

Electrostatic instabilities, turbulence and fast ion interactions in a simple magnetized plasma

Ambrogio Fasoli

Centre de Recherches en Physique des Plasmas (CRPP)

Association Euratom-Swiss Confederation

École Polytechnique Fédérale de Lausanne, Switzerland (EPFL)

For the CRPP basic plasma physics group:

I.Furno, K.Gustafson, D.Iraji, B.Labit, J.Loizu, P.Ricci, C.Theiler

S.Brunner, A.Burckel, A.Diallo, L.Federspiel, S.Müller, G.Plyushchev, M.Podestà, F.M.Poli, B.Rogers (Dartmouth)

An important basic problem for fusion

Intermittent transport in edge plasma

- \rightarrow plasma-wall interactions, divertor efficiency, confinement
- \rightarrow observed in many devices and configurations

A.Fasoli - 19th International Toki Conference - December 2009

The TORPEX device – simple paradigm of tokamak SOL

- Plasma produced by EC-waves
- Open field lines no plasma current
- Extensive diagnostic coverage for turbulence and plasma response
- \Box ∇ B, curvature, pressure gradients

→ Complete characterization of turbulence in conditions relevant to tokamak SOL

A. Fasoli et al., PoP (2006)

Target plasma

 \Box H₂ plasma

- P_{rf} = 400 W
- B_{tor0}=76mT; B_z=2.1mT
- p_{gas}= 6.0 x 10⁻⁵ mbar

Elongated profiles with strongly sheared v_{ExB}

Statistical and spectral properties of density fluctuations

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Universality in fluctuations

- Unique PDF: Beta distribution
- Unique relation Kurtosis vs. Skewness:

~10000 signals of I_{sat}
 >H₂, He, Ar; pressure and B_z scans

□ 1% < δn_e/n_e < 95%

~800 signals from TCV edge / SOL plasmas (L-mode) give similar results

 $K = 1.5 S^2 + 2.8$

Common to a variety of fluctuation phenomena with convection, e.g. surface T waves in ocean

B. Labit et al., PRL (2007); PPCF (2007)

Questions addressed

□ What kind of modes are responsible for the turbulence ?

□ How are macroscopic structures (blobs) generated ?

□ How do blobs propagate? Can their dynamics be influenced/controlled ?

- □ What are the consequences, in terms of
 - Plasma flow/rotation?
 - Transport for non-thermal plasma particles (fast ions)?

How can these results be used to validate theoretical models ?

Questions addressed

□ What kind of modes are responsible for the turbulence ?

□ How are macroscopic structures (blobs) generated ?

□ How do blobs propagate? Can their dynamics be influenced/controlled ?

- □ What are the consequences, in terms of
 - Plasma flow/rotation?
 - Transport for non-thermal plasma particles (fast ions)?

□ How can these results be used to validate theoretical models ?

Nature of instabilities: measured dispersion relation

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Interpretation of meas. dispersion relation – fluid model

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

□ What kind of modes are responsible for the turbulence?

- Pure interchange, resistive interchange or drift waves, depending on pressure gradient and vertical magnetic field
- We will concentrate on pure interchange modes ($k_{II} \approx 0$)

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Questions addressed

□ What kind of modes are responsible for the turbulence ?

□ How are macroscopic structures (blobs) generated ?

□ How do blobs propagate? Can their dynamics be influenced/controlled ?

- □ What are the consequences, in terms of
 - Plasma flow/rotation?
 - Transport for non-thermal plasma particles (fast ions)?

□ How can these results be used to validate theoretical models ?

