Lattice Boltzmann approaches to magnetohydrodynamics and related models

Paul J. Dellar

Mathematical Institute
University of Oxford
dellar@maths.ox.ac.uk
http://people.maths.ox.ac.uk/dellar
Research supported by EPSRC ARF grant EP/E054625/1

Overview

Lattice Boltzmann approach to hydrodynamics

- Derivation of hydrodynamics from the kinetic theory of gases
- From continuum to discrete kinetic theory
- Space/time discretisation
- Moment equations and matrix collision operators

Lattice Boltzmann magnetohydrodynamics

- Including the Lorentz force: Maxwell stress in the fluid equilibrium
- Simulating the induction equation: vector-valued distribution functions Extensions:
- Braginskii magnetohydrodynamics
- Ohm's law with current-dependent resistivity

Electromagnetism

- Moment equations imply Maxwell's equations plus Ohm's law

Nine velocity lattice Boltzman equation

One may simulate the nearly incompressible Navier-Stokes equations (with viscosity controlled by τ) using the lattice Boltzmann equation $\bar{f}_{i}\left(\mathbf{x}+\boldsymbol{\xi}_{i} \Delta t, t+\Delta t\right)-\bar{f}_{i}(\mathbf{x}, t)=-\frac{\Delta t}{\tau+\Delta t / 2}\left(\bar{f}_{i}(\mathbf{x}, t)-f_{i}^{(0)}(\mathbf{x}, t)\right)$, on a nine velocity lattice $(i=0, \ldots, 8)$ in 2D with the equilibria

$$
f_{i}^{(0)}=w_{i} \rho\left(1+3 \boldsymbol{\xi}_{i} \cdot \mathbf{u}+\frac{9}{2}\left(\boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}-\frac{1}{3} \mathbf{I}\right): \mathbf{u} \mathbf{u}\right)
$$

where $\rho=\sum_{i} f_{i}$ and $\rho \mathbf{u}=\sum_{i} \boldsymbol{\xi}_{i} f_{i}$.
The weight factors w_{i} are

$$
w_{i}= \begin{cases}4 / 9, & \mathrm{i}=0 \\ 1 / 9, & \mathrm{i}=1,2,3,4 \\ 1 / 36, & \mathrm{i}=5,6,7,8\end{cases}
$$

and the nine lattice vectors $\boldsymbol{\xi}_{i}$ are:

Minion \& Brown (1997) benchmark

Roll-up of shear layers in Minion \& Brown (1997) test problem,

$$
\begin{aligned}
& u_{x}= \begin{cases}\tanh (\kappa(y-1 / 4)), & y \leq 1 / 2 \\
\tanh (\kappa(3 / 4-y)), & y>1 / 2\end{cases} \\
& u_{y}=\delta \sin (2 \pi(x+1 / 4)),
\end{aligned}
$$

with $\kappa=20, \delta=0.05$, and $\operatorname{Re}=1000$; so the solution remains well resolved

Modified Minion \& Brown (1997) problem for roll-up of shear layers.
$R e=10,000$ was marginal with $\kappa=80$ and $\delta=0.05$
on a 128×128 grid
$R e=30,000$ on 128×128 and larger grids.

Newton's 2nd law, following a blob of fluid:

$$
\rho \frac{d \mathbf{u}}{d t}=\mathbf{F}
$$

Change attention to a fixed point \mathbf{x} in space:

$$
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right)=\mathbf{F}
$$

Intrinsic nonlinearity, even when \mathbf{F} is linear (eg isothermal Newtonian fluids)

$$
\mathbf{F}=\nabla \cdot\left[-c_{\mathrm{s}}^{2} \rho \mathbf{I}+\mu\left\{(\nabla \mathbf{u})+(\nabla \mathbf{u})^{\top}\right\}\right]
$$

Boltzmann's equation from the kinetic theory of gases

$$
\partial_{t} f+\boldsymbol{\xi} \cdot \nabla f=C[f, f]
$$

Distribution function $f(\mathbf{x}, \boldsymbol{\xi}, t)$ instead of $\mathbf{u}(\mathbf{x}, t)$. Linear advection, but seven independent variables.

Newton's 2nd law, following a blob of fluid:

$$
\rho \frac{d \mathbf{u}}{d t}=\mathbf{F}
$$

Change attention to a fixed point \mathbf{x} in space:

$$
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right)=\mathbf{F}
$$

Intrinsic nonlinearity, even when \mathbf{F} is linear (eg isothermal Newtonian fluids)

$$
\mathbf{F}=\nabla \cdot\left[-c_{\mathrm{s}}^{2} \rho \mathbf{I}+\mu\left\{(\nabla \mathbf{u})+(\nabla \mathbf{u})^{\top}\right\}\right]
$$

Lattice Boltzmann fits here linear advection, few additional degrees of freedom

Boltzmann's equation from the kinetic theory of gases

$$
\partial_{t} f+\boldsymbol{\xi} \cdot \nabla f=C[f, f]
$$

Distribution function $f(\mathbf{x}, \boldsymbol{\xi}, t)$ instead of $\mathbf{u}(\mathbf{x}, t)$. Linear advection, but seven independent variables.

From (real) kinetic theory to fluid dynamics

Moments of $f(\mathbf{x}, \boldsymbol{\xi}, t)$ define functions of (\mathbf{x}, t),

$$
\rho(\mathbf{x}, t)=\int f(\mathbf{x}, \boldsymbol{\xi}, t) d \boldsymbol{\xi}, \quad \rho \mathbf{u}=\int \boldsymbol{\xi} f d \boldsymbol{\xi}, \quad \boldsymbol{\Pi}=\int \boldsymbol{\xi} \boldsymbol{\xi} f d \boldsymbol{\xi}
$$

Taking moments of Boltzmann's equation

$$
\partial_{t} f+\boldsymbol{\xi} \cdot \nabla f=C[f, f]
$$

leads to exact conservation laws for mass and momentum

$$
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0, \quad \partial_{t}(\rho \mathbf{u})+\nabla \cdot \boldsymbol{\Pi}=0
$$

(RHS vanish because collisions conserve microscopic mass and momentum.)
Momentum flux is not conserved by collisions. It evolves according to

$$
\partial_{t} \boldsymbol{\Pi}+\nabla \cdot\left(\int \boldsymbol{\xi} \boldsymbol{\xi} \boldsymbol{\xi} f d \boldsymbol{\xi}\right)=-\frac{1}{\tau}\left(\boldsymbol{\Pi}-\boldsymbol{\Pi}^{(0)}\right)
$$

where $\boldsymbol{\Pi}^{(0)}=\rho \mathbf{u} \mathbf{u}+\rho \theta \mathbf{I}$, as given by a Maxwell-Boltzmann distribution. An effective collision time τ may be calculated for approximations to $C[f, f]$. Hydrodynamics follows by exploiting $\tau \ll T$ (a macroscopic timescale).

