Observational evidence for anisotropic solar wind turbulence on fluid and kinetic scales

Tim Horbury Imperial College London

Thanks to Chris Chen, Robert Wicks, Alex Schekochihin, Miriam Forman

- The solar wind as a turbulence laboratory
- What we know: the basics
- MHD scale cascade
- Ion scale cascade
- Kinetics: instabilities
- Open questions

What is the solar wind?

- Collisionless, magnetised plasma
- Continual, but variable, outflow from Sun's corona
- Carries waves and turbulence from corona
- **Complex** due to solar variability, solar rotation, and in situ processes
- Variable on all measured scales, from sub-second → centuries

STEREO/HI

Typical solar wind parameters (near Earth)

Composition	Mostly protons, few percent alpha, small heavies
Ion temperature	~10 ⁵ K
Bulk speed	250-800 km/s
Alfven speed	~40 km/s
Debye length	~10m
Mean free path	~1 AU
Proton gyroradius	~100 km
Proton inertial length	~100 km
Magnetic field	~5nT
Proton beta	~ 1

Spacecraft as sensors

- Spacecraft are (mostly) test particles
- Natural fields are very small significant spacecraft interference issues
- Typical measurements
 - Magnetic field (DC to tens Hz)
 - Electric field
 - Bulk ion properties (velocity, temperature, density)
 - Bulk electron properties (velocity, temperature, density)
 - Full plasma distributions including composition
 - Energetic particles

Exploring the solar system

- Spacecraft have explored most of the solar system
- None has a fully comprehensive instrument package
- Big changes in properties with distance, latitude, solar cycle
- Biggest factor is fast vs slow solar wind

Typical conditions at 1.0 AU

- Individual streams last a few days
- Always need to consider the context

Interpreting spacecraft measurements

• In the solar wind (usually),

$$V_A \sim 50$$
 km/s, $V_{SW} > \sim 300$ km/s

• Therefore,

 $V_{SW} >> V_A$

- Taylor's hypothesis: time series can be considered a spatial sample
- We can convert spacecraft frequency *f* into a plasma frame wavenumber *k*:

$$k = 2\pi f / V_{SW}$$

- Almost always valid in the solar wind
- Makes analysis much easier
- Not valid in, e.g. magnetosheath, upper corona, kinetic scales(?)

Interpreting spacecraft measurements

- Solar wind flows radially away from Sun, over spacecraft
- Time series is a one dimensional spatial sample through the plasma
- Measure variations along one flow line

Things we know: power spectrum

- Extended fluid scale inertial range
- Magnetic field power spectrum:
 f^{-5/3}
- Inertial range covers
 ~ 10² in scale
- Components much higher power than magnitude
 - Largely non-compressive

Active turbulent cascade in fast wind

- Bavassano et al (1982)
- Fast wind: "knee" in spectrum
- Spectrum steepens further from the Sun
- Evidence of energy transfer between scales: turbulent cascade

after Bavassano et al 1982

Density spectrum

- Malaspina et al., Ap. J., v.711, 322, 2010
- See also Celnikier et al., Astron. Astrophs., v.181, 138, 1987
- Broadband density spectrum
- Evidence for break at ion gyroscale
- Behaviour as a passive scalar on MHD scales?

Velocity vs magnetic field scaling

- Magnetic field has 5/3 spectral index
- Velocity has 3/2 spectral index (Podesta, 2009)
- Physical cause of this effect?
 Related to Alfvenicity?

Imperial College

London

Alfvén waves

Field-parallel Alfvén wave:

 B and V variations anti-correlated

Field-anti-parallel

Alfvén wave:

- B and V variations correlated
- See this very clearly in the solar wind
- Most common in high speed wind

Elsasser variable power spectra

Fast wind

- Imbalanced, dominant outward component
- "Diamond" spectrum

Slow wind

- More balanced on average
- Longer inertial range
- Solar wind often shows significant imbalance

Marsch and Tu, JGR, 1990

Field-aligned anisotropy

- Power levels tend to be perpendicular to local magnetic field direction
 - \rightarrow anisotropy
- Dots: local minimum variance direction
- Track large scale changes in field direction
- Small scale turbulence "rides" on the back of large scale waves

Types of anisotropy

- Variance anisotropy
 - $-\delta B_{\perp} > \delta B_{\parallel}$ (e.g. Belcher and Davis, 1971)
- Wavevector anisotropy
 - Different energy in wavevectors in different directions (e.g. Bieber et al., 1996)
- Scaling anisotropy
 - Different power laws in different directions
- Anisotropy of energy transfer
 - Turbulent cascade can have different rates in different directions
- "Imbalance"
 - Parallel/anti-parallel propagation of Alfvénic turbulence