Dynamics of blob ejection

- Time resolved 2D profiles of n_e, T_e,
 - φ_{pl} from conditional sampling
- Coherent structures move with v_{ExB}
- Radially elongated structures form from positive cells
- ExB flow shear breaks off the structures and forms blobs
 - Structures form in ~100 µs ~
 estimated shearing time

$$\frac{1}{\tau_{sh}} = \frac{k_z L_r}{2\pi} \frac{\partial V_{ExB,z}}{\partial r} \sim (100 \mu s)^{-1}$$

```
H. Biglari et al., PF B (1990)
```

CRPP

Energy is transferred from shear flow to blobs

Questions addressed

□ What kind of modes are responsible for the turbulence ?

□ How are macroscopic structures (blobs) generated ?

□ How do blobs propagate? Can their dynamics be influenced/controlled ?

- □ What are the consequences, in terms of
 - Plasma flow/rotation?
 - Transport for non-thermal plasma particles (fast ions)?

□ How can these results be used to validate theoretical models ?

Analysis of spatiotemporal structures

- Structures": regions where signal exceeds threshold value
 - E.g. |δn| > σ_{tot}(n)
- Threshold intersection contours for each time frame
 - Linear interpolation on triangulated mesh
 - Assume zero fluctuations at wall
- Approach
 - Define structure observables
 - Characterize all structures
 - Statistical analysis in terms of structure observables
- S. H. Müller et al., PoP 2006; PhD Thesis

Motion of filaments/blobs in simple geometry

- □ Steel limiter on low-field side, defining region with
 - Constant curvature along field lines and connection length (~2πR)
 - Near-perpendicular incidence of B-field lines, no magnetic shear

CRPP

C. Theiler et al., PRL 2009; PhD Thesis

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Joint probability of blob velocity – size

Generalization of 2D blob models and scaling laws

Blob motion determined by balance between ExB and mechanisms compensating curvature-driven charge separation

[1]S.I.Krasheninnikov, PLA 2001; [2]O.E.Garcia et al., PoP 2005; [3]J.R Myra and D.A.D'Ippolito, PoP 2005; [4]N.Katz et al., PRL 2008

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Joint probability of blob velocity – size

- Similar sizes in all gases
- Similar values of δn/n
- Mean velocity of blobs over their entire trajectory
- Significant differences in the typical velocity, ranging from 500 m/s (Ar) to 2000 m/s (He)

Agreement with generalized 2D blob model

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Control of blob velocity via wall tilt

B

Design

By pivoting the limiter around a • vertical axis, we can achieve $|\alpha| \sim 10^{\circ}$

Preliminary results

No significant difference in blob dynamics for different values of α ۲

Questions addressed

□ What kind of modes are responsible for the turbulence ?

□ How are macroscopic structures (blobs) generated ?

□ How do blobs propagate? Can their dynamics be influenced/controlled ?

□ What are the consequences, in terms of

- Plasma flow/rotation?
- Transport for non-thermal plasma particles (fast ions)?

□ How can these results be used to validate theoretical models ?

Effect of blobs on plasma flow / toroidal rotation

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Effect of blobs on plasma flow / rotation 2D time resolved (CAS) profiles

□ For B_z<0 monopolar (rather than dipolar) structure for M_o, with $\angle(I_{sat}, M_{\phi}) = \pi$

 \square The phase between δI_{sat} density and δM_{ϕ} is ~constant along blob trajectory

Nonlocal effects – need 2D coverage

B. Labit et al., submitted to PoP

Mechanism(s) behind generation of toroidal momentum

Convective term dominate over nonlinear term and toroidal Reynolds' stress

$$\Pi_{r,\phi} = \langle n^0 \rangle \langle v_r^1 V_{\phi}^1 \rangle + \langle v_r^1 n^1 \rangle \langle V_{\phi}^0 \rangle + \langle n^1 v_r^1 V_{\phi}^1 \rangle$$

B. Labit et al., submitted to PoP

Scaling of blob induced flow with blob amplitude

Toroidal velocity blobs or holes are associated with density blobs

Questions addressed

□ What kind of modes are responsible for the turbulence ?

□ How are macroscopic structures (blobs) generated ?

