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GYROKINETIC SIMULATION OF MFE EDGE PLASMAS MUST 
DEAL WITH LARGE PERTURBATIONS 

•e.g. solution of gyrokinetic 
   Poisson or vorticity equation 
 

   
∇ ⋅ n0 + δn( )∇φ⎡⎣ ⎤⎦ = S  
 
–   may be 
    significant in the edge 
 
–May have large time 
   dependent ExB flows  
 
 

X.Q. Xu, BOUT Simulation 
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OUTLINE  

• Simpler extended and subsidiary orderings  
o EM toroidal theory in DDL`92 ordering 
o subsidiary ordering for EM perturbations → 

“practical minimal model” 
• numerical discretization of second-order terms 
• gyrokinetics in the most general ordering for φ 

o results and interpretation for slab 
o electromagnetic toroidal theory in this ordering 

• summary 
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EXTENDED ORDERING GOALS: GYROKINETIC THEORY 
VALID WHERE STANDARD ORDERINGS INAPPLICABLE  

• Existing large-perturbation gyrokinetic theories 

o Allow  - electromagnetic slab theory:  A.M. 
Dimits, L.L. LoDestro, D.H.E. Dubin, Phys. Fluids B4 274 (1992). 

o 2-scale: short-wavelength perturbations with  + (static) large 
long-wavelength component with  VExB / vth ~ 1 . 
 M. Artun and W.M. Tang, Phys. Plasmas, 1, 2682 (1994)  
 A.J. Brizard, Phys. Plasmas 2, 459 (1995) 
 T.S. Hahm, Phys Plasmas 3, 4658 (1996) 
 T.S. Hahm L. Wang, J. Madsen, Phys. Plasmas 16, 

022305 (2009) 
 H. Qin, et. al., Phys. Plasmas 14, 056110 (2007) 

 
• More general theory removes 2-scale and static restrictions 

o Basic ordering and electrostatic slab theory: A.M. Dimits, Phys. 
Plasmas 17, 055901 (2010) 
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THE DDL`92 ORDERING IS USEFUL FOR LARGE 
PERTURBATION AMPLITUDES, SMALL FLOWS 

• ordering: ,  where . 

• ; use the standard 2-step approach 

• Separation is  

• , 

    

Γ = Agc + p

b̂0

⎡⎣ ⎤⎦ ⋅ dR − µdθ − 1
2

⎡

⎣
⎢ p


− δ A

( )2
+ µΩ + φ

+ 1
2Ω0

∇ Ψ Ω0( ) × b̂0 ⋅∇ ψ − 1
2Ω0

∂
∂µ
ψ 2 ⎤

⎦
⎥dt,

 
where

  
ψ = φ − p


− δ A

( )δ A ,  ,  

• Essentially the same result as in the standard ordering, but now justified 
for the DDL ordering 
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THE FIRST-ORDER EQUATIONS OF MOTION CONTAIN THE 
, CURVATURE, AND EXB DRIFTS 

 

• 
    
Γ−1,0 ,1 = Agc + p


b̂0

⎡⎣ ⎤⎦ ⋅ dR − µdθ − 1
2

p

− δ A

( )2
+ µΩ0 + φ

⎡

⎣
⎢

⎤

⎦
⎥dt, 

 
•   Euler-Lagrange equations 

 

     
R = p


− δ A

( )b̂0 +
1
Ω0

b̂0 × ∇ φ + µ∇Ω0 + p

− δ A

( )2
b̂0 ⋅∇ b̂0

⎡
⎣⎢

⎤
⎦⎥  
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SUBSIDIARY ORDERING FOR EM TERMS 
RESULTS IN “PRACTICAL MINIMAL MODEL” 

 
• Take ; still have , 

  

    

Γ = Agc + p

b̂0

⎡⎣ ⎤⎦ ⋅ dR − µdθ − 1
2

⎡

⎣
⎢ p


− δ A

( )2
+ µΩ + φ

+ 1
2Ω0

∇ Φ Ω0( ) × b̂0 ⋅∇ φ − 1
2Ω0

∂
∂µ
φ 2 ⎤

⎦
⎥dt,  

• The GK Poisson’s equation again has only electrostatic terms 

     

• The GK Ampere’s Law has only the identity part of  

  

• A similar model has been obtained for the symplectic representation.  