Derivation of hydrodynamics

Given the moment equations

$$
\begin{gathered}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0, \quad \partial_{t}(\rho \mathbf{u})+\nabla \cdot \boldsymbol{\Pi}=0 \\
\partial_{t} \boldsymbol{\Pi}+\nabla \cdot \mathbf{Q}=-\frac{1}{\tau}\left(\boldsymbol{\Pi}-\boldsymbol{\Pi}^{(0)}\right)
\end{gathered}
$$

we derive hydrodynamics by seeking slowly varying solutions. We expand $\boldsymbol{\Pi}$, Q and all higher moments as series in τ,

$$
\boldsymbol{\Pi}=\boldsymbol{\Pi}^{(0)}+\tau \boldsymbol{\Pi}^{(0)}+\cdots, \quad \mathbf{Q}=\mathbf{Q}^{(0)}+\tau \mathbf{Q}^{(1)}+\cdots,
$$

and also expand the time derivative (multiple scales)

$$
\partial_{t}=\partial_{t_{0}}+\tau \partial_{t_{1}}+\cdots
$$

E.g. the viscous stress is given by

$$
\partial_{t_{0}} \boldsymbol{\Pi}^{(0)}+\nabla \cdot \mathbf{Q}^{(0)}=-\boldsymbol{\Pi}^{(1)}
$$

If we have the same moment system, and the same $\Pi^{(0)}$ and $Q^{(0)}$, it does not matter whether we started from the real Boltzmann equation.

What do we need from real kinetic theory?

We need $f \rightarrow f^{(0)}$ under collisions, and we need some moments of the equilibrium distributions:

$$
\begin{aligned}
\int f^{(0)} d \boldsymbol{\xi} & =\rho \\
\int \boldsymbol{\xi} f^{(0)} d \boldsymbol{\xi} & =\rho \mathbf{u} \\
\int \boldsymbol{\xi} \boldsymbol{\xi} f^{(0)} d \boldsymbol{\xi} & =\mathbf{\Pi}^{(0)}=\rho \mathbf{u} \mathbf{u}+\theta \rho \mathbf{I} \\
\int \boldsymbol{\xi} \boldsymbol{\xi} \boldsymbol{\xi} f^{(0)} d \boldsymbol{\xi} & =\mathrm{Q}^{(0)}
\end{aligned}
$$

where

$$
Q_{\alpha \beta \gamma}^{(0)}=\theta \rho\left(u_{\alpha} \delta_{\beta \gamma}+u_{\beta} \delta_{\gamma \alpha}+u_{\gamma} \delta_{\alpha \beta}\right)+\partial_{\alpha}\left(\rho u_{\alpha} u_{\beta} u_{\gamma}\right)
$$

All these things we can calculate from

$$
f^{(0)}=\rho(2 \pi \theta)^{-3 / 2} \exp \left(-|\boldsymbol{\xi}-\mathbf{u}|^{2} /(2 \theta)\right)
$$

Simplifying the kinetic theory of gases

Replace $C[f, f]$ with the Bhatnagar-Gross-Krook (BGK) collision operator,

$$
\partial_{t} f+\boldsymbol{\xi} \cdot \nabla f=-\frac{1}{\tau}\left(f-f^{(0)}\right)
$$

f relaxes towards $f^{(0)}$ with a single relaxation time τ. Mass, momentum (and energy) are conserved, provided the ρ, \mathbf{u}, θ in $f^{(0)}$ are calculated from f.
We now have to supply $f^{(0)}$ explicitly,
$f^{(0)}=\rho(2 \pi \theta)^{-3 / 2} \exp \left[-|\boldsymbol{\xi}-\mathbf{u}|^{2} /(2 \theta)\right]$
Discretise the velocity space so that $\boldsymbol{\xi}$ is confined to a finite set $\boldsymbol{\xi}_{0}, \ldots, \boldsymbol{\xi}_{N}$, such as the 9 shown: $f(\mathbf{x}, \boldsymbol{\xi}, t)$ is replaced by a set of $f_{i}(\mathbf{x}, t)$.

Integral moments are replaced by sums,

$$
\rho=\sum_{i} f_{i}, \quad \rho \mathbf{u}=\sum_{i} \boldsymbol{\xi}_{i} f_{i}, \quad \boldsymbol{\Pi}=\sum_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} f_{i} .
$$

All continuum calculations, rewritten using moments, go through unchanged.

Integration of the discrete Boltzmann equation in space and time

$$
\partial_{t} f_{i}+\boldsymbol{\xi}_{i} \cdot \nabla f_{i}=\Omega_{i}, \text { where } \Omega_{i}=-\frac{1}{\tau}\left(f_{i}-f_{i}^{(0)}\right)
$$

Integrate along characteristics for time Δt,

$$
f_{i}\left(\mathbf{x}+\boldsymbol{\xi}_{i} \Delta t, t+\Delta t\right)-f_{i}(\mathbf{x}, t)=\int_{0}^{\Delta t} \Omega_{i}\left(\mathbf{x}+\boldsymbol{\xi}_{i} s, t+s\right) d s
$$

The left hand side is exact.
Approximating the integral by the trapezium rule (2nd order accuracy) gives

$$
f_{i}\left(\mathbf{x}+\boldsymbol{\xi}_{i} \Delta t, t+\Delta t\right)-f_{i}(\mathbf{x}, t)=\frac{1}{2} \Delta t\left(\Omega_{i}\left(\mathbf{x}+\boldsymbol{\xi}_{i} \Delta t, t+\Delta t\right)\right.
$$

[He, Chen, Doolen 1998]

$$
\left.+\Omega_{i}(\mathbf{x}, t)\right)+O\left(\Delta t^{3}\right)
$$

Defining $\bar{f}_{i}\left(\mathbf{x}^{\prime}, t^{\prime}\right)=f_{i}\left(\mathbf{x}^{\prime}, t^{\prime}\right)-\frac{1}{2} \Delta t \Omega_{i}\left(\mathbf{x}^{\prime}, t^{\prime}\right)$ gives the explicit formula $\bar{f}_{i}\left(\mathbf{x}+\boldsymbol{\xi}_{i} \Delta t, t+\Delta t\right)-\bar{f}_{i}(\mathbf{x}, t)=-\frac{\Delta t}{\tau+\Delta t / 2}\left(\bar{f}_{i}(\mathbf{x}, t)-f_{i}^{(0)}(\mathbf{x}, t)\right)$.
Reconstruct $f_{i}^{(0)}$ from $\rho=\sum_{i} f_{i}=\sum_{i} \bar{f}_{i}$ and $\rho \mathbf{u}=\sum_{i} \boldsymbol{\xi}_{i} f_{i}=\sum_{i} \boldsymbol{\xi}_{i} \bar{f}_{i}$.

Lattice Boltzmann versus discrete Boltzmann

Hydrodynamics follows from slowly varying solutions to the discrete Boltzmann equation

$$
\partial_{t} f_{i}+\boldsymbol{\xi}_{i} \cdot \nabla f_{i}=-\frac{1}{\tau}\left(f_{i}-f_{i}^{(0)}\right)
$$

This is a partial differential equation (PDE) in space and time.
Only the particle velocities $\boldsymbol{\xi}_{i}$ are discrete in the "discrete Boltzmann equation". The lattice Boltzmann equation is an approximation to this PDE,

$$
\bar{f}_{i}\left(\mathbf{x}+\boldsymbol{\xi}_{i} \Delta t, t+\Delta t\right)-\bar{f}_{i}(\mathbf{x}, t)=-\frac{\Delta t}{\tau+\Delta t / 2}\left(\bar{f}_{i}(\mathbf{x}, t)-f_{i}^{(0)}(\mathbf{x}, t)\right)
$$

For spatially uniform solutions, this last equation implies

$$
\left(\bar{f}_{i}(t+\Delta t)-f_{i}^{(0)}(t)\right)=-\left(\frac{1-2 \tau / \Delta t}{1+2 \tau / \Delta t}\right)\left(\bar{f}_{i}(t)-f_{i}^{(0)}(t)\right)
$$

For $\tau \ll \Delta t$ the \bar{f}_{i} oscillate around equilibrium from timestep to timestep.
In the discrete Boltzmann equation, $f_{i} \rightarrow f_{i}^{(0)}$ monotonically.

