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GYROKINETIC SIMULATION OF MFE EDGE PLASMAS MUST 
DEAL WITH LARGE PERTURBATIONS 

•e.g. solution of gyrokinetic 
   Poisson or vorticity equation 
 

   
∇ ⋅ n0 + δn( )∇φ⎡⎣ ⎤⎦ = S  
 
–   may be 
    significant in the edge 
 
–May have large time 
   dependent ExB flows  
 
 

X.Q. Xu, BOUT Simulation 
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OUTLINE  

• Simpler extended and subsidiary orderings  
o EM toroidal theory in DDL`92 ordering 
o subsidiary ordering for EM perturbations → 

“practical minimal model” 
• numerical discretization of second-order terms 
• gyrokinetics in the most general ordering for φ 

o results and interpretation for slab 
o electromagnetic toroidal theory in this ordering 

• summary 
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EXTENDED ORDERING GOALS: GYROKINETIC THEORY 
VALID WHERE STANDARD ORDERINGS INAPPLICABLE  

• Existing large-perturbation gyrokinetic theories 

o Allow  - electromagnetic slab theory:  A.M. 
Dimits, L.L. LoDestro, D.H.E. Dubin, Phys. Fluids B4 274 (1992). 

o 2-scale: short-wavelength perturbations with  + (static) large 
long-wavelength component with  VExB / vth ~ 1 . 
 M. Artun and W.M. Tang, Phys. Plasmas, 1, 2682 (1994)  
 A.J. Brizard, Phys. Plasmas 2, 459 (1995) 
 T.S. Hahm, Phys Plasmas 3, 4658 (1996) 
 T.S. Hahm L. Wang, J. Madsen, Phys. Plasmas 16, 

022305 (2009) 
 H. Qin, et. al., Phys. Plasmas 14, 056110 (2007) 

 
• More general theory removes 2-scale and static restrictions 

o Basic ordering and electrostatic slab theory: A.M. Dimits, Phys. 
Plasmas 17, 055901 (2010) 
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THE DDL`92 ORDERING IS USEFUL FOR LARGE 
PERTURBATION AMPLITUDES, SMALL FLOWS 

• ordering: ,  where . 

• ; use the standard 2-step approach 

• Separation is  

• , 

    

Γ = Agc + p

b̂0

⎡⎣ ⎤⎦ ⋅ dR − µdθ − 1
2

⎡

⎣
⎢ p


− δ A

( )2
+ µΩ + φ

+ 1
2Ω0

∇ Ψ Ω0( ) × b̂0 ⋅∇ ψ − 1
2Ω0

∂
∂µ
ψ 2 ⎤

⎦
⎥dt,

 
where

  
ψ = φ − p


− δ A

( )δ A ,  ,  

• Essentially the same result as in the standard ordering, but now justified 
for the DDL ordering 
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THE FIRST-ORDER EQUATIONS OF MOTION CONTAIN THE 
, CURVATURE, AND EXB DRIFTS 

 

• 
    
Γ−1,0 ,1 = Agc + p


b̂0

⎡⎣ ⎤⎦ ⋅ dR − µdθ − 1
2

p

− δ A

( )2
+ µΩ0 + φ

⎡

⎣
⎢

⎤

⎦
⎥dt, 

 
•   Euler-Lagrange equations 

 

     
R = p


− δ A

( )b̂0 +
1
Ω0

b̂0 × ∇ φ + µ∇Ω0 + p

− δ A

( )2
b̂0 ⋅∇ b̂0

⎡
⎣⎢

⎤
⎦⎥  
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SUBSIDIARY ORDERING FOR EM TERMS 
RESULTS IN “PRACTICAL MINIMAL MODEL” 

 
• Take ; still have , 

  

    

Γ = Agc + p

b̂0

⎡⎣ ⎤⎦ ⋅ dR − µdθ − 1
2

⎡

⎣
⎢ p


− δ A

( )2
+ µΩ + φ

+ 1
2Ω0

∇ Φ Ω0( ) × b̂0 ⋅∇ φ − 1
2Ω0

∂
∂µ
φ 2 ⎤

⎦
⎥dt,  

• The GK Poisson’s equation again has only electrostatic terms 

     

• The GK Ampere’s Law has only the identity part of  

  

• A similar model has been obtained for the symplectic representation.  