•  
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IMPLEMENTATION OF THE SECOND-ORDER TERMS IN 
GYROKINETIC MODELS REQUIRES NEW METHODS 

 
 

GYROCENTER EQUATIONS OF MOTION 
 
First-order terms now standard 

• Given ψ, calculate  either at each mesh node or cell center, or at 
each gyrocenter (in the case of a PIC code). 

• Also need derivatives for the equations of motion 

• Can calculate directly by averaging on the gyro orbit or in Fourier space 

o Save for use on the 4D  mesh for continuum codes. 

o For a PIC code, can do this particle by particle. 
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SECOND-ORDER TERMS IN GYROKINETIC EQUATIONS OF 
MOTION NEVER YET IMPLEMENTED 

 
 

: use 
 

 , 

and  

 . 

 
This can be calculated directly by sampling the components of   around an 
instantaneous gyro orbit or by using a Fourier decomposition and Bessel 
functions. Again, at any given t, this is a function of the 4D  phase space. 
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∇ R⊥
Φ ⋅b0 ×∇ R⊥

φ = b0 ⋅ dθ1∫ dθ2
0

θ1

∫ ∇ R⊥
φ

R + ρ ̂ρ(θ1)( ) ×∇ R⊥

φ

R + ρ ̂ρ(θ2 )( )  

    
= b0 ⋅ dθ1∫ dθ2

0

θ1

∫ ∇ R⊥φ

R + ρ ̂ρ(θ1)( ) ×∇ R⊥φ


R + ρ ̂ρ(θ2 )( ) − 1

2
∇ R⊥φ


R( ) ×∇ R⊥φ


R( )  

 
This can be calculated sampling the components of   over a double gyro orbit. 
e.g., n-point θ1 gyro orbit -> n(n+1)/2-point θ1 - θ2 double gyro orbit 
        8-point θ1 gyro orbit ->           36-point θ1 - θ2 double gyro orbit 
        

 
Again, at any given time, 
this is a function of the 
4D  phase space. 
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 THE FULL-f GYROKINETIC POISSON EQUATION CAN BE 
DIRECTLY DISCRETIZED, e.g., USING FINITE-ELEMENTS 

 
• weak form + Galerkin representation of φ. 

• All derivatives and gyroaveraging operations can be recast into derivatives 
operating on the Galerkin basis functions. 

• Begin with gyrokinetic Poisson equation: 
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• Use Galerkin discretization of     

 

 

 

• Insert Galerkin representation       

 
→  resolves derivatives onto basis functions  
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 Matrix equation to be solved 

 

     

M S ⋅Φ = S
M S = M + M T( ) 2

Mk,l =
1

4π
d x∫ ∇ψ k ⋅∇ψ l + dΛ Fi

∂ ψ k
ψ l( )

∂µ∫

− dΛ Fi b̂ ⋅∇ R⊥
ψ k ×∇ R⊥

Ψ l −
1
B
ψ k∇ R⊥

Ψ l ⋅ Jeqm

⎡

⎣
⎢

⎤

⎦
⎥∫

Sk = d x∫ Sψ k

 

 
• “Deposition” or projection from Z to x is needed to calculate the matrix 

elements. 
 

• The resulting matrices are still sparse 

o For solution on perpendicular slices with N2 cells of size ~ρi, about 100 
N2 nonzero matrix elements are needed (not N4). 
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TOWARDS A MINIMAL NECESSARY ORDERING 
FOR GYROKINETIC THEORY  

• Low-frequency GK should be possible if in some frame of reference, the 
perturbation to the gyro orbit is small 

• Consider an electrostatic potential  

• Absolute value of  should not matter 

 Can transform away any long-wavelength  drift 

 Only shear (spatial variation) of  drift matters 

• Basic ordering: , ,  
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SECOND-ORDER LAGRANGIAN FOR 
ELECTROSTATIC SLAB CASE  

        

