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GYROKINETIC SIMULATION OF MFE EDGE PLASMAS MUST
DEAL WITH LARGE PERTURBATIONS
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OUTLINE

e Simpler extended and subsidiary orderings
o EM toroidal theory in DDL 92 ordering

o subsidiary ordering for EM perturbations —
“practical minimal model”

e numerical discretization of second-order terms
e gyrokinetics in the most general ordering for ¢

o results and interpretation for slab
o electromagnetic toroidal theory in this ordering

e summary



EXTENDED ORDERING GOALS: GYROKINETIC THEORY
VALID WHERE STANDARD ORDERINGS INAPPLICABLE

o Existing large-perturbation gyrokinetic theories

o Allow e¢/T ~1, V,,/v, <1 - electromagnetic slab theory: A.M.
Dimits, L.L. LoDestro, D.H.E. Dubin, Phys. Fluids B4 274 (1992).

o 2-scale: short-wavelength perturbations withe¢ /T <1 + (static) large
long-wavelength component withV,,, /v, ~1.

= M. Artun and W.M. Tang, Phys. Plasmas, 1, 2682 (1994)
» A.J. Brizard, Phys. Plasmas 2, 459 (1995)

» T.S. Hahm, Phys Plasmas 3, 4658 (1996)

» T.S. Hahm L. Wang, J. Madsen, Phys. Plasmas 16,
022305 (2009)

H. Qin, et. al., Phys. Plasmas 14, 056110 (2007)

e More general theory removes 2-scale and static restrictions

o Basic ordering and electrostatic slab theory: A.M. Dimits, Phys.
Plasmas 17, 055901 (2010)
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THE DDL'92 ORDERING IS USEFUL FOR LARGE
PERTURBATION AMPLITUDES, SMALL FLOWS

e ordering: qv/T ~1, b, XV‘///(QOVth)<<1 where ¥V =¢—p04,
e u=0; use the standard 2-step approach
e Separationis ¥ =y +y

° ql/7/T<<1<:>bAO><Vl///(QOVth)<<1,

I'= [Agc +pnl; ]dR —ud@—{%«p _54|)2>+”Q+<¢>

" 2g12 (V(¥/,)xb, V)~ 2;20 aau<‘/~’2>}df’

0
.~ —\ «~ 6 _ ~
where ¥ =¢—(p|| _54|)54|, \P:J vdo W=¥-(¥)
° Essentially the same result as in the standard ordering, but now justified

for the DDL ordering
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THE FIRST-ORDER EQUATIONS OF MOTION CONTAIN THE
V' B, CURVATURE, AND EXB DRIFTS

e i ™ [A +p||b0] R — pd6 - { (p” <54|>) +“Q0+<¢>}dt’
e R Euler-Lagrange equations

R= (p” - 5An)l;o * QLbAO * [V<¢> THVE, ¥ (p” - <54'>)2 b .VbAO}

0



SUBSIDIARY ORDERING FOR EM TERMS
RESULTS IN “PRACTICAL MINIMAL MODEL”

e Take 64,=0(¢"); still have 64,=0("),

I = |:Agc +p|l;o:|'dR_‘ud9_|:%(pl —5%)2 _|_‘u§2+($

1 ~ R | T P
M 2Q, <V(®/QO)X1’0 'V¢>_ 2Q, £<¢ >:|dt’
e The GK Poisson’s equation again has only electrostatic terms

O~——V P(x) = IdAS(R+r x)[F +(;)1 +VRLCI) -b, XVRLF}—n
e ou

e The GK Ampere’s Law has only the identity part of 7,
(V?/c* )4, = (4me/m, )U‘WF; (n-64)

_(Zm/m)JdA5(R+r x)(p|| 54|)(F ?;; R }

e A similar model has been obtained for the symplectic representation.
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IMPLEMENTATION OF THE SECOND-ORDER TERMS IN
GYROKINETIC MODELS REQUIRES NEW METHODS

GYROCENTER EQUATIONS OF MOTION

First-order terms now standard

e Given y,calculate <l//>(R,/J,l‘) either at each mesh node or cell center, or at
each gyrocenter (in the case of a PIC code).

e Also need derivatives for the equations of motion
e Can calculate directly by averaging on the gyro orbit or in Fourier space
o Save for use on the 4D (R,u) mesh for continuum codes.

o For a PIC code, can do this particle by particle.