□ How do blobs propagate? Can their dynamics be influenced/controlled ?

□ What are the consequences, in terms of

- Plasma flow/rotation?
- Transport for non-thermal plasma particles (fast ions)?

□ How can these results be used to validate theoretical models ?

The TORPEX fast ion source and detector

- Double grid for small beam divergence
 0.1-1kV modulated (~1kHz) power supply
 Screen grid
 Acc. grid
 Screen grid
 Acc. grid
 Collaboration with UC Irvine
 Li ion emitter (~10µA)
 Aumino-silicate coating
- □ Ion source and GEA on 2D movable system
- □ Toroidal separation = 25cm
- □ Fast ions injected at 300eV in blob region
 - G. Plyushchev et al., RSI (2006); PhD Thesis

Two identical Gridded Energy Analysers for noise reduction

Fast ion current profiles – 300eV, blob region

- □ Small but systematic radial broadening detected in the presence of plasma
- Need comparison with theory to assess its origin effect of turbulence?

G. Plyushchev et al., paper in preparation; PhD Thesis

Simulated fast ion motion in turbulent E-field

Motion of tracer particles in turbulence calculated by 2D fluid simulations

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Fast ion current profiles – 300eV, blob region

Simulation qualitatively explains the shape of the experimental profiles

- Spread in initial energies determines vertical profiles
- Radial broadening due to turbulence (blobs)

G. Plyushchev et al., paper in preparation; PhD Thesis

Questions addressed

□ What kind of modes are responsible for the turbulence ?

□ How are macroscopic structures (blobs) generated ?

□ How do blobs propagate? Can their dynamics be influenced/controlled ?

□ What are the consequences, in terms of

- Plasma flow/rotation?
- Transport for non-thermal plasma particles (fast ions)?

□ How can these results be used to validate theoretical models ?

Model validation – observables and metric

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Model validation – ex. of application of metric

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Summary and outlook

- Results from the TORPEX simple toroidal plasma device enable quantitative model validation for intermittent transport in edge plasmas and related wave-particle interaction phenomena
- Blob physics
 - Control of blob dynamics with various limiter configurations, blob e.m. effects
- □ Fast ion interaction with turbulence/blobs: transport mechanisms

Summary and outlook

Results from the TORPEX simple toroidal plasma device enable quantitative model validation for intermittent transport in edge plasmas and related wave-particle interaction phenomena

Blob physics

- Control of blob dynamics with various limiter configurations, blob e.m. effects
- □ Fast ion interaction with turbulence/blobs: transport mechanisms
- Change magnetic topology, in particular for fast ion physics studies
- Non-perturbative, high-resolution plasma imaging (fast camera with intensifier and/or gas puffing)

Plasma imaging using intensified fast framing camera

Inverted camera images confirm the presence of modes and turbulent structures of different scales

A.Fasoli - Kinetic-Scale Turbulence in Laboratory and Space Plasmas - Cambridge 2010

Plasma imaging using intensified fast framing camera

Conditionally sampled light emissivity profiles show interchange mode (~3.5kHz) with same properties as probe array

D. Iraji *et al.*, paper in preparation: PhD Thesis

Plasma imaging using intensified fast framing camera

Conditionally sampled light emissivity profiles show interchange mode (~3.5kHz) with same properties as probe array

D. Iraji et al.,

preparation: PhD Thesis

paper in

k_r-k_z spectra show same mode but also additional small scale features

Summary and outlook

Results from the TORPEX simple toroidal plasma device enable quantitative model validation for intermittent transport in edge plasmas and related wave-particle interaction phenomena

Blob physics

- Control of blob dynamics with various limiter configurations, blob e.m. effects
- □ Fast ion interaction with turbulence/blobs: transport mechanisms
- Change magnetic topology, in particular for fast ion physics studies
- Non-perturbative, high-resolution plasma imaging (fast camera with intensifier and/or gas puffing)

