Breaking field lines during reconnection:
it’s anomalous viscosity not anomalous resistivity

• H. Che University of Colorado
• J. F. Drake University of Maryland
• M. Swisdak University of Maryland
Collisionless reconnection is ubiquitous

- Inductive electric fields typically exceed the Dreicer runaway field
 - classical collisions and resistivity not important
- Earth’s magnetosphere
 - magnetopause
 - magnetotail
- Solar corona
 - solar flares
- Laboratory plasma
 - sawteeth
What breaks magnetic field lines in collisionless reconnection?

- Electron momentum transport associated with thermal motion is often invoked to break magnetic field lines during reconnection
 - Described by the off-diagonal pressure tensor
- Some form of anomalous resistivity is also often invoked to break field lines
 - Strong electron-ion streaming near x-line drives turbulence and associated enhanced electron-ion drag
 - Observations reveal high frequency turbulence in the form of electron plasma waves, lower-hybrid waves, whistler waves and electron holes.
 - Their role in breaking field lines has not been established
Satellite observations of electron holes

- Magnetopause observations from the Polar spacecraft (Cattell, et al., 2002)
Cluster turbulence observations

- Turbulence observations by Cluster in the ion diffusion region (Eastwood et al 2009)
 - Whistler-like spectrum
 - “the associated anomalous resistivity was not found to significantly modify the reconnection rate.”
2-D Reconnection with guide field

- Guide field PIC simulation
 - $B_{0x}/B_{0z}=0.5$
 - Narrow tilted current layer
 - Width around ρ_e
 - Note structuring on electron current layer
 - Note deep density cavity
Generalized Ohm’s Law

• Electron momentum equation – z component

\[
\frac{\partial p_{ez}}{\partial t} + \nabla \cdot \vec{p}_e p_{ez} = -en_e E_z + \frac{1}{c} \left(\vec{j}_e \times \vec{B} \right)_z - \nabla \cdot \vec{P}_{ez}
\]

• Average over z direction

\[
< E_z > = -\frac{1}{c} \left(< \vec{v}_e > \times < \vec{B}_\perp > \right)_z - \frac{\nabla \cdot < \vec{P}_{ez} >}{< n_e > e} - \frac{m_e}{e} \left(\frac{\partial < v_{ez} >}{\partial t} + < \vec{v}_e \perp > \cdot \nabla \perp < v_{ez} > \right) + D_{ez} + \nabla \cdot \vec{T}_{ez}
\]

\[
D_{ez} = \frac{1}{< n_e >} < \delta n_e \delta E_z > \\
\vec{T}_{ez} = -\frac{1}{< n_e > e} < \delta \vec{p}_e \perp \left(\delta v_{ez} + \frac{e}{m_e c} \delta A_z \right) >
\]

Turbulent drag
Turbulent electron momentum transport

• In 2-D steady state at the x-line

\[
< E_z > = -\frac{\nabla \cdot < \vec{P}_{ez} >}{< n_e > e}
\]
3-D Magnetic Reconnection

- Turbulence, anomalous resistivity and anomalous viscosity
 - self-generated gradients in pressure and current near x-line may drive turbulence
 - not present in 2-D models since requires wavenumber aligned along the direction of the out-of-plane current

- In a system with anti-parallel magnetic fields turbulence seems to play only a minor role
 - current layer near x-line is relatively stable

- Instabilities develop in the case of reconnection with a guide field in the low β_e case
 - Islands can grow on other surfaces – not discussed
 - Strong electron streaming near x-line leads to current-driven Buneman and lower-hybrid instabilities and evolve into a nonlinear state with strong localized electric fields -- “electron-holes”
 - Modest anomalous resistivity but does not stop electron runaway – hard to resonate with all electrons
 - Electron current layer continues to narrow until an current gradient driven instability completely breaks up the current layer
 - Anomalous viscosity balances the reconnection electric field and boosts the rate of reconnection
3-D Magnetic Reconnection: with guide field

- Particle simulation with $L_x \times L_y \times L_z = 4d_i \times 2d_i \times 8d_i$
- $B_z = 5.0 B_x$, $m_i/m_e = 100$, $T_e = T_i = 0.04$, $n_i = n_e = 1.0$
 - No turbulence for $T_e = T_i = 0.16$
- Development of current layer with electron parallel drift exceeding the initial thermal speed