•  
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IMPLEMENTATION OF THE SECOND-ORDER TERMS IN 
GYROKINETIC MODELS REQUIRES NEW METHODS 

 
 

GYROCENTER EQUATIONS OF MOTION 
 
First-order terms now standard 

• Given ψ, calculate  either at each mesh node or cell center, or at 
each gyrocenter (in the case of a PIC code). 

• Also need derivatives for the equations of motion 

• Can calculate directly by averaging on the gyro orbit or in Fourier space 

o Save for use on the 4D  mesh for continuum codes. 

o For a PIC code, can do this particle by particle. 

 



 8 

SECOND-ORDER TERMS IN GYROKINETIC EQUATIONS OF 
MOTION NEVER YET IMPLEMENTED 

 
 

: use 
 

 , 

and  

 . 

 
This can be calculated directly by sampling the components of   around an 
instantaneous gyro orbit or by using a Fourier decomposition and Bessel 
functions. Again, at any given t, this is a function of the 4D  phase space. 
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∇ R⊥
Φ ⋅b0 ×∇ R⊥

φ = b0 ⋅ dθ1∫ dθ2
0

θ1

∫ ∇ R⊥
φ

R + ρ ̂ρ(θ1)( ) ×∇ R⊥

φ

R + ρ ̂ρ(θ2 )( )  

    
= b0 ⋅ dθ1∫ dθ2

0

θ1

∫ ∇ R⊥φ

R + ρ ̂ρ(θ1)( ) ×∇ R⊥φ


R + ρ ̂ρ(θ2 )( ) − 1

2
∇ R⊥φ


R( ) ×∇ R⊥φ


R( )  

 
This can be calculated sampling the components of   over a double gyro orbit. 
e.g., n-point θ1 gyro orbit -> n(n+1)/2-point θ1 - θ2 double gyro orbit 
        8-point θ1 gyro orbit ->           36-point θ1 - θ2 double gyro orbit 
        

 
Again, at any given time, 
this is a function of the 
4D  phase space. 
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 THE FULL-f GYROKINETIC POISSON EQUATION CAN BE 
DIRECTLY DISCRETIZED, e.g., USING FINITE-ELEMENTS 

 
• weak form + Galerkin representation of φ. 

• All derivatives and gyroaveraging operations can be recast into derivatives 
operating on the Galerkin basis functions. 

• Begin with gyrokinetic Poisson equation: 
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• Use Galerkin discretization of     

 

 

 

• Insert Galerkin representation       

 
→  resolves derivatives onto basis functions  
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 Matrix equation to be solved 

 

     

M S ⋅Φ = S
M S = M + M T( ) 2

Mk,l =
1

4π
d x∫ ∇ψ k ⋅∇ψ l + dΛ Fi

∂ ψ k
ψ l( )

∂µ∫

− dΛ Fi b̂ ⋅∇ R⊥
ψ k ×∇ R⊥

Ψ l −
1
B
ψ k∇ R⊥

Ψ l ⋅ Jeqm

⎡

⎣
⎢

⎤

⎦
⎥∫

Sk = d x∫ Sψ k

 

 
• “Deposition” or projection from Z to x is needed to calculate the matrix 

elements. 
 

• The resulting matrices are still sparse 

o For solution on perpendicular slices with N2 cells of size ~ρi, about 100 
N2 nonzero matrix elements are needed (not N4). 
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TOWARDS A MINIMAL NECESSARY ORDERING 
FOR GYROKINETIC THEORY  

• Low-frequency GK should be possible if in some frame of reference, the 
perturbation to the gyro orbit is small 

• Consider an electrostatic potential  

• Absolute value of  should not matter 

 Can transform away any long-wavelength  drift 

 Only shear (spatial variation) of  drift matters 

• Basic ordering: , ,  
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SECOND-ORDER LAGRANGIAN FOR 
ELECTROSTATIC SLAB CASE  

        