SECOND-ORDER TERMS IN GYROKINETIC EQUATIONS OF
MOTION NEVER YET IMPLEMENTED

o((W,)*) /o : use

o)) _alw) oy,
<g; )_ gv;>_2<%>m

and
o) _ ap 1
o

—d0 p(0) Vy (R+pp(6)),

This can be calculated directly by sampling the components of Vy around an
instantaneous gyro orbit or by using a Fourier decomposition and Bessel
functions. Again, at any given t, this is a function of the 4D (R,u) phase space.



(V, & b, xV,3)=b,- gﬁd@l}dez V.8 R+ pp(6))xV,8( R+ pp(6,))
=b, @d@jd@z VR¢(1§+pﬁ(el))xVR¢(R+pﬁ(92))—%VRqK(E)xVRqS(ie)

This can be calculated sampling the components of V¢ over a double gyro orbit.
e.g., n-point 6, gyro orbit -> n(n+1)/2-point 6, -6, double gyro orbit
8-point 6, gyro orbit -> 36-point 0, -0, double gyro orbit

A

Again, at any given time, "

this is a function of the 0,
4D (R,u) phase space.



THE FULL-f GYROKINETIC POISSON EQUATION CAN BE
DIRECTLY DISCRETIZED, e.g., USING FINITE-ELEMENTS

o weak form + Galerkin representation of ¢.

o All derivatives and gyroaveraging operations can be recast into derivatives
operating on the Galerkin basis functions.

e Begin with gyrokinetic Poisson equation:
Lp=S
1, ~ OF -
Lo=—V"¢(x)+ [dAS (R+r —x)| §——+V , @, -B, XV, F,
4 ou

S=n,—[dAS (R+r —x)F,(R); dA = dR dv, B dy do
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oA
e Use Galerkin discretization of So(x ) =

A= [dxp(S-1Lp)
SIS
o

1 2 1
= |dxpS+—|dx(V¢) += |dAF,
I ? 87[-[ ( ¢)+2J. l
1 S 2 1oy &
_EjdAE|:b°VRL¢XVRL(D_§¢VRJ-CD. eqm:|

(O(x)=D oy, (x);1=(i,])

A .. A

X0, Vi,J

<
e Insert Galerkin representation W, :W[x_xllj Y= i, ]
i, s

— resolves derivatives onto basis functions
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d (weak form Galerkin GK Poisson )
60, .

=0 = Matrix equation to be solved

M- ®=5
M =(M+M")/2
1 oy,
M, :EJ.deWk'V‘V1+J.dAE%
- dAF{I; .VﬂnpkaR\if,—%kaR@,-Jeqm}
S, =|dxSy,

e “Deposition” or projection from Z to x is needed to calculate the matrix
elements.

e The resulting matrices are still sparse

o For solution on perpendicular slices with N cells of size ~p;, about 100
N? nonzero matrix elements are needed (not N*).
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TOWARDS A MINIMAL NECESSARY ORDERING
FOR GYROKINETIC THEORY

Low-frequency GK should be possible if in some frame of reference, the
perturbation to the gyro orbit is small

Consider an electrostatic potential ¢

Absolute value of ¢ should not matter

= Can transform away any long-wavelength E x B drift

* Only shear (spatial variation) of E x B drift matters

Basic ordering: q¢/T=0(8_1), VExB/Uth =0(80), Véx3/9=0(81)

13



SECOND-ORDER LAGRANGIAN FOR
ELECTROSTATIC SLAB CASE

1 ~
D=4 +Up, +u+—a< &(Vu)- > .dR
06
Vdxh -V|u O\ g0 |, 9 dyu
2@2 o o 8,u

do —

(122 <qu3><1;0 -V(p-u)>

1 0 2 1 0 0
~ L (véxs V5¢>——Q£<(5¢)> Loy, 6M<5¢p>

U2 ,uQ—i—Qu + ¢

dt,

1~ -
e here, #=b,%V% here has temporal and spatial dependences
e many new (noncanonical) components to Lagrange tensor

e V- <p Vu 51@ terms are absent in 2-scale theories, but are of the

same order as V<(P ' V’“')2> ~ V<51(52>.
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THE FIRST-ORDER EQUATIONS OF MOTION
CONTAIN THE EXB AND POLARIZATION DRIFTS

° -1,0,1

_ 2 1 2 1 2, x
r [Agc+U”b0+u]-dR—ud9{5U QT +<p}dt

e Euler-Lagrange equation a’ﬁzi = H,j V. =

Z'=P'(H,+7,) where P=w, @ =— 1——]

R:u—i—U”I;OnLL*I;Ox 2—|—u.V+UV]u,
Q ot

1 - - * 2
u= b x Vo, Q =6 -V x(4, +ul
1~ [Ou
o 5’”[57 UVt terms are new.

e wu includes both long- and short-wavelength components.
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THE EQUATIONS OF MOTION CAN BE OBTAINED
PERTURBATIVELY TO SECOND ORDER

o 2. =P (HJ. + 7/”)

Yy .

iy J

— —1 — T ;
« P=w, oz' 97’

ay.

