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Collisionless reconnection is ubiquitous 

•  Inductive electric fields typically exceed the Dreicer 
runaway field 
–  classical collisions and resistivity not important 

•  Earth’s  magnetosphere 
–  magnetopause 
–  magnetotail 

•  Solar corona 
–  solar flares 

•  Laboratory plasma 
–  sawteeth 



What breaks magnetic field lines in 
collisionless reconnection? 

•  Electron momentum transport associated with thermal motion 
is often invoked to break magnetic field lines during 
reconnection 
–  Described by the off-diagonal pressure tensor 

•  Some form of anomalous resistivity is also often invoked to 
break field lines 
–  Strong electron-ion streaming near x-line drives turbulence and 

associated enhanced electron-ion drag 
–  Observations reveal high frequency turbulence in the form of electron 

plasma waves, lower-hybrid waves, whistler waves and electron holes. 
•  Their role in breaking field lines has not been established 



Satellite 
observations 
of electron 

holes 

•  Magnetopause 
observations 
from the Polar 
spacecraft 
(Cattell, et al., 
2002) 



Cluster turbulence observations 

•  Turbulence observations 
by Cluster in the ion 
diffusion region (Eastwood 
et al 2009) 
–  Whistler-like spectrum 
–  “the associated anomalous 

resistivity was not found to 
significantly modify the 
reconnection rate.” 



2-D Reconnection with guide field 

•  Guide field PIC 
simulation 
–  B0x/B0z=0.5 
–  Narrow tilted 

current layer 
•  Width around ρe 

•  Note structuring on 
electron current 
layer 

–  Note deep density 
cavity 



Generalized Ohm’s Law 
•  Electron momentum equation – z component 

•  Average over z direction  

•  In 2-D steady state at the x-line 
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3-D Magnetic Reconnection 
•  Turbulence, anomalous resistivity and anomalous viscosity 

–  self-generated gradients in pressure and current near x-line may drive 
turbulence 

–  not present in 2-D models since requires wavenumber aligned along the 
direction of the out-of-plane current 

•  In a system with anti-parallel magnetic fields turbulence seems to play only 
a minor role 

–  current layer near x-line is relatively stable 
•  Instabilities develop in the case of reconnection with a guide field in the 

low βe case 
–  Islands can grow on other surfaces – not discussed 
–  Strong electron streaming near x-line leads to current-driven Buneman and 

lower-hybrid instabilities and evolve into a nonlinear state with strong localized 
electric fields -- “electron-holes”  

•  Modest anomalous resistivity but does not stop electron runaway – hard to resonate with all 
electrons 

–  Electron current layer continues to narrow until an current gradient driven 
instability completely breaks up the current layer 

•  Anomalous viscosity balances the reconnection electric field and boosts the rate of reconnection 



•  Particle simulation with Lx×Ly×Lz=4di×2di×8di 
•  Bz=5.0 Bx,  mi/me=100, Te=Ti=0.04, ni=ne=1.0 

–  No turbulence for Te=Ti=0.16 

•  Development of current layer with electron parallel drift 
exceeding the initial thermal speed 

3-D Magnetic Reconnection: with guide field 
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Onset of electromagnetic instability 

•  The electromagnetic instability onsets sharply around Ωit ~ 3.25 
•  Abrupt decrease in parallel wavelength and increase in magnetic 

perturbations 
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Evolution of current layer 

•  Jez versus time in a cut along and across the current layer 



Evolution of current layer 

•  Jez versus time in a cut along and across the current layer 



Evolution of 
Ohm’s law 

•  Dominant terms 
–  Electron inertia 

•  Early 

–  Electron-ion drag 
•  Intermediate 

–  Momentum 
transport 

•  late 



What is the instability drive? 
•  Broadening of electron current profile suggests that it is an electron 

shear-flow instability 
–  Role of ions? Dependence on the strength of the guide field Bz? 

•  3-D PIC simulations of a thin electron current sheet with uniform 
density 
–  Initial with of current layer an electron skin depth 
–  Various mass-ratios mi/me and guide field Bz 

mi = ∞ 
Bz = 2.5 



Dependence of sheared flow instability on the guide field 

•  Time dependence of magnetic fluctuations 
–  No instability for weak guide field 
–  kx > kz  
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Linearize the electron-MHD equations 

•  The electron-MHD equations describe the dynamics of 
electrons and magnetic fields at small spatial scales where 
ions dynamics can be neglected (Drake et al 1994; Ferraro 
and Rogers 2004). 

•  Consider initial state with J0z(y) with magnetic field  
    and perturbations with   
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Local dispersion relation 

•  Consider local region with J0z and dJ0z/dy 

•  Define ε = (dvez/dy)/Ωe << 1 
•  Growth rate scales like  

•  Stable for small B0z 
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Conclusions 

•  Turbulence is driven by the electron current during low-βe 
reconnection with a guide field 

•  Current driven instabilities such as Buneman or the lower-
hybrid instability (not LHD) develop and produce 
anomalous resistivity and electron heating but do not stop 
the electrons from running away 
–  Can’t resonate with all electrons in the distribution 

•  The continued thinning of the current layer continues until 
an electromagnetic electron sheared-flow instability (right-
hand polarized) breaks up the current layer  
–  The resulting anomalous momentum transport is sufficient to 

balance the reconnection electric field 
–  The rate of reconnection undergoes a modest jump as the shear-

flow instability onsets 



Conclusions (cont.) 

•  3-D simulations of a narrow electron current layer reveal 
that the instability remains robust for B0z >> B0x but is 
stabilized for small B0z. 
–  Ions role seems not very important 

•   Linearization of the electron-MHD equations yields an 
electromagnetic instability which has characteristics 
matching what is seen in the simulations 

•  Many significant questions remain 
–  What is the βe threshold? 
–  What is the minimum guide field for the instability? 
–  Non-local dispersion relation? 