Γ = A
gc

+U

b̂

0
+ u +

1
2Ω
∂
∂µ
δ

1
φ ∇ u( ) ⋅ ρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ⋅d R

+ 1
2Ω2

∇ Φ× b̂
0
⋅∇ u ⋅ ∂ρ

∂µ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+Ω
∂u
∂µ
⋅ ρ
∂δ

1
φ

∂µ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
dµ

− µ +
1

2Ω2
∇ φ× b̂

0
⋅∇ ρ ⋅u( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥dθ−

1
2

⎡

⎣
⎢
⎢ U



2 + µΩ+
1
2

u2 + φ

+
1

2Ω2
∇ Φ× b̂

0
⋅∇ δ

1
φ −

1
2Ω
∂
∂µ

δ
1
φ( )2
−

1
2Ω
∂u
∂t
⋅
∂
∂µ
δ

1
φρ
⎤

⎦
⎥
⎥dt,  

• here,    
u = 1

Ω
b̂0 ×∇φ  here has temporal and spatial dependences 

• many new (noncanonical) components to Lagrange tensor  

• 
      
∇ ⋅ ρ ⋅∇u δ

1
φ  terms are absent in 2-scale theories, but are of the 

same order as 
       
∇ ρ ⋅∇u( )2

~∇ δ
1
φ2

. 
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THE FIRST-ORDER EQUATIONS OF MOTION 
CONTAIN THE EXB AND POLARIZATION DRIFTS  

 

• 
    
Γ−1,0 ,1 = Agc +U


b̂0 + u⎡⎣ ⎤⎦ ⋅ dR − µ dθ - 1

2
U


2 + µΩ + 1
2

u2 + φ
⎡

⎣
⎢

⎤

⎦
⎥dt  

 

• Euler-Lagrange equation 
  
ω ji
Z i = H, j + γ j ,t ⇒  

      where ,   

        

R = u +U

b̂

0
+

1
Ω


*
b̂

0
×
∂
∂t

+u.∇ +U

∇


⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
u,

u ≡ 1
Ω

b̂
0
×∇φ, Ω



* = b̂
0
⋅∇ × A

gc
+u( )

 

• 
      

1
Ω

b̂× ∂u
∂t

, U

∇

u

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  terms are new. 

 
•  includes both long- and short-wavelength components. 
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THE EQUATIONS OF MOTION CAN BE OBTAINED 
PERTURBATIVELY TO SECOND ORDER  

•  

• ,   

•  has many more nonzero components than in previous theories, so 
its inverse  is more complicated. 

• Use  where  is canonical (and therefore 
easily invertible) 

• ,  

where  ,    
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THE EQUATIONS OF MOTION CAN BE OBTAINED 
PERTURBATIVELY TO SECOND ORDER  

     

R2⊥

z2

U2

µ2

θ2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

1
Ω

b̂ × ∇⊥H2 − ∇⊥γ 2⊥( ) ⋅u⊥ + ∇⊥γ 2z( ) ⋅U − Ω∇⊥γ 2θ
⎡⎣ ⎤⎦ − ∇⊥ × u⊥( )z

1
Ω

d0u⊥

dt
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

0

−H2 ,z + γ 2⊥ ,z ⋅u⊥ + γ 2z ,zU − Ωγ 2θ ,z
⎡⎣ ⎤⎦ − u⊥ ,z ⋅

1
Ω

d0u⊥

dt
0

−H2 ,µ + γ 2⊥ ,µ ⋅u⊥ + γ 2z ,µU − Ωγ 2θ ,µ
⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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THE DIRECTLY CALCULATED EQUATIONS OF 
MOTION ARE COMPLICATED BECAUSE OF THE 

MANY NONCANONICAL TERMS  

• e.g. first row of Det(w)*w-1 

 

 
 

………… 

These may be necessary, e.g., for numerical implementations with proper 
conservation properties. 
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THE GYROKINETIC POISSON (FIELD) EQUATION 
IS NONLINEAR EVEN AT T1 ORDER  