1

w has many more nonzero components than in previous theories, so
its inverse P is more complicated.

2 . .
Use W =W, + Ew, + €W, where @, is canonical (and therefore
easily invertible)
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THE EQUATIONS OF MOTION CAN BE OBTAINED
PERTURBATIVELY TO SECOND ORDER

ik ldu |
i ﬁb " {VLH2 ) [(Vﬂ/“)' - (Vﬁ/zz) Uy -Q Vﬂ’ze} N (VL XU )Z Q (ZZL }
RZJ_ O
Z? 1 du,
Ya | —Hy [yﬂ,z U 47, Uy =027, ] U Q dr
b 0
_92 i _Hz,u + [}’M’u u, + y2z,uU|| — Qyze,u}
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THE DIRECTLY CALCULATED EQUATIONS OF
MOTION ARE COMPLICATED BECAUSE OF THE

* e.g. first row of Det(w)*w’’

1 2w2mt w2mt?
{{0, - - - -w2xtw2ym- w2mt w2xt w2ym + w2xmw2yt + w2mt w2xmw2yt,
Bsti Bsti Bsti

w2ytw2zm w2mtw2ytw2zm 2 w2ymw2zt
0, - - -w2xtw2ymw2yt w2zm + w2xmw2yt” w2zm + +
Bsti Bsti Bsti

w2mt w2ymw2zt 2 WYZ 2w2mt wyz
+w2xtw2ym” w2zt - w2xmw2ymw2yt w2zt - - -
Bsti Bsti Bsti

w2mt? wyz
-w2xtw2ymwyz - w2mt w2xt w2ymwyz + w2xmw2yt wyz + w2mt w2xmw2yt wyz,
Bsti

w2yt w2mtw2yt 2
- + w2xtw2ymw2yt - w2xmw2yt®, -
Bsti Bsti Bsti Bsti

w2ym w2mtw2ym
- - w2xt w2ym2 4 w2xmw2ymw2yt},

These may be necessary, e.g., for numerical implementations with proper
conservation properties.
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THE GYROKINETIC POISSON (FIELD) EQUATION
IS NONLINEAR EVEN AT T, ORDER

Gyrokinetic Poisson equation - quasineutrality
1 27T - au
J R+p x)Q[1+§VL¢+pxb.$}<
[ R/,L + — 5¢—+—V<I> b VF}
ou Q°

j dudvd@{ (x pu)+1q38—F+di>><b VF}

ou

e To linear order in ¢, this is the same as the standard form.
o Note the gyrophase dependent Jacobian term.

o Integrate one term by parts wrt. u and then wrt. 6.

19



THE TOROIDAL DERIVATION PROCEEDS SIMILARLY TO
THE SLAB DERIVATION

e Given @, = (., V =), where z is the lab-frame position, and the
presence of a large E x B drift, it is most convenient to transform to

Q= (%’v = V—u) where

e v is the velocity in the frame of a gyro-averaged £ x B drift
|
=—bhxV
U 0 X <¢>

0
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SUCH A TRANSFORMATION CAN BE DEFINED IMPLICITLY

° Define

1 A
pzﬁ Oxlvﬁ
v =b xvxb,
/UJ_:‘,UJ_’

2

v

1
W= —

20’

()= = i o

u(m,v,t)z I;XVX<¢>(zc—p,,u,t)

N
QO
e Now define v and v through the implicit equation

v+u(m,v,t> =V =

- solution well defined because our ordering = HVUH <1
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THE TRANSFORMATION CAN BE VELOCITY DEPENDENT

e Starting point: @ = (=.V) = Q@ = (=,v)
L(Q,Q,t) = [A(a:,t)+Vl-5c—EV2 +¢(m,t>} =
L(Q.Q.t)= [A(m,t)+u(m,v,t)—l—'u]-X—{%[u(m,v,t)—i—vr —|—qb(a:,t)}

o v Euler-Lagrange equation: 0 = (I + Vv'“') ' [m - (“ T ”)l

o Our ordering = HVUH =1, s0
» v==2- u(xz,v,t)