Γ = A
gc

+U

b̂

0
+ u +

1
2Ω
∂
∂µ
δ

1
φ ∇ u( ) ⋅ ρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ⋅d R

+ 1
2Ω2

∇ Φ× b̂
0
⋅∇ u ⋅ ∂ρ

∂µ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+Ω
∂u
∂µ
⋅ ρ
∂δ

1
φ

∂µ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
dµ

− µ +
1

2Ω2
∇ φ× b̂

0
⋅∇ ρ ⋅u( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥dθ−

1
2

⎡

⎣
⎢
⎢ U



2 + µΩ+
1
2

u2 + φ

+
1

2Ω2
∇ Φ× b̂

0
⋅∇ δ

1
φ −

1
2Ω
∂
∂µ

δ
1
φ( )2
−

1
2Ω
∂u
∂t
⋅
∂
∂µ
δ

1
φρ
⎤

⎦
⎥
⎥dt,  

• here,    
u = 1

Ω
b̂0 ×∇φ  here has temporal and spatial dependences 

• many new (noncanonical) components to Lagrange tensor  

• 
      
∇ ⋅ ρ ⋅∇u δ

1
φ  terms are absent in 2-scale theories, but are of the 

same order as 
       
∇ ρ ⋅∇u( )2

~∇ δ
1
φ2

. 
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THE FIRST-ORDER EQUATIONS OF MOTION 
CONTAIN THE EXB AND POLARIZATION DRIFTS  

 

• 
    
Γ−1,0 ,1 = Agc +U


b̂0 + u⎡⎣ ⎤⎦ ⋅ dR − µ dθ - 1

2
U


2 + µΩ + 1
2

u2 + φ
⎡

⎣
⎢

⎤

⎦
⎥dt  

 

• Euler-Lagrange equation 
  
ω ji
Z i = H, j + γ j ,t ⇒  

      where ,   

        

R = u +U

b̂

0
+

1
Ω


*
b̂

0
×
∂
∂t

+u.∇ +U

∇


⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
u,

u ≡ 1
Ω

b̂
0
×∇φ, Ω



* = b̂
0
⋅∇ × A

gc
+u( )

 

• 
      

1
Ω

b̂× ∂u
∂t

, U

∇

u

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  terms are new. 

 
•  includes both long- and short-wavelength components. 
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THE EQUATIONS OF MOTION CAN BE OBTAINED 
PERTURBATIVELY TO SECOND ORDER  

•  

• ,   

•  has many more nonzero components than in previous theories, so 
its inverse  is more complicated. 

• Use  where  is canonical (and therefore 
easily invertible) 

• ,  

where  ,    
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THE EQUATIONS OF MOTION CAN BE OBTAINED 
PERTURBATIVELY TO SECOND ORDER  

     

R2⊥

z2

U2

µ2

θ2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

1
Ω

b̂ × ∇⊥H2 − ∇⊥γ 2⊥( ) ⋅u⊥ + ∇⊥γ 2z( ) ⋅U − Ω∇⊥γ 2θ
⎡⎣ ⎤⎦ − ∇⊥ × u⊥( )z

1
Ω

d0u⊥

dt
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

0

−H2 ,z + γ 2⊥ ,z ⋅u⊥ + γ 2z ,zU − Ωγ 2θ ,z
⎡⎣ ⎤⎦ − u⊥ ,z ⋅

1
Ω

d0u⊥

dt
0

−H2 ,µ + γ 2⊥ ,µ ⋅u⊥ + γ 2z ,µU − Ωγ 2θ ,µ
⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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THE DIRECTLY CALCULATED EQUATIONS OF 
MOTION ARE COMPLICATED BECAUSE OF THE 

MANY NONCANONICAL TERMS  

• e.g. first row of Det(w)*w-1 

 

 
 

………… 

These may be necessary, e.g., for numerical implementations with proper 
conservation properties. 
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THE GYROKINETIC POISSON (FIELD) EQUATION 
IS NONLINEAR EVEN AT T1 ORDER  