![Graph and images showing magnetic reconnection]
Onset of electromagnetic instability

- The electromagnetic instability onsets sharply around $\Omega_\parallel t \sim 3.25$
- Abrupt decrease in parallel wavelength and increase in magnetic perturbations
Evolution of current layer

- J_{ez} versus time in a cut along and across the current layer
Evolution of current layer

- J_{ez} versus time in a cut along and across the current layer
Evolution of Ohm’s law

- Dominant terms
 - Electron inertia
 - Early
 - Electron-ion drag
 - Intermediate
 - Momentum transport
 - Late
What is the instability drive?

- Broadening of electron current profile suggests that it is an electron shear-flow instability
 - Role of ions? Dependence on the strength of the guide field B_z?
- 3-D PIC simulations of a thin electron current sheet with uniform density
 - Initial width of current layer an electron skin depth
 - Various mass-ratios m_i/m_e and guide field B_z

$m_i = \infty$

$B_z = 2.5$
Dependence of sheared flow instability on the guide field

- Time dependence of magnetic fluctuations
 - No instability for weak guide field
 - $k_x > k_z$

\[
\langle \tilde{B}_x^2 \rangle
\]

\[
B_z = \begin{cases}
1.0 & \text{2.5} \\
5.0 & \text{0.5}
\end{cases}
\]

\[
\Omega_\text{e} t
\]
Linearize the electron-MHD equations

- The electron-MHD equations describe the dynamics of electrons and magnetic fields at small spatial scales where ions dynamics can be neglected (Drake et al 1994; Ferraro and Rogers 2004).

\[
\frac{\partial}{\partial t} P \vec{B} = \frac{1}{ne} \vec{\nabla} \times \left(\left(P \vec{B} \right) \times \vec{J} \right) \quad P = 1 - d_e^2 \nabla^2
\]

- Consider initial state with \(J_{0z} (y) \) with magnetic field \(\vec{B}_0 = B_{0z} \hat{z} + B_{0x} \hat{x} \) and perturbations with \(\vec{k} = k_z \hat{z} + k_x \hat{x} \)
Local dispersion relation

- Consider local region with J_{0z} and dJ_{0z}/dy

\[
\bar{\gamma} \left(\bar{\gamma} - \frac{ik_z v_{ez}}{P_k} \right) = \Omega_{ez}^2 \frac{k_z d_e^2}{P_k^2} \left(-k_z k^2 d_e^2 + P_k \frac{k_x J_{ez}'}{ne \Omega_{ez}} \right) \quad P_k = 1 + k^2 d_e^2
\]

- Define $\varepsilon = (dv_{ez}/dy)/\Omega_e << 1$
- Growth rate scales like

\[
\gamma = \Omega_e k d_e \sqrt{\frac{\varepsilon}{2}} \quad kd_e < \varepsilon^{1/2}
\]

\[
\gamma = \frac{1}{2} v_{ez}', \quad kd_e > \varepsilon^{1/2}
\]

- Stable for small B_{0z}
Conclusions

• Turbulence is driven by the electron current during low-β_e reconnection with a guide field

• Current driven instabilities such as Buneman or the lower-hybrid instability (not LHD) develop and produce anomalous resistivity and electron heating but do not stop the electrons from running away
 – Can’t resonate with all electrons in the distribution

• The continued thinning of the current layer continues until an electromagnetic electron sheared-flow instability (right-hand polarized) breaks up the current layer
 – The resulting anomalous momentum transport is sufficient to balance the reconnection electric field
 – The rate of reconnection undergoes a modest jump as the shear-flow instability onsets
Conclusions (cont.)

• 3-D simulations of a narrow electron current layer reveal that the instability remains robust for $B_{0z} \gg B_{0x}$ but is stabilized for small B_{0z}.
 – Ions role seems not very important

• Linearization of the electron-MHD equations yields an electromagnetic instability which has characteristics matching what is seen in the simulations

• Many significant questions remain
 – What is the β_e threshold?
 – What is the minimum guide field for the instability?
 – Non-local dispersion relation?