Gyrokinetic Modeling for Basic Turbulence Experiments on the LAPD

Gregory G. Howes Department of Physics and Astronomy University of Iowa

One Day Workshop: Gyrokinetics for Simple Laboratory Plasma Configurations Gyrokinetics in Laboratory and Astrophysical Plasmas Programme Isaac Newton Institute for Mathematical Sciences Cambridge, UK 29 July 2010

This work is supported by the DOE Center for Multi-scale Plasma Dynamics, Fusion Science Center Cooperative Agreement ER54785 and the University of Iowa.

Collaborators

Jason TenBarge Bill Dorland Kevin Nielson Ryusuke Numata Tomo Tatsuno

University of Iowa University of Maryland University of Iowa University of Maryland University of Maryland OF IO

and The Center for Multi-scale Plasma Dynamics

Outline

- Basic Turbulence Experiments on the LAPD
 - Theoretical Background
 - Experimental Setup
- Challenges for Gyrokinetic Modeling of LAPD Experiments
- Validation of Gyrokinetics and AstroGK
 - -Validity of Gyrokinetics at LAPD frequencies
 - AstroGK results for Linear Kinetic Alfven Waves in LAPD
- Next Steps
- Conclusions

MHD Turbulence Theory

The Incompressible MHD Equations:

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla (p + \frac{B^2}{8\pi}) + \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4\pi\rho} \qquad \nabla \cdot \mathbf{u} = 0$$
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times B) \qquad \nabla \cdot \mathbf{B} = 0$$

Elsasser Variables
$$\mathbf{z}^{\pm} = \mathbf{u}_{\perp} \pm \delta \mathbf{B}_{\perp} / \sqrt{4\pi\rho}$$

 \mathbf{z}^+ travels down \mathbf{B}_0 field \mathbf{z}^- travels up \mathbf{B}_0 field

UN

of lowa

$$\frac{\partial \mathbf{z}^{\pm}}{\partial t} \mp v_A \cdot \nabla \mathbf{z}^{\pm} + \mathbf{z}^{\mp} \cdot \nabla \mathbf{z}^{\pm} = -\nabla p$$
Linear Term
Nonlinear Term \rightarrow Between oppositely propagating Alfven waves

of energy to higher wavenumber

Often described as scattering of the waves

Experimental Setup

UNIVERSITY OF IOWA

Basic Experiments of Alfven Wave Collisions on the LAPD

Experimental Parameters

THE UNIVERSITY OF LOWA

LAPD Operating Parameters for

- Kinetic Alfven Wave Regime
- Inertial Alfven Wave Regime

Parameter	Kinetic	Inertial
Axial Magnetic field, B_0	$600 \mathrm{~G}$	2300 G
Ion Temperature, T_i	$1.25 \ \mathrm{eV}$	$1.25 \ \mathrm{eV}$
Electron Temperature, T_e	$8 \mathrm{eV}$	$1.9~{ m eV}$
Electron Density, n_e	$9.5 \times 10^{11} \mathrm{~cm^{-3}}$	$6.5 \times 10^{11} { m cm}^{-3}$
v_{te}/v_A	2.5	0.26
$\beta_i = 8\pi n_i T_i / B_0^2$	1.328×10^{-4}	6.185×10^{-6}
Plasma Dimension, L	$40~{ m cm}$	$40~{ m cm}$
Ion Larmor Radius, $\rho_i = v_{ti}/\Omega_i$	$0.56~{ m cm}$	$0.14~{ m cm}$
Sound Larmor Radius, $\rho_s = c_s / \Omega_i$	1.0 cm 🗲	$0.12~{ m cm}$
Electron skin depth $\delta_e = c/\omega_{pe}$	$0.56~{ m cm}$	$0.67~\mathrm{cm}$ \leftarrow
Operating Frequency, f	70–130 kHz 🗲	250–380 kHz ←
$f_{c_i} = q_i B_0 / 2\pi m_i c$	$223 \mathrm{~kHz}$	$875 \mathrm{kHz}$

Complications for Experimental Program

- LAPD plasma is not well described by Incompressible MHD
 - Moderate Collisionality $\nu \sim \omega$ Requires Kinetic Description