Anisotropy and 3D magnetic field structure

k||B

k⊥B

B

Slab

- Plane waves
- Infinite correlation length
 perpendicular to magnetic field
- Flux tubes stay together

2D (+slab)

• Flux tubes "shred"

→ Important consequences for particle transport

Measuring anisotropy: reduced spectrum

 For a given spacecraft frequency *f*, this corresponds to a flow-parallel scale

 $\lambda = V_{SW}/f$

 ...and a flowparallel wavenumber

$$k_{\parallel}=2\pi f/V_{SW}$$

But sensitive to all waves with

 $k \cdot V_{SW} = 2\pi f$

 \rightarrow "reduced spectrum"

Power anisotropy

- Significant power anisotropy in the inertial range
- Power anisotropy seems to be generated through cascade
- Note: isotropy at the "outer scale"

• Wicks et al., Mon. Not. Roy. Astron. Soc., 2010

Consistency with critical balance

Inertial range

- 5/3 spectral index perpendicular to field
- 2 spectral index parallel to field
- Consistent with critical balance
- Other explanations are possible!
- Horbury et al., 2008

Dynamic alignment in the solar wind?

- Boldyrev, 2005
 - Angle between δb and δv should reduce down the cascade
- Podesta et al., J. Geophys. Res., A01107, 2009
 - Evidence for dynamic alignment in the solar wind?
- Timescale consistent with inertial range?

Transition to ion kinetic scales

- How does anisotropy vary across the transition to ion kinetics?
- Podesta, 2009: evidence for decreased anisotropy at ion gyroscale: instabilities?
- Chen et al., 2010: predictions for scaling based on CB gyrokinetic scalings

Kinetic effects

- Multiple possible dissipation mechanisms
 - Whistlers, kinetic Alfven waves, ...
- Which one(s) is/are operating in the solar wind?
- Evidence for another power law at smaller scales
- → Continued energy transfer, not just dissipation

Sahraoui, 2009

Dispersion scale spectral index

- MHD inertial range
 Spectral index near 5/3
- What happens in dissipation (dispersion?) range?
- Steeper spectrum
 - Much more variable

E and B spectrum in the kinetic regime

 Evidence for kinetic Alfven waves?

• Bale, 2005

Dissipation scales with multi-spacecraft

- Use four Cluster spacecraft on 100km scales
 - Provides information down to tens of km
- First measurement of power and spectral index anisotropy on dissipation scales

Chen et al., 2010

Multi-point structure functions

Anisotropy on ion kinetic scales

 See power anisotropy similar to MHD scales

Field-perpendicular fluctuations

 Spectral index variations consistent with criticallybalanced kinetic Alfven waves

Field-parallel fluctuations

 Not consistent with criticallybalanced kinetic Alfven waves

Anisotropic density scaling in the ion kinetic range

- Evidence for anisotropic scaling of density fluctuations
- Malaspina et al., 2010
- This is in the ion kinetic range
- Not consistent with theory?

Kinetic instabilities

- Expansion of solar wind drives particle distributions towards firehose and mirror mode instabilities (Kasper, Hellinger, Matteini)
- Good evidence for generation of fluctuations on ion kinetic scales due to these
- See talks by Bale, Kasper

Bale et al., PRL, 2009

Evidence for firehose instability

- Consistent with plasma near firehose instability
- Appears to have fieldparallel wavevector
- Only visible using wavelet analysis

• Wicks et al., MNRAS, 2010

Discontinuities vs turbulence

- Turbulence
 - Field-perpendicular cascade generates short scales across the field
 - Tube-like structures
 - Not topological boundaries
- Flux tubes
 - Sourced from Sun
 - Topological boundary?
- Solar wind is likely a combination of both at the same time

Using particles to study turbulence

- Jovian electron bursts
 - Electrons highly tied to field lines
 - Relativistic electrons are instantaneous diagnostics of connectivity
 - Seen up to several hundred million km from planet
- Evidence for very fine scale structure

Summary and questions

- Anisotropic cascades on both MHD and ion kinetic scales
- Anisotropy in magnetic field, velocity and density, but some differences
- Evidence for kinetic instabilities, sometimes
- Imbalance is also sometimes present

Outstanding questions

- Is critical balance actually present on MHD or ion kinetic scales?
- What is the form of the ion kinetic cascade?
- What is the effect of imbalance?
- How important are instabilities and/or structures in solar wind dynamics?