» but z is still the lab-frame position.
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TOROIDAL EDGE ORDERING

e Basic ordering: 61¢/T=0(8_1 ) Vo Vs =0(€°), VE'xB/Q=0(81)
o will use (a/at+VExB -V)ln(S)/Q~ VéxB/Q~8 <1
e low 3 - 6B/B,=0(e')A(z.t) = A (z)+ 64 (z.t)b,

e Edge ordering qAO/(mcvth) - 0(6‘2) ; p/L ~L |R~¢
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LOWEST ORDER TRANSFORMATION

Transformto R=z—p, v
L= [AO (R+p)+064 (R+p.t)b, +u(R+p,v,t)+v]-(R+p)

|

Separate ¢(R+p) as ¢(R+p)=¢ +p-Vo +6¢

0 89=6-p-Vo=0(e=7,,/Q); 6=0(R+p)-5(Ru),
6 =(¢)=0(e™') is gyrophase independent
uvtp-Vo=0ifu=bxV, o/

After this transformation and separation, all gyrophase dependences are
at order €' or higher
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ALL GYROPHASE DEPENDENCES ARE AT FIRST OR
HIGHTER ORDER

it o
tlut (U +6A)B | B—pub— | (U2 +w?) 40| 0(<')
fwep—6d ol
_ap (v (a) p} s 0(e)
-
tlutpb) B-pd—|(n - 64) +wl 0] o(
fuep [ 5 (n - 54)%] ...... 0(51)
S Levia) e i
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LIE-TRANSFORM PERTURBATION THEORY

T=...... TTT
T (5) = exp(sL )
[ =T"'"v+dS
0 0
(12), =9\ 57
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THE FIRST ORDER EQUATION YIELDS AND THE
GAUGE FUNCTION AND THE GENERATORS

0S8 _ _ -
= 81&1 +9, Vo +g/ (p” B 54|) +97 — oY,

51& = 51g5 o (pll o 62”) &il
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THE FIRST ORDER EQUATION YIELDS AND THE
GAUGE FUNCTION AND THE GENERATORS

ds ) N
d—tlslo —QO%(S +u- p) 6,9,
51““ (6\11/9) p-u:—\il/ﬂo,
U= :dezz
V=0 (pn_Mw)éAn
9" = b xV(¥/2,)
0
9 = AZZH/QO
9" = -V, (qj/QO)
glu - (61&/90)’
; 1 06V
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ELECTROMAGNETIC TOROIDAL LAGRANGIAN
COMPONENTS TO SECOND ORDER

H = — ! {<50 X V(\TJ/QO) ' V611Z> - <AAW|V|| (6112»

o //.-v2\ Odu 9/ -~
(s 2 i)
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CORE ORDERING - MORE “STANDARD” BUT HARDER

L={4,) B-{0),

—I—{u—l—(U—I—(%)BO]-R—,LL@'—E(UQ+u2)—|—,uQ

+u-p—6145—%[p-V(V<AO>)-p]-R ...... O(el)

e Brings in
o FLR corrections to equilibrium magnetic field
o Higher-order equilibrium motion terms, e.g, Banos drift

o Couplings of equilibrium magnetic field variation and fluctuations
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SUMMARY OF (GYROAVERAGED) GYROKINETIC
ORDERINGS AND DERIVATIONS

ey /T <1, y=¢— (P”/mc> 4, - most Hamiltonian GK derivations — core.

ew/T~1, V. [v. <1 _Dimits, Dubin, Lodestro ‘92, and extended here:

many iterative derivations (e.g., Parra-Catto) — likely applicable to many
edge situations without large flows.

2-scale, with #, /v, ~1, 8V, /v, <1 - Brizard *94; Hahm "96; Qin et. al.,
"07; Hahm-Wang-Madsen "09. — addresses large flows.

Our new ordering V};xB/Q <1 for any perturbations — allows large
perturbations and large flows. Captures new cross terms.

Differences between new ordering/derivation and 2-scale

o our u not quite the same as 2-scale ¥,

o5 V{p:Vu, 5p)~ v<(p-qu)2>~ V(56"
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GYROKINETIC EQUATIONS HAVE BEEN DERIVED IN A
NEW MORE GENERAL ORDERING

Allows for

o large flow velocities

o large perturbation amplitudes

Toroidal electromagneti gyrokinetic theory has been developed in a low-f3
ordering appropriate for MFE edge plasma conditions.

Useful reduced and subsidiary orderings were found.

o The “standard” toroidal Hamiltonian theory is valid for the more general
DDL ordering, which allows for large relative perturbation amplitudes

o Now have justification of the reduced “practical minimal model” as valid
under the DDL ordering for ¢ and a subsidiary ordering for 54|

e Numerical algorithms for the discretization of the second-order terms in the
gyrokinetic equations of motion and Poisson’s equation were presented.
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