Example with $\Delta t=200 \tau$. The LBE tracks slowly-varying solutions of the DBE, but with super-imposed oscillations.

Numerical example for Burgers equation

Computation performed using 1024 points with $\tau=0.01$ in lattice units. Ran on a "Type II" NMR quantum computer with 16 points [Chen et al. 2006].

MATLAB implementation for one timestep

$\partial_{t} f_{ \pm}+\xi_{ \pm} \partial_{x} f_{ \pm}=-\frac{1}{\tau}\left(f_{ \pm}-f_{ \pm}^{(0)}\right)$ with $f_{ \pm}^{(0)}=\frac{1}{2}\left(\rho \pm \rho^{2}\right), \xi_{ \pm}= \pm 1$.
First compute $\rho=f_{-}+f_{+}$,
$r=f m+f p ;$
Then compute the equilibria $f_{ \pm}$from ρ,
feqm $=(1 / 2) *\left(r-r .{ }^{\wedge} 2\right) ;$
feqp $=(1 / 2) *(r+r . \wedge 2)$;
Next perform collisions, $f_{ \pm} \mapsto f_{ \pm}+\left(f_{ \pm}^{(0)}-f_{ \pm}\right) /\left(\tau+\frac{1}{2}\right)$,
$\mathrm{fm}=\mathrm{fm}+($ feqm-fm)./(0.5+tau);
$f p=f p+(f e q p-f p) . /(0.5+t a u) ;$
Finally perform advection by shifting the values onto the next gridpoint,

```
fm = circshift(fm',-1)';
fp = circshift(fp',1)';
```


Moment equations and matrix collision operators

From the discrete Boltzmann equation we derived
$\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0, \partial_{t}(\rho \mathbf{u})+\nabla \cdot \boldsymbol{\Pi}=0, \partial_{t} \boldsymbol{\Pi}+\nabla \cdot \mathbf{Q}=-\frac{1}{\tau}\left(\boldsymbol{\Pi}-\boldsymbol{\Pi}^{(0)}\right)$.
In 2D the moments ρ, \mathbf{u}, Π contain 6 degrees of freedom, but the lattice has 9 .
We define 2 more moments by

$$
\begin{aligned}
N & =\sum_{i} g_{i} f_{i} \\
\mathbf{J} & =\sum_{i} g_{i} \boldsymbol{\xi}_{i} f_{i}
\end{aligned}
$$

where

$$
g_{i}=(1,-2,-2,-2,-2,4,4,4,4)
$$

Now we can reconstruct the distribution functions from these moments,

$$
f_{i}=w_{i}\left(\rho+3(\rho \mathbf{u}) \cdot \boldsymbol{\xi}_{i}+\frac{9}{2}\left[\mathbf{\Pi}-\frac{1}{3} \rho \mathbf{I}\right]:\left[\boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}-\frac{1}{3} \mathbf{I}\right]+g_{i}\left[\frac{1}{4} N+\frac{3}{8} \boldsymbol{\xi}_{i} \cdot \mathbf{J}\right]\right) .
$$

Equivalent moment system

More generally, we allow a matrix collision operator

$$
\partial_{t} f_{i}+\boldsymbol{\xi}_{i} \cdot \nabla f_{i}=-\Omega_{i j}\left(f_{j}-f_{j}^{(0)}\right)
$$

designed to give a moment system of the form

$$
\begin{aligned}
\partial_{t} \rho & +\nabla \cdot(\rho \mathbf{u})=0 \\
\partial_{t}(\rho \mathbf{u}) & +\nabla \cdot \boldsymbol{\Pi}=0 \\
\partial_{t} \boldsymbol{\Pi} & +\nabla \cdot\left(\sum_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} f_{i}\right)=-\frac{1}{\tau}\left(\boldsymbol{\Pi}-\mathbf{\Pi}^{(0)}\right), \\
\partial_{t} \mathbf{J} & +\nabla \cdot\left(\sum_{i} g_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} f_{i}\right)=-\frac{1}{\tau_{J}}\left(\mathbf{J}-\mathbf{J}^{(0)}\right), \\
\partial_{t} N & +\nabla \cdot \mathbf{J}=-\frac{1}{\tau_{N}}\left(N-N^{(0)}\right) .
\end{aligned}
$$

The two sub-systems for $\rho, \mathbf{u}, \boldsymbol{\Pi}$, and for N, \mathbf{J} are coupled through the higher moments in the equations for $\boldsymbol{\Pi}$ and \mathbf{J}. Project them onto the basis ...

Discrete implementation

After discretising by integrating along characteristics, the post-collisional moments are

$$
\begin{aligned}
\overline{\boldsymbol{\Pi}}^{\prime} & =\overline{\boldsymbol{\Pi}}-\frac{1}{\tau+\frac{1}{2} \Delta t}\left(\overline{\boldsymbol{\Pi}}-\boldsymbol{\Pi}^{(0)}\right), \\
\bar{N}^{\prime} & =\bar{N}-\frac{1}{\tau_{N}+\frac{1}{2} \Delta t}\left(\bar{N}-N^{(0)}\right), \\
\overline{\mathbf{J}}^{\prime} & =\overline{\mathbf{J}}-\frac{1}{\tau_{J}+\frac{1}{2} \Delta t}\left(\overline{\mathbf{J}}-\mathbf{J}^{(0)}\right),
\end{aligned}
$$

from which we can reconstruct the post-collision distribution functions, $f_{i}^{\prime}=w_{i}\left(\rho+3(\rho \mathbf{u}) \cdot \boldsymbol{\xi}_{i}+\frac{9}{2}\left[\overline{\boldsymbol{\Pi}}^{\prime}-\frac{1}{3} \rho \mathbf{I}\right]:\left[\boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}-\frac{1}{3} \mathbf{I}\right]+g_{i}\left[\frac{1}{4} \bar{N}^{\prime}+\frac{3}{8} \boldsymbol{\xi}_{i} \cdot \overline{\mathbf{J}}^{\prime}\right]\right)$.

Choosing different values for τ, τ_{N}, τ_{J}, gives big gains in stability.
For example, taking $\tau_{N}=\tau_{J}=\frac{1}{2} \Delta t$ sets $\bar{N}^{\prime}=N^{(0)}$ and $\overline{\mathbf{J}}^{\prime}=\mathbf{J}^{(0)}$.

Magnetohydrodynamics

Magnetohydrodynamics (MHD)

MHD is a single fluid description of media containing at least two kinds of particles with opposite charges: liquid metals, electrolytes, ionised gases.

Applications to interiors of planets, stars, "space weather" etc. Nuclear fusion, industrial processing of liquid metals, producing aluminium, alloys ...

