1. MAST 2D BES SYSTEM

- ZEMAX model of optical system
- CATIA model of ex-vessel periscope
- Intermediate optics
- Field lenses with filters
- Imaging lens
- Ex-vessel optical hardware

2. HOW DOES BES WORK?

- BES detects photons released from excited neutrals.
- Neutrals collide with electrons, ions and impurities
- Excited neutrals are populated
- Radiative decay (Emission of fluorescence)
- Detect and count emitted photons (typically D_α)

3. FACTORS INCLUDED IN SYNTHETIC BES DATA

- Emission (interaction of beam with plasmas)
 - Beam flux attenuation as the beam penetrates plasma (collisions between beam and plasmas)
 - Beam cross-section profile (divergence of beam)
 - Beam excitation rate
 - Atomic transition time (finite half-life of the D_α)

- Collection
 - B-field topology along LoS
 - Optical light cone size along LoS
 - Optical magnification factors along LoS
 - LoS integration of the Doppler shifted D_α emission

4. GENERATING SYNTHETIC BES DATA

- Beam Profile
 - Beam attenuation along beam path
 \[\rho(0)-\rho(L) = \int_0^L n_0(x)dx \] where \(\rho \) is the beam stopping rate
 - Beam cross-section profile
 \[\rho(x) = \rho_0 \left(\frac{x}{x_0} \right) \] where \(x_0 \) is the beam width
 - Beam excitation rate: Emissivity
 \[\lambda(x) = \lambda_0 \left(\frac{x}{x_0} \right) \] where \(\lambda_0 \) is the emission rate

5. SYNTHTIC BES DATA DOMAIN AND CUTIE DATA

- Photon flux along LoS
- Total photon flux along LoS
- View planes along LoS
- B-field effects on one channel

6. RESULTS AND DISCUSSIONS

- Synthetic BES data are generated based on CUTIE data.

- 1) Kinetic energy traces for CUTIE and BES without photon noise
- 2) Radial/Poloidal FWHM Profiles at two different radii
- 3) PSF and STF at two different radii
- 4) RMS diff and poloidal group velocity profile