OF LOWA

- Finite Larmor Radius effects $(v_{te} > v_A) \ k_\perp
 ho_s \gtrsim 1$ Kinetic regime
- Finite Electron Skin Depth $(v_{te} < v_A) \ k_{\perp} \delta_e \gtrsim 1$ Inertial regime
- Finite Frequency $\omega \lesssim \Omega_i$
- We want to study nonlinear effects, but the properties above lead also to linear non-ideal MHD effects
 We need to separate non-ideal from nonlinear effects to interpret experimental results

AstroGK can model both non-ideal and nonlinear effects! (in the gyrokinetic limit)

Challenges for Gyrokinetic Modeling

- Finite Larmor radius and finite electron skin depth
 - Correctly modeled in gyrokinetics
- Moderate Collisionality
 - Requires use of advanced, fully conservative collision operator

(Abel, Barnes, Cowley, Dorland, & Schekochihin, 2008) (Barnes, Abel, Dorland, Ernst, Hammett, Ricci, Rogers, Schekochihin, & Tatsuno, 2009)

- Finite Frequency
 - GK excludes cyclotron frequency effects
 - For each case, must determine magnitude of cyclotron effects
- Geometry and Boundary Effects
 - For direct comparison between simulation and experiment, plasma geometry and boundary effects may be important

Validation of Gyrokinetics in LAPD Plasma

Finite frequency effects are excluded from GK description - Must verify that cyclotron effects are not too significant

- Must verify that cyclotron effects are not too significant

Kinetic Alfven Wave Regime

Validation of Gyrokinetics in LAPD Plasma

Finite frequency effects are excluded from GK description - Must verify that cyclotron effects are not too significant

Inertial Alfven Wave Regime

Experimental Parameters

Parameter	Kinetic	Inertial
Axial magnetic field, B_0	600 G	2300 G
Ion temperature, T_i	1.25 eV	1.25 eV
Electron temperature, T_e	8 eV	1.9 eV
Electron density, n_e	$9.5 \times 10^{11} \text{ cm}^{-3}$	$6.5 \times 10^{11} \text{ cm}^{-3}$
$\Omega_i = q_i B_0 / m_i c$	1.4×10^6 rad s ⁻¹	5.5×10^6 rad s ⁻¹
v_{te}/v_A	2.5	0.26
$\beta_i = 8 \pi n_i T_i / B_0^2$	1.328×10^{-4}	6.185×10^{-6}
T_i/T_e	0.16	0.66
v_{ti}/c	2.6×10^{-5}	2.6×10^{-5}
$\Lambda = T_e^{3/2} / (q_e^3 \sqrt{4\pi n_e})$	1.2×10^{5}	1.7×10^{4}

"Correcting" for Cyclotron Effects

We can subtract the difference between the collisionless gyrokinetic and Vlasov-Maxwell eigenfrequencies to "correct" LAPD results for finite frequency effects

Corrected

Current and Future Gyrokinetic Modeling

- Nonlinear Energy Transfer Rate dependence on amplitude
 Determine amplitudes necessary in experiment
- Predict Nonlinear Product for comparison to experiment
- Develop improved diagnostics: The Elsasser Probe

Amplitude Dependence of Nonlinear Energy Transfer

- Consider evolution of \mathbf{z}^- wave: $\frac{\partial \mathbf{z}^-}{\partial t} + v_A \cdot \nabla \mathbf{z}^- + \mathbf{z}^+ \cdot \nabla \mathbf{z}^- = -\nabla p$
- Nonlinear term depends on amplitude of \mathbf{z}^+ wave: $(\mathbf{z}^+ \cdot
 abla) \mathbf{z}^-$

Sufficiently fast nonlinear transfer is needed to observe nonlinearity in experiment!

Elsasser Probe

UNIVERSITY

OF IOWA

Elsasser Probe

UNIVERS

of lowa

Conclusions

- LAPD experiments in simple geometries can be used to test ^{OI} fundamental concepts in plasma turbulence
- Basic concepts are based in MHD theory, but lab plasmas are poorly described by MHD
- Gyrokinetics can be applied to model LAPD experiments
 - Can model both linear non-ideal and nonlinear effects
 - Moderate collisionality is a big challenge
 - Finite-frequency effects must be closely monitored
- Linear gyrokinetic simulations have successfully modeled both kinetic and inertial Alfven waves in the LAPD
- Next we will perform nonlinear gyrokinetic simulations to:
 - Guide the design of experiments
 - Interpret the results of experiments

THE END