 
Gyrokinetic Poisson equation  - quasineutrality 
 

     

ne = ni = d 6Z δ R + ρ − x( )Ω 1+ 1
Ω2∇⊥

2φ + ρ × b̂ ⋅ ∂u
∂µ

⎡

⎣
⎢

⎤

⎦
⎥∫ ×

Fi R ,µ( ) + 1
Ω
δ1
φ ∂F
∂µ

+ 1
Ω2∇ Φ× b̂0 ⋅∇ F

⎡

⎣
⎢

⎤

⎦
⎥

= Ωdµ dv

dθ∫ Fi x − ρ ,µ( )i

+ 1
Ω
φ ∂F
∂µ

+ 1
Ω2∇ Φ× b̂0 ⋅∇ F

⎡

⎣
⎢

⎤

⎦
⎥

 

 
• To linear order in φ, this is the same as the standard form. 
 

o Note the gyrophase dependent Jacobian term. 
 

o Integrate one term by parts wrt. µ and then wrt. θ. 
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THE TOROIDAL DERIVATION PROCEEDS SIMILARLY TO 
THE SLAB DERIVATION 

• Given , where  is the lab-frame position, and the 
presence of a large  drift, it is most convenient to transform to 

   
Q = x,v =V −u( )  where 

•  is the velocity in the frame of a gyro-averaged  drift 

     
u ≡ 1

Ω0

b̂ ×∇ φ  
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SUCH A TRANSFORMATION CAN BE DEFINED IMPLICITLY 

• Define 

   

      

ρ= 1
Ω

b̂
0
×v,

v
⊥

= b̂
0
×v×b̂

0
,

v
⊥

= v
⊥

,

µ =
v
⊥
2

2Ω
,

 

   
       
φ X,µ,t( ) =

1
2π

dθ φ X + ρ,t( )∫  

   
      
u x,v,t( )≡ 1

Ω
0

b̂×∇
X
φ x − ρ,µ,t( ) 

• Now define  and  through the implicit equation 

  
    
v +u x,v,t( ) =V = x  

  - solution well defined because our ordering 
     
⇒ ∇

v
u  1  



 22 

THE TRANSFORMATION CAN BE VELOCITY DEPENDENT  

• Starting point:     
Q

0
= x,V( )→Q = x,v( )  

       
L Q

0
, Q

0
,t( ) = A x,t( ) +V⎡

⎣⎢
⎤
⎦⎥
⋅ x− 1

2
V 2 + φ x,t( )

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
→

 

       
L Q, Q,t( ) = A x,t( ) +u x,v,t( ) +v⎡

⎣⎢
⎤
⎦⎥
⋅ x− 1

2
u x,v,t( ) +v⎡
⎣⎢

⎤
⎦⎥
2

+ φ x,t( )
⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
 

o  Euler-Lagrange equation: 
     
0 = I +∇

v
u( ) ⋅ x − u +v( )⎡
⎣⎢

⎤
⎦⎥  

o Our ordering , so  

  

 but  is still the lab-frame position. 
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TOROIDAL EDGE ORDERING  

• Basic ordering: , ,   VExB
' Ω = O ε1( )   

o will use 
    ∂ ∂t +VExB ⋅∇( ) ln S( ) Ω ~ VE×B

' Ω ε 1 

• low  - 
      
A x,t( ) = A

0
x( ) + δA


x,t( )b̂0   

• Edge ordering     
qA

0
mcv

th( ) = O ε−2( )  ;  ρ Lp ~ Lp R ~ ε  
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LOWEST ORDER TRANSFORMATION  

• Transform to    R = x − ρ ,  v  

  

        

L = A
0
R + ρ( ) + δA


R + ρ,t( )b̂0

+u R + ρ,v,t( ) +v⎡
⎣⎢

⎤
⎦⎥
⋅ R + ρ( )

−
1
2

u 2 + v 2( ) +u ⋅v + φ R + ρ,t( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ .

 

• Separate     
φ R + ρ( ) as 

      
φ R + ρ( ) = φ + ρ ⋅∇φ + δ

1
φ  

o 
   
δ1
φ ≡ φ − ρ ⋅∇φ = O ε =VExB

' Ω( ) ;  
      
φ ≡ φ R + ρ( )−φ R,µ( ) , 

•     
φ ≡ φ = O ε−1( )  is gyrophase independent 

•     u ⋅v + ρ ⋅∇φ = 0  if       u ≡ b̂×∇
R
φ Ω

0  

• After this transformation and separation, all gyrophase dependences are 
at order   ε1 or higher  
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ALL GYROPHASE DEPENDENCES ARE AT FIRST OR 
HIGHTER ORDER  

        

L = A
0
⋅ R

− φ
0

+ u + U


+ δA


( )b̂0
⎡
⎣⎢

⎤
⎦⎥
⋅ R−µ θ−

1
2

U


2 + u 2( ) + µΩ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+u ⋅ ρ− δ
1
φ

−
1
2
ρ ⋅∇ ∇ A

0( ) ⋅ ρ⎡
⎣⎢

⎤
⎦⎥
⋅ R

             

    

......O ε−2( )

......O ε−1( )

......O ε0( )

......O ε1( )

......O ε2( )

 

 
 

        

L = A
0
⋅ R

− φ
0

+ u + p

b̂

0
⎡
⎣⎢

⎤
⎦⎥ ⋅
R−µ θ−

1
2

p

− δA


( )2

+ 1
2
u 2 + µΩ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+u ⋅ ρ− δ
1
φ− p


− δA


( ) δ A



⎡
⎣⎢

⎤
⎦⎥

−
1
2
δ A


( )2
−

1
2
ρ ⋅∇ ∇ A

0( ) ⋅ ρ⎡
⎣⎢

⎤
⎦⎥
⋅ R

             

    

......O ε−2( )

......O ε−1( )

......O ε0( )

......O ε1( )

......O ε2( )
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LIE-TRANSFORM PERTURBATION THEORY  

   

      

Z → Z = R,U

,µ,θ( ) = T ε( )Z

f Z( ) = T−1f Z( )
T = ......T

3
T

2
T

1

T
n
ε( ) = exp εL

n( )
Γ = T−1γ +dS

L
n
γ( )
α

= g
n
β ∂γα
∂Z β

−
∂γ
β

∂Z α

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

 

• Due to spatial derivatives,     
L

n
γ = L

n
γ( )

a
+ ε L

n
γ( )

b
+ ε2 L

n
γ( )

c
 

• Main results needed  

    

Γ
−2,−1,0

= γ
−2,−1,0

+dS
−2,−1,0

,

Γ
1

= γ
1
− L

1
γ

0( )
a
− L

1
γ
−1( )

b
− L

1
γ
−2( )

c
+dS

1
,

Γ
2

= γ
2
−

1
2

L
1
γ

1( )
a
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THE FIRST ORDER EQUATION YIELDS AND THE 
GAUGE FUNCTION AND THE GENERATORS 

 

  

       

g
1
⊥ = −

1
Ω

0

b̂
0
×∇S

1
,

g
1
 = −

∂S
1

∂p


,

g
1

p
 =∇


S

1
,

g
1
µ = −

∂
∂θ

S
1

+u ⋅ρ( ),

g
1
θ =

∂
∂µ

S
1

+u ⋅ρ( )

 

  
       

0 =
∂S

1

∂t
+g

1
⋅∇φ + g

1

p
 p


− δA


( ) +Ωg

1
µ− δ

1
ψ,

δ
1
ψ ≡ δ

1
φ− p


− δA


( ) δ A
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dS
1

dt

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
slow

−Ω
0

∂
∂θ

S
1

+u ⋅ρ( ) = δ
1
ψ,

S
1
≈− δ

1
Ψ Ω

0( )− ρ ⋅u = − Ψ Ω
0
,

Ψ ≡ Ψ
i
−Ψ

i
,

Ψ
i

= dθ ψ
θ0

θ

∫ ,

ψ ≡ φ− p

− δA


( ) δ A



 

  

       

g
1
⊥ =

1
Ω

0

b̂
0
×∇ Ψ Ω

0( ),

g
1
 = −Δ A


Ω

0
,

g
1

p
 = −∇



Ψ Ω
0( ),

g
1
µ = δ

1
ψ Ω

0( ),

g
1
θ = −

1
Ω

0

∂δ
1
Ψ

∂µ

     