 
Gyrokinetic Poisson equation  - quasineutrality 
 

     

ne = ni = d 6Z δ R + ρ − x( )Ω 1+ 1
Ω2∇⊥

2φ + ρ × b̂ ⋅ ∂u
∂µ

⎡

⎣
⎢

⎤

⎦
⎥∫ ×

Fi R ,µ( ) + 1
Ω
δ1
φ ∂F
∂µ

+ 1
Ω2∇ Φ× b̂0 ⋅∇ F

⎡

⎣
⎢

⎤

⎦
⎥

= Ωdµ dv

dθ∫ Fi x − ρ ,µ( )i

+ 1
Ω
φ ∂F
∂µ

+ 1
Ω2∇ Φ× b̂0 ⋅∇ F

⎡

⎣
⎢

⎤

⎦
⎥

 

 
• To linear order in φ, this is the same as the standard form. 
 

o Note the gyrophase dependent Jacobian term. 
 

o Integrate one term by parts wrt. µ and then wrt. θ. 
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THE TOROIDAL DERIVATION PROCEEDS SIMILARLY TO 
THE SLAB DERIVATION 

• Given , where  is the lab-frame position, and the 
presence of a large  drift, it is most convenient to transform to 

   
Q = x,v =V −u( )  where 

•  is the velocity in the frame of a gyro-averaged  drift 

     
u ≡ 1

Ω0

b̂ ×∇ φ  
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SUCH A TRANSFORMATION CAN BE DEFINED IMPLICITLY 

• Define 

   

      

ρ= 1
Ω

b̂
0
×v,

v
⊥

= b̂
0
×v×b̂

0
,

v
⊥

= v
⊥

,

µ =
v
⊥
2

2Ω
,

 

   
       
φ X,µ,t( ) =

1
2π

dθ φ X + ρ,t( )∫  

   
      
u x,v,t( )≡ 1

Ω
0

b̂×∇
X
φ x − ρ,µ,t( ) 

• Now define  and  through the implicit equation 

  
    
v +u x,v,t( ) =V = x  

  - solution well defined because our ordering 
     
⇒ ∇

v
u  1  
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THE TRANSFORMATION CAN BE VELOCITY DEPENDENT  

• Starting point:     
Q

0
= x,V( )→Q = x,v( )  

       
L Q

0
, Q

0
,t( ) = A x,t( ) +V⎡

⎣⎢
⎤
⎦⎥
⋅ x− 1

2
V 2 + φ x,t( )

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
→

 

       
L Q, Q,t( ) = A x,t( ) +u x,v,t( ) +v⎡

⎣⎢
⎤
⎦⎥
⋅ x− 1

2
u x,v,t( ) +v⎡
⎣⎢

⎤
⎦⎥
2

+ φ x,t( )
⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
 

o  Euler-Lagrange equation: 
     
0 = I +∇

v
u( ) ⋅ x − u +v( )⎡
⎣⎢

⎤
⎦⎥  

o Our ordering , so  

  

 but  is still the lab-frame position. 
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TOROIDAL EDGE ORDERING  

• Basic ordering: , ,   VExB
' Ω = O ε1( )   

o will use 
    ∂ ∂t +VExB ⋅∇( ) ln S( ) Ω ~ VE×B

' Ω ε 1 

• low  - 
      
A x,t( ) = A

0
x( ) + δA


x,t( )b̂0   

• Edge ordering     
qA

0
mcv

th( ) = O ε−2( )  ;  ρ Lp ~ Lp R ~ ε  
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LOWEST ORDER TRANSFORMATION  

• Transform to    R = x − ρ ,  v  

  

        

L = A
0
R + ρ( ) + δA


R + ρ,t( )b̂0

+u R + ρ,v,t( ) +v⎡
⎣⎢

⎤
⎦⎥
⋅ R + ρ( )

−
1
2

u 2 + v 2( ) +u ⋅v + φ R + ρ,t( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ .

