural expansion in a ambipolar interplanetary electric field and Coulomb collisions for the core

- The halo part seems to come from scaterred strahl electrons and develops with radial distance

- Both electrons and ions need additional heating processes (dissipation of turbulence, instabilities)

- The equations for the transport of energy are not obvious

- We need to go closer to the Sun