Maxwell's equations
$-c^{-2} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\mathbf{J}, \quad \partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0, \quad \nabla \cdot \mathbf{B}=0, \quad \nabla \cdot \mathbf{E}=\rho_{c} / \epsilon_{0}$
For non-relativistic $(\boldsymbol{v} \ll c)$ and quasi-neutral ($\rho_{c} \ll 1$) phenomena we approximate by

$$
\partial_{t} \mathbf{B}=-\nabla \times \mathbf{E}, \quad \nabla \cdot \mathbf{B}=0, \quad \mathbf{J}=\nabla \times \mathbf{B}
$$

The electric field \mathbf{E} is now just the flux of \mathbf{B} in a conservation law

$$
\partial_{t} \mathbf{B}+\nabla \cdot \boldsymbol{\Lambda}=0, \text { where } \Lambda_{\alpha \beta}=-\epsilon_{\alpha \beta \gamma} E_{\gamma}
$$

Ohm's law - the electron momentum equation

Constitutive relation for \mathbf{E},

$$
\begin{array}{rlrl}
\mathbf{E}+\mathbf{u} \times \mathbf{B}= & & \eta \mathbf{J} & \\
& & \text { resistivity } \\
& -\alpha \mathbf{J} \times \mathbf{B} & & \text { Hall effect } \\
& -\beta(\mathbf{J} \times \mathbf{B}) \times \mathbf{B} & & \text { ambipolar diffusion } \\
& +\gamma d \mathbf{J} / d t & & \text { electron inertia } \\
& + \text { electron pressure }+ & \text { electron viscosity }+\cdots
\end{array}
$$

which emerges from multispecies kinetic theory for dilute plasmas.
Simplest common form is $\mathbf{E}+\mathbf{u} \times \mathbf{B}=\eta \mathbf{J}$,

$$
\begin{aligned}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u}) & =0 \\
\partial_{t}(\rho \mathbf{u})+\nabla \cdot(p \mathbf{I}+\rho \mathbf{u} \mathbf{u}) & =\mathbf{J} \times \mathbf{B}+\nabla \cdot(\mu \mathbf{S}) \\
\partial_{t} \mathbf{B} & =\nabla \times(\mathbf{u} \times \mathbf{B}-\eta \nabla \times \mathbf{B}) .
\end{aligned}
$$

Compressible resistive MHD equations also include the Lorentz force $\mathbf{J} \times \mathbf{B}$.

Including the Lorentz force via the Maxwell stress

Lorentz force $\mathbf{J} \times \mathbf{B}=-\nabla \cdot \widetilde{\mathrm{M}}$ for $\widetilde{M}_{\alpha \beta}=\frac{1}{2} \delta_{\alpha \beta}|\mathbf{B}|^{2}-B_{\alpha} B_{\beta}$.
Rewrite the inviscid momentum equation using the Maxwell stress \widetilde{M},

$$
\partial_{t}(\rho \mathbf{u})+\nabla \cdot\left(p \mathbf{I}+\rho \mathbf{u} \mathbf{u}+\frac{1}{2} B^{2} \mathbf{I}-\mathbf{B B}\right)=0
$$

Putting this desired second moment of the equilibrium distributions $f_{i}^{(0)}$,

$$
\boldsymbol{\Pi}^{(0)}=\left(\theta \rho+\frac{1}{2} B^{2}\right) \mathbf{I}+\rho \mathbf{u} \mathbf{u}-\mathbf{B B}
$$

into the general formula

$$
f_{i}^{(0)}=w_{i}\left(\rho\left[2-\frac{3}{2}\left|\boldsymbol{\xi}_{i}\right|^{2}\right]+3(\rho \mathbf{u}) \cdot \boldsymbol{\xi}_{i}+\frac{9}{2} \boldsymbol{\Pi}^{(0)}: \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}-\frac{3}{2} \operatorname{Tr} \boldsymbol{\Pi}^{(0)}\right)
$$

gives suitable two-dimensional equilibria (the same as before when $\mathbf{B}=0$.)
We only use \mathbf{B} at lattice points. In the induction equation we will only use \mathbf{u} at lattice points. The two are coupled only through macroscopic variables.

The magnetic induction equation

The first moment of a Boltzmann equation

$$
\partial_{t} f_{i}+\boldsymbol{\xi}_{i} \cdot \nabla f_{i}=\mathcal{C}\left[f_{i}\right]
$$

gives

$$
\partial_{t} \sum_{i=0}^{N} \boldsymbol{\xi}_{i} f_{i}+\nabla \cdot\left(\sum_{i=0}^{N} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} f_{i}\right)=\sum_{i=0}^{N} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} \mathcal{C}\left[f_{i}\right]=0
$$

Thus the momentum vector $\rho \mathbf{u}$ evolves as

$$
\partial_{t}(\rho \mathbf{u})+\nabla \cdot \boldsymbol{\Pi}=0
$$

where $\boldsymbol{\Pi}=\sum_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} f_{i}$ is symmetric by construction.
By contrast, the evolution equation for \mathbf{B} is

$$
\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0, \quad \text { or } \quad \partial_{t} \mathbf{B}+\nabla \cdot \Lambda=0
$$

where Λ is antisymmetric and defined by $\Lambda_{\alpha \beta}=-\epsilon_{\alpha \beta \gamma} E_{\gamma}$.
One cannot derive the induction equation from the usual Boltzmann equation.

Bi-directional streaming

First approach to lattice gas and lattice Boltzmann magnetohydrodynamics used bi-directional streaming in 2D with two sets of velocities, $\boldsymbol{v}_{a}^{\sigma}$ and \mathbf{B}_{a}^{σ},

$$
\rho \boldsymbol{v}=\sum_{a, \sigma} \boldsymbol{v}_{a}^{\sigma} f_{a}^{\sigma}, \quad \rho \mathbf{B}=\sum_{a, \sigma} \mathbf{B}_{a}^{\sigma} f_{a}^{\sigma}
$$

[Montgomery \& Doolen 1987, Chen et al. 1991, Martínez et al. 1994] The electric field tensor

$$
\boldsymbol{\Lambda}=\sum_{a, \sigma} \boldsymbol{v}_{a}^{\sigma} \mathbf{B}_{a}^{\sigma} f_{a}^{\sigma}
$$

is no longer symmetric because $\boldsymbol{v}_{a}^{\sigma}$ and \mathbf{B}_{a}^{σ} are different vectors.
Recent work of Mendoza \& Munoz (2008) in 3D used three sets of velocities related by $\mathbf{B}_{a}^{\sigma}=\boldsymbol{v}_{a}^{\sigma} \times \mathbf{E}_{a}^{\sigma}$.

Also Succi et al. (1991) in 2D using a flux function and finite differences.

Vector Boltzmann equation for the magnetic field

Postulate some vector-valued distribution functions evolving by (PJD 2002)

$$
\partial_{t} \mathbf{g}_{i}+\boldsymbol{\xi}_{i} \cdot \nabla \mathbf{g}_{i}=-\frac{1}{\tau_{\mathrm{b}}}\left(\mathbf{g}_{i}-\mathbf{g}_{i}^{(0)}\right)
$$

Define the magnetic field by $\mathbf{B}=\sum_{i} \mathbf{g}_{i}, \quad$ and suppose that $\sum_{i} \mathbf{g}_{i}^{(0)}=\mathbf{B}$.
Summing the top equation gives

$$
\partial_{t} \mathbf{B}+\nabla \cdot \boldsymbol{\Lambda}=0
$$

with an electric field tensor defined by

$$
\Lambda_{\alpha \beta}=\sum_{i} \xi_{i \alpha} g_{i \beta}
$$

Λ in turn evolves according to

$$
\partial_{t} \boldsymbol{\Lambda}+\nabla \cdot \mathrm{M}=-\frac{1}{\tau_{\mathrm{b}}}\left(\boldsymbol{\Lambda}-\boldsymbol{\Lambda}^{(0)}\right), \text { where } M_{\gamma \alpha \beta}=\sum_{i} \xi_{i \gamma} \xi_{i \alpha} g_{i \beta}
$$