 

• Separate     
φ R + ρ( ) as 

      
φ R + ρ( ) = φ + ρ ⋅∇φ + δ

1
φ  

o 
   
δ1
φ ≡ φ − ρ ⋅∇φ = O ε =VExB

' Ω( ) ;  
      
φ ≡ φ R + ρ( )−φ R,µ( ) , 

•     
φ ≡ φ = O ε−1( )  is gyrophase independent 

•     u ⋅v + ρ ⋅∇φ = 0  if       u ≡ b̂×∇
R
φ Ω

0  

• After this transformation and separation, all gyrophase dependences are 
at order   ε1 or higher  
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ALL GYROPHASE DEPENDENCES ARE AT FIRST OR 
HIGHTER ORDER  

        

L = A
0
⋅ R

− φ
0

+ u + U


+ δA


( )b̂0
⎡
⎣⎢

⎤
⎦⎥
⋅ R−µ θ−

1
2

U


2 + u 2( ) + µΩ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+u ⋅ ρ− δ
1
φ

−
1
2
ρ ⋅∇ ∇ A

0( ) ⋅ ρ⎡
⎣⎢

⎤
⎦⎥
⋅ R

             

    

......O ε−2( )

......O ε−1( )

......O ε0( )

......O ε1( )

......O ε2( )

 

 
 

        

L = A
0
⋅ R

− φ
0

+ u + p

b̂

0
⎡
⎣⎢

⎤
⎦⎥ ⋅
R−µ θ−

1
2

p

− δA


( )2

+ 1
2
u 2 + µΩ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+u ⋅ ρ− δ
1
φ− p


− δA


( ) δ A



⎡
⎣⎢

⎤
⎦⎥

−
1
2
δ A


( )2
−

1
2
ρ ⋅∇ ∇ A

0( ) ⋅ ρ⎡
⎣⎢

⎤
⎦⎥
⋅ R

             

    

......O ε−2( )

......O ε−1( )

......O ε0( )

......O ε1( )

......O ε2( )
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LIE-TRANSFORM PERTURBATION THEORY  

   

      

Z → Z = R,U

,µ,θ( ) = T ε( )Z

f Z( ) = T−1f Z( )
T = ......T

3
T

2
T

1

T
n
ε( ) = exp εL

n( )
Γ = T−1γ +dS

L
n
γ( )
α

= g
n
β ∂γα
∂Z β

−
∂γ
β

∂Z α

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

 

• Due to spatial derivatives,     
L

n
γ = L

n
γ( )

a
+ ε L

n
γ( )

b
+ ε2 L

n
γ( )

c
 

• Main results needed  

    

Γ
−2,−1,0

= γ
−2,−1,0

+dS
−2,−1,0

,

Γ
1

= γ
1
− L

1
γ

0( )
a
− L

1
γ
−1( )

b
− L

1
γ
−2( )

c
+dS

1
,

Γ
2

= γ
2
−

1
2

L
1
γ

1( )
a
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THE FIRST ORDER EQUATION YIELDS AND THE 
GAUGE FUNCTION AND THE GENERATORS 

 

  

       

g
1
⊥ = −

1
Ω

0

b̂
0
×∇S

1
,

g
1
 = −

∂S
1

∂p


,

g
1

p
 =∇


S

1
,

g
1
µ = −

∂
∂θ

S
1

+u ⋅ρ( ),

g
1
θ =

∂
∂µ

S
1

+u ⋅ρ( )

 

  
       

0 =
∂S

1

∂t
+g

1
⋅∇φ + g

1

p
 p


− δA


( ) +Ωg

1
µ− δ

1
ψ,

δ
1
ψ ≡ δ

1
φ− p


− δA


( ) δ A


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dS
1

dt

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
slow

−Ω
0

∂
∂θ

S
1

+u ⋅ρ( ) = δ
1
ψ,

S
1
≈− δ

1
Ψ Ω

0( )− ρ ⋅u = − Ψ Ω
0
,

Ψ ≡ Ψ
i
−Ψ

i
,

Ψ
i

= dθ ψ
θ0

θ

∫ ,

ψ ≡ φ− p

− δA


( ) δ A



 

  

       

g
1
⊥ =

1
Ω

0

b̂
0
×∇ Ψ Ω

0( ),

g
1
 = −Δ A


Ω

0
,

g
1

p
 = −∇



Ψ Ω
0( ),

g
1
µ = δ

1
ψ Ω

0( ),

g
1
θ = −

1
Ω

0

∂δ
1
Ψ

∂µ

     

