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Overview

The solar wind as a laboratory to understand plasma
dynamics

As a function of beta

As a function of collision/dynamic timescales

When can we describe these plasmas with
Fluid MHD (equal temperatures, velocities, ...)
Kinetic equations (non-Maxwellian VDFs, wave-particle coupling,
..)
Example of current research
Instabilities
lon Heating
lon — Electron Interactions






Plasma physics in the heliosphere
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Credit: SOHO (ESA/NASA)

O The corona is not in hydrostatic
equilibrium and a supersonic solar
wind is generated. The solar wind is
highly structured, with streams and
shocks

Q In interplanetary space, our
spacecraft are much smaller than the
Debye length, so we can measure

&= the VDFs of ions and e-'s.

O We cannot prepare “shots”, but
we can treat the solar wind as an
ergodic system that explores a wide
range of states. Our starting point
is @ massive database of accessible
plasma conditions



A fleet of spacecraft explore the heliosphere

WIND spacecraft and instruments
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The Wind spacecraft

Launched in fall 1994 and still
operating

Understand solar wind upstream of
Earth

Lots of extra fuel — new locations (L1,
L2, distant prograde orbits, double
lunar swing-by, ...)

Spins out of ecliptic plane at 3 seconds

Excellent complement of stable,
accurate, well-understood in situ
instruments

lons and Electrons (>5.3M 3D VDFs)

Electromagnetic fluctuations




Kinetic physics of the solar wind

o1 Earliest solar wind measurements showed that ion
and electron velocity distribution functions (phase
space density) are almost, but not quite,
Maxwellian

7 What keeps them from being Maxwellian?

Very low densities and high temperatures — at 1
AU a typical proton experiences a weak Coulomb
interaction once per AU

Interactions between electromagnetic fields and
particles of a particular speed, not as a fluid
OK, then why are they even close to Maxwellian?

o Kinetic physics of the solar wind

When is MHD valid and when do we need to
include details of the velocity distribution?

What are VDF signatures of wave-particle
coupling, heating, dissipation, acceleration?

Testing and pushing theory with large and accurate
samples of the solar wind (millions of individual
spectral measurements)

Relative frequency of occurrence
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Collisional relaxation in the solar wind




Kinetic properties of the solar wind

Fast 1 Kinetic or non-thermal
features

Field-aligned anisotropies
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Slow wind is Maxwellian
and behaves as single fluid

054 AU 618 kmis

R
\
NN
N

Fast wind has strong non-
thermal aspects

Slow /fluid, Fast /kinetic

frne
R

7 |
Schwen2and Marsch 3sokmnis 0.39AU L kens 0.29AU 781 kmls



Kinetic properties ordered by speed

Ta/Tp

T1p/Tip
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Consider three non-thermal
effects:

Alpha/proton temperature ratio
Proton temperature anisotropy
Differential flow

2D histograms of these

parameters as a function of
solar wind speed

Clearly some dependence on
speed

But why sort by speed?
Consider a thermalization
timescale instead.



o1 Coulomb collisional age A_

is the number of Coulomb
collisions experienced by
typical particle over
propagation from Sun

R n
ACOCU T3/2

Fast wind is hotter and less
dense

Previous work has shown
that large A_ leads to
smaller differential flow
and T ~ T, (Mckenzie
1987 Mqrsch 1983,
Neugebauer 1976)
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Wind speed or collisional age?
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- Proton temperature anisotropy



What regulates temperature anisotropy?
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What regulates temperature anisotropy?
S =

1 Double adiabatic expansion

T .
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What regulates temperature anisotropy?

Double adiabatic expansion
T,. 3
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If R, exceeds threshold,
instability begins to grow,
generating waves that make the
velocity distribution function
more isotropic

The larger the anisotropy, the
stronger the wave growth and
scattering

“Instability Limit” is curve for a
predefined growth rate of the
instability



What regulates temperature anisotropy?

1 Double adiabatic expansion

T, .
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1 Coulomb relaxation
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Distribution of observed anisotropy at 1 AU

Cyclotron resonant heating
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Range of anisotropy limited by instabilities
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|ldentify the dominant instabilities using the

statistical distribution of the solar wind
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Power in magnetic fluctuations

ﬂﬁ”fﬁi) = 5EN/55\|iaHi
1078 1072 1071
10 — —
10.0 - —— : ' 1.00
r ’00."..'AIC "n". mlrror
E~.,=D‘
s
= 100
I
Q:P‘
S 1.0 1
- |
1070 R