Multiple-scales expansion

By analogy with hydrodynamics, we pose multiple-scales expansions of

$$
\mathbf{g}_{i}=\mathbf{g}_{i}^{(0)}+\tau_{\mathrm{b}} \mathbf{g}_{i}^{(1)}+\cdots, \partial_{t}=\partial_{t_{0}}+\tau_{\mathrm{b}} \partial_{t_{1}}+\cdots
$$

with the solvability conditions

$$
\sum_{i=0}^{N} \mathbf{g}_{i}^{(n)}=0 \text { for } n=1,2, \ldots
$$

This is equivalent to expanding

$$
\boldsymbol{\Lambda}=\boldsymbol{\Lambda}^{(0)}+\tau_{\mathrm{b}} \boldsymbol{\Lambda}^{(1)}+\ldots, \quad \mathrm{M}=\mathrm{M}^{(0)}+\tau_{\mathrm{b}} \mathrm{M}^{(1)}+\cdots
$$

while leaving \mathbf{B} unexpanded.
Choosing $\Lambda_{\alpha \beta}^{(0)}=u_{\alpha} B_{\beta}-B_{\alpha} u_{\beta}$ gives ideal MHD at leading order,

$$
\partial_{t} \mathbf{B}+\nabla \cdot \boldsymbol{\Lambda}^{(0)}=0 \quad \Leftrightarrow \quad \partial_{t} \mathbf{B}=\nabla \times(\mathbf{u} \times \mathbf{B}) .
$$

Expansion of the electric field

The equilibria $g_{i \beta}^{(0)}=w_{i}\left[B_{\beta}+\theta^{-1} \xi_{i \alpha} \Lambda_{\alpha \beta}^{(0)}\right]$ have the necessary moments,

$$
\sum_{i=0}^{N} g_{i \beta}^{(0)}=B_{\beta}, \quad \sum_{i=0}^{N} \xi_{i \alpha} g_{i \beta}^{(0)}=\Lambda_{\alpha \beta}^{(0)} .
$$

The first correction $\boldsymbol{\Lambda}^{(1)}$ is given by

$$
\partial_{t_{0}} \boldsymbol{\Lambda}^{(0)}+\nabla \cdot \mathbf{M}^{(0)}=-\boldsymbol{\Lambda}^{(1)}
$$

The equilibria above give $M_{\gamma \alpha \beta}^{(0)}=\theta \delta_{\gamma \alpha} B_{\beta}$, so (θ is the lattice constant)

$$
\Lambda_{\alpha \beta}^{(1)}=-\theta \partial_{\alpha} B_{\beta}+O\left(\mathrm{Ma}^{3}\right)
$$

This scheme thus solves the resistive MHD induction equation in the form

$$
\partial_{t} \mathbf{B}=\nabla \times(\mathbf{u} \times \mathbf{B})+\eta \nabla^{2} \mathbf{B}, \text { with } \eta=\theta \tau_{\mathrm{b}} .
$$

We also have $\mathbf{J}=\nabla \times \mathbf{B}$ available from $\epsilon_{\alpha \beta \gamma} \Lambda_{\alpha \beta}^{(1)}=\theta J_{\gamma}$.

Lattices for the magnetic distribution functions

Although the \mathbf{g}_{i} are vectors while the f_{i} were scalars, we need fewer velocities for the magnetic distribution functions. (We do not need $\sum_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} \mathbf{g}_{i .}$)

D2Q9 plus two D2Q5

D3Q15 plus three D3Q7

Picture from M. J. Pattison et al. (2008) Fusion Eng. \& Design 83 557-572

M.J. Pattison et al. / Fusion Engineering and Design 83 (2008) 557-572

Fig. 19. Induced field $\left(B_{x}\right)$ and velocity (U) plots on a cross-section of a thermal blanket module at $H a=100$.

Picture from G. Vahala et al. (2008) Commun. Comput. Phys. 4 624-646

vorticity isosurface

current isosurface

vorticity isosurface

current isosurface

vorticity isosurface

current isosurface
1800^{3} simulation run on an SGI Altix with 9000 cores

Matrix (MRT) collision operators in magnetohydrodynamics

We may improve numerical stability by setting the "ghost" degrees of freedom other than $\rho, \rho \mathbf{u}$ and $\boldsymbol{\Pi}$ to equilibrium at every timestep. We relax the momentum flux towards its equilbrium value $\Pi^{(0)}$,

$$
\Pi^{\prime}=\boldsymbol{\Pi}-\frac{\Delta t}{\tau+\frac{1}{2} \Delta t}\left(\boldsymbol{\Pi}-\Pi^{(0)}\right),
$$

then reconstruct the post-collision distribution functions f_{i}^{\prime} from ρ, \mathbf{u} and $\boldsymbol{\Pi}^{\prime}$

$$
f_{i}^{\prime}=w_{i}\left[\rho\left(2-\frac{3}{2}\left|\boldsymbol{\xi}_{i}\right|^{2}\right)+3(\rho \mathbf{u}) \cdot \boldsymbol{\xi}_{i}+\frac{9}{2} \boldsymbol{\Pi}^{\prime}: \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}-\frac{3}{2} \operatorname{Tr} \boldsymbol{\Pi}^{\prime}\right]
$$

Collisions conserve ρ and \mathbf{u} so there are no tildes on these variables. Finally, we stream the post-collision distribution functions by setting

$$
\bar{f}_{i}\left(\mathbf{x}+\boldsymbol{\xi}_{i} \Delta t, t+\Delta t\right)=f_{i}^{\prime}(\mathbf{x}, t) .
$$

The magnetic field only enters through the definition of $\Pi^{(0)}$, everything else is as it would be in pure hydrodynamics. [cf Pattison et al. 2008, Riley et al. 2008].

Braginskii magnetohydrodynamics

Braginskii magnetohydrodynamics

In a strongly magnetised plasmas the particles are tied to magnetic field lines.

The effective mean free path perpendicular to field lines is the gyroradius. Mixing length theory gives a viscous stress aligned with the magnetic field,

$$
\Pi_{\mathrm{visc}} \approx-2 \mu_{\|} \hat{\mathbf{b}} \hat{\mathbf{b}} \hat{\mathbf{b}} \hat{\mathbf{b}}: \nabla \mathbf{u}
$$

where $\hat{\mathbf{b}}=\mathbf{B} /|\mathbf{B}|$. Derived from kinetic theory by Braginskii (1965).

A simple model - parallel and perpendicular viscosities

Regularise Braginskii's (1965) leading order theory with a perpendicular viscosity $\mu_{\perp} \ll \mu_{\|}$. Write the stress as

$$
\Pi_{\mathrm{visc}}=-\left(\mu_{\|}-\mu_{\perp}\right) \hat{\mathbf{b}} \hat{\mathbf{b}} \hat{\mathbf{b}} \hat{\mathbf{b}}: \mathbf{S}-\mu_{\perp} \mathrm{S},
$$

where $S=\nabla \mathbf{u}+(\nabla \mathbf{u})^{\top}$.
In axes with the first axis aligned with the direction $\hat{\mathbf{b}}$,

$$
\Pi_{\mathrm{visc}}=-\left(\begin{array}{cccc}
\mu_{\|} & & & \\
& \mu_{\perp} & & \\
& & \ddots & \\
& & & \mu_{\perp}
\end{array}\right)\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{\top}\right) .
$$

Similar to liquid crystals, except $\mu_{\perp} \ll \mu_{\|}$instead of $\mu_{\perp} \sim \mu_{\|}$.