THE FIRST ORDER EQUATION YIELDS AND THE 
GAUGE FUNCTION AND THE GENERATORS 
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ELECTROMAGNETIC TOROIDAL LAGRANGIAN 
COMPONENTS TO SECOND ORDER  

  

       

Γ
2

=
1

2Ω
0

∂
∂µ
∇ u ⋅ρ( )δ1 ψ −Ω0

ρ ⋅∇ ∇ A
0( ) ⋅ ρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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Γ
2
µ = −

1
2Ω

0

b̂
0
×∇ Ψ Ω

0( ) ⋅∇ u ⋅ ∂ρ
∂µ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
− Δ A


∇

u ⋅ ∂ρ
∂µ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

−
∂u
∂µ
⋅ ρ
∂δ

1
ψ

∂µ

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
,

Γ
2
θ =

1
2Ω

0

b̂
0
×∇ δ

1
ψ Ω

0( ) ⋅∇ u ⋅ρ( ) − δ A

∇

u ⋅ρ( ){

−
∂u
∂µ
⋅
∂ρ
∂θ
δ

1
ψ
⎫
⎬
⎪⎪

⎭⎪⎪
,

H
2

= −
1

2Ω
0

b̂
0
×∇ Ψ Ω

0( ) ⋅∇δ1 ψ − Δ A∇  δ1 ψ( ){

+
∂
∂µ

δ
1
ψ( )2

+
∂u
∂t
⋅
∂
∂µ
δ

1
ψρ
⎫
⎬
⎪⎪

⎭⎪⎪
.
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CORE ORDERING – MORE “STANDARD” BUT HARDER  

        

L = A
0
⋅ R− φ

0

+ u + U


+ δA


( )b̂0
⎡
⎣⎢

⎤
⎦⎥
⋅ R−µ θ−

1
2

U


2 + u 2( ) + µΩ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+u ⋅ ρ− δ
1
φ −

1
2
ρ ⋅∇ ∇ A

0( ) ⋅ ρ⎡
⎣⎢

⎤
⎦⎥
⋅ R

             

    

......O ε−1( )

......O ε0( )

......O ε1( )
  

• Brings in 

o FLR corrections to equilibrium magnetic field 

o Higher-order equilibrium motion terms, e.g, Banos drift 

o Couplings of equilibrium magnetic field variation and fluctuations 
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SUMMARY OF (GYROAVERAGED) GYROKINETIC 
ORDERINGS AND DERIVATIONS 

• 
    
eψ T 1, ψ = φ− p


mc( ) A

  - most Hamiltonian GK derivations – core. 

•    eψ T  1, VExB vth 1  - Dimits, Dubin, Lodestro `92, and extended here;  
many iterative derivations (e.g., Parra-Catto) – likely applicable to many 
edge situations without large flows. 

• 2-scale, with    uE vth  1, δVExB vth 1 - Brizard `94; Hahm `96; Qin et. al., 
`07; Hahm-Wang-Madsen `09. – addresses large flows. 

• Our new ordering    V
'
ExB Ω1  for any perturbations – allows large 

perturbations and large flows. Captures new cross terms. 

• Differences between new ordering/derivation and 2-scale 

o our  u not quite the same as 2-scale   uE  

o 
      
∇⋅ ρ ⋅∇uE δ1

φ ~ ∇ ρ ⋅∇uE( )2
~ ∇ δ1

φ 2
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GYROKINETIC EQUATIONS HAVE BEEN DERIVED IN A 
NEW MORE GENERAL ORDERING 

 
• Allows for 

o large flow velocities 

o large perturbation amplitudes 

• Toroidal electromagneti gyrokinetic theory has been developed in a low-β 
ordering appropriate for MFE edge plasma conditions. 

• Useful reduced and subsidiary orderings were found. 

o The “standard” toroidal Hamiltonian theory is valid for the more general 
DDL ordering, which allows for large relative perturbation amplitudes 

o Now have justification of the reduced “practical minimal model” as valid 
under the DDL ordering for φ  and a subsidiary ordering for 

  
δ A

  

• Numerical algorithms for the discretization of the second-order terms in the 
gyrokinetic equations of motion and Poisson’s equation were presented. 