1 Instabilities should

0.1 : . Lt . 0.01
generqte EM waves 0.001 0.010 0.100 1.000 10.000 100.000
8
0 Look at average power ) Bale et al. (2009

of magnetic fluctuations
across R -3, |, plane



Multiple sources of power at small scales
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- Anisotropic heating of protons



In situ signatures of heating process
—

Large perpendicular temperature anisotropies .
Proton magnetic moment not conserved

as the solar wind expands
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Radial evolution and heating
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Proton temperature near instability

thresholds
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Components of proton temperature

near instability thresholds
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- Relative heating of ions



Helium /hydrogen temperature ratio

Relative frequency of occurrence
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The Alfven-Cyclotron Resonant Interaction

Turbulence in the corona and solar
wind transports power to shorter

1.0 scales, creating a spectrum of
Alfven waves

Vis/Ca

Several models of dissipation have
focused on the absorption of Alfven-
Pitch- cyclotron fluctuations in a plasma
5 angle with multiple ion species (Hu 1999,
o Cranmer 2003, Hellinger 2005,
0.5 diffusion Isenberg 2007)

t 9(0\0“5 In a frame moving with the wave,
particles will stochastically diffuse

along the surface v ;2 + V ;2 =
const

Heavier ions resonate with slightly
| faster waves so if diffusion is
— O O sufficiently fast a heavy ion can
-0.2 0.0 0.3 0.8 achieve T, ;>(m;/m )T

After Hollweg and Isenberg (2002) V18/Ca



Test for Alfvén-cyclotron resonant heating in a two

species plasma
_
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1 Relative heating may also be regulated by differential flow (Gary 2004, Gary 2005,
Hellinger 2005)

1 Significant because heavier ions often flow faster than protons. In general the differential
flow AV =1V, VIo | reaches but rarely exceeds the Alfven speed, C, (Neugebauer 1976,
Marsch 1982 Reisenfeld 200T1)

71 Prediction
For AV, /C,~0, helium will have a stronger cyclotron resonance than hydrogen, and thus will be
heated F ster and develop larger temperature anisotropies.

On the other hand, if AV _/C, is increased, the helium ions come out of resonance with the waves and
the protons are heq’red instead.



Test for Alfvén-cyclotron resonant heating in a two

species plasma
_
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1 Relative heating may also be regulated by differential flow (Gary 2004, Gary 2005,
Hellinger 2005)

1 Significant because heavier ions often flow faster than protons. In general the differential
flow AV =1V, VIo | reaches but rarely exceeds the Alfven speed, C, (Neugebauer 1976,
Marsch 1982 Reisenfeld 200T1)

71 Prediction
For AV, /C, < 0.15, helium will have a stronger cyclotron resonance than hydrogen, and thus will be
heated Fas’rer and develop larger temperature anisotropies.
On the other hand, if AV _/C, is increased, the helium ions come out of resonance with the waves and
the protons are heq’red instead.
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Anisotropy of heating and dependence on AV /C,
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- lon-Electron Interactions



Relative heating of ions and electrons
—
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Prescription
—

Start with empirical dependence of temperature and heat flux on distance:

T,
ln(lO;K) =0.9711 — 0.7988x + 0.07062.x°,

T,
In < ) = 0.03460 — 0.4333x +0.08383x>,
105K

In (‘“’) — —0.7032 — 2.115x — 0.2545x2.
qo

Insert into equations for internal energy:
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Extract Q, and Q,



Relative heating with distance

Red curve is best-fit fraction of power dissipated into
protons as a function of distance from the Sun
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What explains this partition?
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o

Models
Data

Spacecraft



Theoretical models and data analysis

Models

Is the mirror instability really more important than the
cyclotron instability at regulating temperature
anisotropy?

Predictions of wave power

Data analysis
lon-electron interactions
Plasma at higher cadence

Combine electromagnetic fields with plasma



Solar Probe Plus (SP+)

54 Rs
38 Rg (025 AU)
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Time within 10 R;: 10 hours
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Advantages of SPP orbit
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Rich kinetic dataset
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Conclusions

We can use large sets of precise solar wind measurements to conduct
sensitive and quantitative kinetic physics experiments

Microphysics is important at all solar wind speeds
Instabilities

Experienced by protons, electrons (alphas, minor ions?)

Limit anisotropy, generate waves, heat plasma
Heating mechanisms

Alfven-ion cyclotron heating is occurring in solar wind

Upcoming missions to the inner heliosphere such as Solar Orbiter and
Solar Probe can conduct groundbreaking kinetic physics experiments

Kinetic physics will be important at all solar wind speeds once we get close
in

Need to be able to make fast and accurate measurements of bulk
properties of solar wind ions and electrons, electric and magnetic field

Radial gradients important — operate these missions beyond encounters