Implementation

Implement by applying a larger relaxation time to $\hat{\mathrm{b}} \hat{\mathrm{b}}: \Pi$ than to the rest of Π.
Evaluate $\boldsymbol{\Pi}^{(0)}$ from the formula

$$
\boldsymbol{\Pi}^{(0)}=\left(\theta \rho+\frac{1}{2} B^{2}\right) \mathbf{I}+\rho \mathbf{u} \mathbf{u}-\mathbf{B B}
$$

Construct the post-collision stress Π^{\prime} using

$$
\begin{aligned}
\Pi^{\prime}=\boldsymbol{\Pi} & -\left(\boldsymbol{\Pi}-\boldsymbol{\Pi}^{(0)}\right) \frac{\Delta t}{\tau_{\perp}+\frac{1}{2} \Delta t} \\
& -\hat{\mathbf{b}} \hat{\mathbf{b}}\left(\boldsymbol{\Pi}: \hat{\mathbf{b}} \hat{\mathbf{b}}-\boldsymbol{\Pi}^{(0)}: \hat{\mathbf{b}} \hat{\mathbf{b}}\right)\left(\frac{\Delta t}{\tau_{\|}+\frac{1}{2} \Delta t}-\frac{\Delta t}{\tau_{\perp}+\frac{1}{2} \Delta t}\right)
\end{aligned}
$$

where $\tau_{\|}=\theta^{-1} \mu_{\|}$and $\tau_{\perp}=\theta^{-1} \mu_{\perp}$.
Reconstruct the post-collision distribution functions from the moments using

$$
f_{i}^{\prime}=w_{i}\left[\rho\left(2-\frac{3}{2}\left|\boldsymbol{\xi}_{i}\right|^{2}\right)+3 \rho \mathbf{u} \cdot \boldsymbol{\xi}_{i}+\frac{9}{2} \boldsymbol{\Pi}^{\prime}: \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}-\frac{3}{2} \operatorname{Tr} \boldsymbol{\Pi}^{\prime}\right] .
$$

Stream as usual.

Code fragment

```
P0xx = (1/3)*rho+0.5*bsq + rho*ux*ux-box*bx
P0xy = rho*ux*uy-bx*by
POyy = (1/3)*rho+0.5*bsq + rho*uy*uy-by*by
```

Pb.b $=(\mathrm{b} x$ hat $* * 2 * \mathrm{Pxx}+2 *$ bxhat $*$ byhat $*$ Pxy + byhat $* * 2 *$ Pyy)
P0.bb $=(b x h a t * * 2 * P 0 x x+2 * b x h a t * b y h a t * P 0 x y+b y h a t * * 2 * P 0 y y)$
Pb.bt $=-($ P.b.b - P0.b.b $) *(1 /(p t a u+0.5)-1 /(t a u+0.5))$
$P x x=P x x-(P x x-P 0 x x) /(t a u+0.5)+b x h a t * * 2 * P b b t$
$P x y=P x y-(P x y-P 0 x y) /(t a u+0.5)+b x h a t * b y h a t * P b . b t$
Pyy $=$ Pyy $-($ Pyy-P0yy) $/($ tau+0.5) + byhat** $2 *$ Pbbt
do $k=0,8$
$f(k, i, j)=w(k) *(2 * r h o-(3 / 2) * r h o *(c x(k) * * 2+c y(k) * * 2)$
+3 *rho* (ux*cx (k) +uy*cy (k)) -(3/2)* (Pxx+Pyy)
$+(9 / 2) *(P x x * c x(k) * * 2+2 * P x y * c x(k) * c y(k)+P y y * c y(k) * * 2))$
enddo

Hartmann flow / planar channel flow

Planar fields $\mathbf{u}=U_{0}(0, v(x), 0)$ and $\mathbf{B}=B_{0}(1, b(x), 0)$.
Magnetic field direction is $\hat{\mathbf{b}}=\frac{(1, b, 0)}{\sqrt{1+b^{2}}}$. Viscosity ratio $\epsilon=\left(\mu_{\perp} / \mu_{\|}\right)^{1 / 2}$.
Only nonzero components of S are $S_{x y}=S_{y x}=U_{0} \frac{d u}{d x}$.

Hartmann flow with Braginskii's anisotropic viscosity - magnetic field

Hartmann flow with Braginskii's anisotropic viscosity - velocity

Convergence under grid refinement ($\epsilon=0.1$)

Reference solutions from the TWPBVPC ODE solver [Cash \& Mazzia 2005]

Current-dependent resistivity

Current-dependent resistivity

Slightly extended Ohm's law, $\mathbf{E}+\mathbf{u} \times \mathbf{B}=\eta(|\mathbf{J}|) \mathbf{J} \quad$ [eg Otto 2001 JGR] The resistivity $\eta(|\mathbf{J}|)$ is allowed to depend on the current $|\mathbf{J}|$.
[The viscosity in a generalised Newtonian fluid depends on the strain rate.] Seems easy to implement - make τ depend on $|\mathbf{J}|$ obtained from $\Lambda^{(1)}$. [As in Aharonov \& Rothman (1993), Hou et al. (1996), many others ...] This does not work. What we are really simulating is

$$
\partial_{t} \mathbf{B}=\nabla \times(\mathbf{u} \times \mathbf{B})+\nabla \cdot(\eta \nabla \mathbf{B})
$$

instead of

$$
\partial_{t} \mathbf{B}=\nabla \times(\mathbf{u} \times \mathbf{B})-\nabla \times(\eta \nabla \times \mathbf{B})
$$

We get a spurious $\nabla \eta$ term, which vanished before when $\eta=$ cst.
[Another discrepancy term always vanishes because $\nabla \cdot \mathbf{B}=0$.]

Specifying the collision operator using moments

Earlier, we postulated

$$
\partial_{t} \mathbf{g}_{i}+\boldsymbol{\xi}_{i} \cdot \nabla \mathbf{g}_{i}=-\frac{1}{\tau_{\mathrm{b}}}\left(\mathbf{g}_{i}-\mathbf{g}_{i}^{(0)}\right)
$$

and took moments to obtain equations like

$$
\partial_{t} \mathbf{B}+\nabla \cdot \boldsymbol{\Lambda}=0, \quad \partial_{t} \boldsymbol{\Lambda}+\nabla \cdot \mathbf{M}=-\frac{1}{\tau_{\mathrm{b}}}\left(\boldsymbol{\Lambda}-\boldsymbol{\Lambda}^{(0)}\right)
$$

Perhaps we could do better with a more general (non-BGK) collision operator.

We can specify a collision operator by its action on a basis of moments.

First we need a basis of moments ...