THE FIRST ORDER EQUATION YIELDS AND THE 
GAUGE FUNCTION AND THE GENERATORS 
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ELECTROMAGNETIC TOROIDAL LAGRANGIAN 
COMPONENTS TO SECOND ORDER  

  

       

Γ
2

=
1

2Ω
0

∂
∂µ
∇ u ⋅ρ( )δ1 ψ −Ω0

ρ ⋅∇ ∇ A
0( ) ⋅ ρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ,

Γ
2
µ = −

1
2Ω

0

b̂
0
×∇ Ψ Ω

0( ) ⋅∇ u ⋅ ∂ρ
∂µ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
− Δ A


∇

u ⋅ ∂ρ
∂µ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

−
∂u
∂µ
⋅ ρ
∂δ

1
ψ

∂µ

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
,

Γ
2
θ =

1
2Ω

0

b̂
0
×∇ δ

1
ψ Ω

0( ) ⋅∇ u ⋅ρ( ) − δ A

∇

u ⋅ρ( ){

−
∂u
∂µ
⋅
∂ρ
∂θ
δ

1
ψ
⎫
⎬
⎪⎪

⎭⎪⎪
,

H
2

= −
1

2Ω
0

b̂
0
×∇ Ψ Ω

0( ) ⋅∇δ1 ψ − Δ A∇  δ1 ψ( ){

+
∂
∂µ

δ
1
ψ( )2

+
∂u
∂t
⋅
∂
∂µ
δ

1
ψρ
⎫
⎬
⎪⎪

⎭⎪⎪
.
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CORE ORDERING – MORE “STANDARD” BUT HARDER  

        

L = A
0
⋅ R− φ

0

+ u + U


+ δA


( )b̂0
⎡
⎣⎢

⎤
⎦⎥
⋅ R−µ θ−

1
2

U


2 + u 2( ) + µΩ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+u ⋅ ρ− δ
1
φ −

1
2
ρ ⋅∇ ∇ A

0( ) ⋅ ρ⎡
⎣⎢

⎤
⎦⎥
⋅ R

             

    

......O ε−1( )

......O ε0( )

......O ε1( )
  

• Brings in 

o FLR corrections to equilibrium magnetic field 

o Higher-order equilibrium motion terms, e.g, Banos drift 

o Couplings of equilibrium magnetic field variation and fluctuations 
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SUMMARY OF (GYROAVERAGED) GYROKINETIC 
ORDERINGS AND DERIVATIONS 

• 
    
eψ T 1, ψ = φ− p


mc( ) A

  - most Hamiltonian GK derivations – core. 

•    eψ T  1, VExB vth 1  - Dimits, Dubin, Lodestro `92, and extended here;  
many iterative derivations (e.g., Parra-Catto) – likely applicable to many 
edge situations without large flows. 

• 2-scale, with    uE vth  1, δVExB vth 1 - Brizard `94; Hahm `96; Qin et. al., 
`07; Hahm-Wang-Madsen `09. – addresses large flows. 

• Our new ordering    V
'
ExB Ω1  for any perturbations – allows large 

perturbations and large flows. Captures new cross terms. 

• Differences between new ordering/derivation and 2-scale 

o our  u not quite the same as 2-scale   uE  

o 
      
∇⋅ ρ ⋅∇uE δ1

φ ~ ∇ ρ ⋅∇uE( )2
~ ∇ δ1

φ 2
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GYROKINETIC EQUATIONS HAVE BEEN DERIVED IN A 
NEW MORE GENERAL ORDERING 

 
• Allows for 

o large flow velocities 

o large perturbation amplitudes 

• Toroidal electromagneti gyrokinetic theory has been developed in a low-β 
ordering appropriate for MFE edge plasma conditions. 

• Useful reduced and subsidiary orderings were found. 

o The “standard” toroidal Hamiltonian theory is valid for the more general 
DDL ordering, which allows for large relative perturbation amplitudes 

o Now have justification of the reduced “practical minimal model” as valid 
under the DDL ordering for φ  and a subsidiary ordering for 

  
δ A

  

• Numerical algorithms for the discretization of the second-order terms in the 
gyrokinetic equations of motion and Poisson’s equation were presented. 