Moments of the D2Q5 scalar lattice

Lattice with $\boldsymbol{\xi}_{0}=0, \boldsymbol{\xi}_{1,3}= \pm \hat{\boldsymbol{x}}, \boldsymbol{\xi}_{2,4}= \pm \hat{\boldsymbol{y}}$.
The first five scalar moments are given by

$$
\begin{aligned}
\rho=\sum_{i=0}^{4} f_{i}, & m_{x} & =\sum_{i=0}^{4} \xi_{i x} f_{i}, & m_{y}
\end{aligned}=\sum_{i=0}^{4} \xi_{i y} f_{i}, ~ 子 r i=0 ~ \xi_{i x}=\sum_{i x}^{4} f_{i}, \quad \Pi_{y y}=\sum_{i=0}^{4} \xi_{i y} \xi_{i y} f_{i} .
$$

$\Pi_{x y}$ is identically zero, because $\xi_{i x} \xi_{i y}=0$ for every velocity in the lattice.

$$
\left(\begin{array}{c}
\rho \\
m_{x} \\
m_{y} \\
\Pi_{x x} \\
\Pi_{y y}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right) .
$$

This 5×5 matrix has full rank, so the above five moments form a basis.

Reconstructing the f_{i} from the moments
The f_{i} may be reconstructed from the moments $\rho, m_{x}, m_{y}, \boldsymbol{\Pi}_{x x}, \Pi_{y y}$ by inverting the previous 5×5 matrix,

$$
\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & -1 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{c}
\rho \\
m_{x} \\
m_{y} \\
\Pi_{x x} \\
\Pi_{y y}
\end{array}\right)
$$

Treating f_{0} as a special case, this reconstruction may be written compactly as

$$
f_{i}=\frac{1}{2}\left(\boldsymbol{\xi}_{i} \cdot \mathbf{m}+\boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}: \Pi\right) \text { for } i \neq 0, \quad f_{0}=\rho-\left(\Pi_{x x}+\Pi_{y y}\right)
$$

No choice of weights makes the moments $\rho, \Pi_{x x}, \Pi_{y y}$ mutually orthogonal.

Moment basis for D2Q5 MHD

Two components of the magnetic field,

$$
B_{x}=\sum_{i=0}^{4} g_{i x}, \quad \text { and } \quad B_{y}=\sum_{i=0}^{4} g_{i y}
$$

and four components of the electric field tensor,

$$
\Lambda_{x x}, \Lambda_{x y}, \Lambda_{y x}, \Lambda_{y y}, \quad \text { where } \quad \Lambda_{\alpha \beta}=\sum_{i=0}^{4} \xi_{i \alpha} g_{i \beta}
$$

The evolution equation for $\boldsymbol{\Lambda}$,

$$
\partial_{t} \boldsymbol{\Lambda}+\nabla \cdot \mathbf{M}=-\frac{1}{\tau}\left(\boldsymbol{\Lambda}-\boldsymbol{\Lambda}^{(0)}\right)
$$

involves the third rank tensor

$$
M_{\gamma \alpha \beta}=\sum_{i=0}^{4} \xi_{i \gamma} \xi_{i \alpha} g_{i \beta}
$$

but $\xi_{i \alpha} \xi_{i \gamma}=0$ when $\alpha \neq \gamma$.
This only leaves $M_{x x x}, M_{x x y}, M_{y y x}, M_{y y y}$ not identically zero.

Evolution of the higher moments

For any lattice,

$$
\partial_{t} M_{\gamma \alpha \beta}+\partial_{\mu} N_{\mu \gamma \alpha \beta}=-\frac{1}{\tau}\left(M_{\gamma \alpha \beta}-M_{\gamma \alpha \beta}^{(0)}\right),
$$

The fourth rank tensor N has components

$$
N_{\mu \gamma \alpha \beta}=\sum_{i=0}^{N} \xi_{i \mu} \xi_{i \gamma} \xi_{i \alpha} g_{i \beta}
$$

Specialising to the D2Q5 lattice, $\xi_{i \mu} \xi_{i \gamma} \xi_{i \alpha}=0$ unless $\mu=\gamma=\alpha$.

$$
\begin{aligned}
& N_{x x x x}=\sum_{i=0}^{4} \xi_{i x} g_{i x}=\Lambda_{x x}, \quad N_{x x x y}=\sum_{i=0}^{4} \xi_{i x} g_{i y}=\Lambda_{x y} \\
& N_{y y y x}=\sum_{i=0}^{4} \xi_{i y} g_{i x}=\Lambda_{y x}, \quad N_{y y y y}=\sum_{i=0}^{4} \xi_{i y} g_{i y}=\Lambda_{y y}
\end{aligned}
$$

with all other components vanishing.
We therefore have (no implied summation on α)

$$
\partial_{t} M_{\alpha \alpha \beta}+\partial_{\alpha} \Lambda_{\alpha \beta}=-\frac{1}{\tau}\left(M_{\alpha \alpha \beta}-M_{\alpha \alpha \beta}^{(0)}\right)
$$

which makes a closed system for $\mathbf{B}, \boldsymbol{\Lambda}$, and M .
(Similarly in 3D.)

Specifying the collision operator using moments

We postulated

$$
\partial_{t} \mathbf{g}_{i}+\boldsymbol{\xi}_{i} \cdot \nabla \mathbf{g}_{i}=-\frac{1}{\tau_{\mathrm{b}}}\left(\mathbf{g}_{i}-\mathbf{g}_{i}^{(0)}\right)
$$

and took moments to obtain equations like

$$
\partial_{t} \mathbf{B}+\nabla \cdot \boldsymbol{\Lambda}=0, \quad \partial_{t} \boldsymbol{\Lambda}+\nabla \cdot \mathbf{M}=-\frac{1}{\tau_{\mathrm{b}}}\left(\boldsymbol{\Lambda}-\mathbf{\Lambda}^{(0)}\right)
$$

Instead, we can specify the collision operator by its action on the moments.
In 2D, a basis of moments was given by

$$
B_{x}, B_{y}, \quad \Lambda_{x x}, \Lambda_{x y}, \Lambda_{y x}, \Lambda_{y y}, \quad M_{x x x}, M_{x x y}, M_{y y x}, M_{y y y}
$$

[four components vanish]
The $g_{i \beta}$ can be reconstructed using

$$
\begin{aligned}
g_{i \beta} & =\frac{1}{2}\left(\xi_{i \alpha} \Lambda_{\alpha \beta}+\xi_{i \gamma} \xi_{i \alpha} M_{\gamma \alpha \beta}\right) \text { for } i \neq 0 \\
g_{0 \beta} & =B_{\beta}-\left(M_{x x \beta}+M_{y y \beta}\right)
\end{aligned}
$$

[Like a Gross-Jackson collision operator in continuum kinetic theory.]

Decomposition of the Λ tensor

We also need to decompose Λ. We started with $\Lambda_{\alpha \beta}=-\epsilon_{\alpha \beta \gamma} E_{\gamma}$.
This made $\partial_{t} \mathbf{B}=-\nabla \times \mathbf{E}$ become $\partial_{t} \mathbf{B}+\nabla \cdot \boldsymbol{\Lambda}=0$.
In two dimensional MHD we expect $\left(\begin{array}{cc}\Lambda_{x x} & \Lambda_{x y} \\ \Lambda_{y x} & \Lambda_{y y}\end{array}\right)=\left(\begin{array}{cc}0 & -E_{z} \\ E_{z} & 0\end{array}\right)$.
$\Lambda_{\alpha \beta}^{(0)}=u_{\alpha} B_{\beta}-u_{\beta} B_{\alpha}$ is antisymmetric, consistent with the above.
However, $\Lambda_{\alpha \beta}^{(1)}=-\theta \tau \partial_{\alpha} B_{\beta}$ is not antisymmetric [cannot be made so].
We must treat Λ as a general rank-2 tensor, and decompose it into
$\Lambda=$ antisymmetric + isotropic + symmetric traceless
Isotropic part: $\operatorname{Tr}\left(\boldsymbol{\Lambda}^{(0)}+\boldsymbol{\Lambda}^{(1)}\right)=-\theta \tau \nabla \cdot \mathbf{B} \approx O\left(10^{-15}\right)$ (round-off error)
Antisymmetric part: electric field
Symmetric traceless part?

Colliding the electric field

For resistivity $\tau+\lambda$ we collide the antisymmetric part of Λ according to

$$
E_{z}^{\prime}=-\frac{\Delta t}{\tau+2 \lambda+\frac{1}{2} \Delta t}\left(E_{z}-E_{z}^{(0)}\right)
$$

(E_{z}^{\prime} is a post-collision value) and the symmetric part $\widetilde{\Lambda}$ according to

$$
\widetilde{\Lambda}^{\prime}=-\frac{\Delta t}{\tau+\frac{1}{2} \Delta t}\left(\widetilde{\Lambda}-\widetilde{\Lambda}^{(0)}\right)
$$

The post collision $\boldsymbol{\Lambda}$ tensor is thus

$$
\Lambda_{\alpha \beta}^{\prime}=\tilde{\Lambda}_{\alpha \beta}^{\prime}-\epsilon_{\alpha \beta \gamma} E_{\gamma}^{\prime}
$$

Finally, we reconstruct the \mathbf{g}_{i} from $\Lambda^{\prime}, \mathrm{M}^{\prime}$, and \mathbf{B} using

$$
\begin{aligned}
& g_{i \beta}=\frac{1}{2}\left(\xi_{i \alpha} \Lambda_{\alpha \beta}^{\prime}+\xi_{i \gamma} \xi_{i \alpha} M_{\gamma \alpha \beta}^{\prime}\right) \text { for } i \neq 0 \\
& g_{0 \beta}=B_{\beta}-\left(M_{x x \beta}^{\prime}+M_{y y \beta}^{\prime}+M_{z z \beta}^{\prime}\right)
\end{aligned}
$$

Current-dependent resistivity

We want to make the extra resistivity in $\tau+\lambda$ depend on the current \mathbf{J}.
We have $\mathbf{J}=\nabla \times \mathbf{B}$ from $J_{\gamma}=-\theta^{-1} \epsilon_{\gamma \alpha \beta} \Lambda_{\alpha \beta}^{(1)}$
In the \mathbf{E} notation,

$$
\mathbf{J}=\frac{1}{\theta} \mathbf{E}^{(1)}=\frac{1}{\theta} \frac{\Delta t}{\tau+2 \lambda+\frac{1}{2} \Delta t}\left(\mathbf{E}-\mathbf{E}^{(0)}\right)
$$

We want λ to be a function of \mathbf{J}, so we solve (in 2D)

$$
J_{z}\left(\tau+2 \lambda\left(J_{z}\right)+\frac{1}{2} \Delta t\right)=\frac{\Delta t}{\theta}\left(E_{z}-E_{z}^{(0)}\right)
$$

for J_{z} by Newton's method, then evaluate $\lambda\left(J_{z}\right)$.
[in 3D need $|\mathbf{J}|$]
This simulates the induction equation in the correct form

$$
\partial_{t} \mathbf{B}=\nabla \times(\mathbf{u} \times \mathbf{B})+\nabla \cdot\left(\eta_{0} \nabla \mathbf{B}\right)-\nabla \times\left(\left(\eta-\eta_{0}\right) \nabla \times \mathbf{B}\right)
$$

Hartmann flow with current-dependent resistivity

MHD analog of Poiseuille flow in a channel spanned by a magnetic field.

$\mathbf{u}=(0, v(x), 0)$ and $\mathbf{B}=\left(B_{0}, b(x), 0\right) \quad H a=B_{0} L /\left(\rho_{0} \nu \eta_{0}\right)^{1 / 2}$
Momentum $0=F+\rho_{0} \nu \frac{d^{2} v}{d x^{2}}+B_{0} \frac{d b}{d x}, \quad|\mathbf{J}|=\left|\frac{d b}{d x}\right|$
Induction $0=B_{0} \frac{d v}{d x}+\frac{d}{d x}\left[\eta\left(\frac{d b}{d x}\right) \frac{d b}{d x}\right]$.

Resistivity $\eta(J)=\eta_{0}\left(1+\left|J / J_{0}\right|^{n}\right)$ with $n=2$ and $J_{0}=0.6$.

$$
F=1, \nu=0.1, \rho=1, \eta_{0}=0.5, B_{0}=1, m_{x}=32, M a=\sqrt{3} / 100 .
$$

Orszag-Tang vortex without/with current-dependent resistivity

$$
\eta_{0}=0.0016
$$

$$
\begin{aligned}
& \eta(J)=\eta_{0}\left(1+\left|J / J_{0}\right|^{n}\right) \\
& \text { with } n=2 \text { and } J_{0}=50
\end{aligned}
$$

Convergence to spectral solutions: errors in current
0.4
0.2
0
-0.2
-0.4
512×512

1024×1024

Roughly second order convergence

Reconnection of magnetic islands

Electromagnetism

Recovering the full set of Maxwell equations

From the vector Boltzmann equation we found that $\boldsymbol{\Lambda}$ evolves according to

$$
\partial_{t} \Lambda_{\alpha \beta}+\partial_{\gamma} M_{\gamma \alpha \beta}=-\frac{1}{\tau_{E}}\left(\Lambda_{\alpha \beta}-\Lambda_{\alpha \beta}^{(0)}\right)
$$

The electric field given by $E_{\gamma}=-\frac{1}{2} \epsilon_{\gamma \alpha \beta} \Lambda_{\alpha \beta}$ thus evolves according to

$$
\partial_{t} E_{\gamma}-\frac{1}{2} \epsilon_{\gamma \alpha \beta} \partial_{\mu} M_{\mu \alpha \beta}=-\frac{1}{\tau_{E}}\left(E_{\gamma}-E_{\gamma}^{(0)}\right)
$$

We choose the collision operator so that

$$
\partial_{t} M_{\alpha \alpha \beta}+\partial_{\alpha} \Lambda_{\alpha \beta}=-\frac{1}{\tau_{M}}\left(M_{\alpha \alpha \beta}-M_{\alpha \alpha \beta}^{(0)}\right)
$$

(no implied sum on α) with

$$
\tau_{M} \ll \tau_{E}
$$

We now seek solutions that vary on timescales $T \sim \tau_{E} \gg \tau_{M}$.

Recovering the full set of Maxwell equation - part 2

We thus leave \mathbf{B}, and now Λ, unexpanded, while still expanding

$$
\mathrm{M}=\mathrm{M}^{(0)}+\tau_{M} \mathrm{M}^{(1)}+\cdots
$$

We take

$$
M_{\mu \alpha \beta}=M_{\mu \alpha \beta}^{(0)}=\theta \delta_{\mu \alpha} B_{\beta}
$$

to sufficient accuracy in the evolution equation for \mathbf{E},

$$
\partial_{t} E_{\gamma}-\frac{1}{2} \epsilon_{\gamma \alpha \beta} \partial_{\mu} M_{\mu \alpha \beta}^{(0)}=-\frac{1}{\tau_{E}}\left(E_{\gamma}-E_{\gamma}^{(0)}\right)
$$

This becomes

$$
\partial_{t} \mathbf{E}-c^{2} \nabla \times \mathbf{B}=-\frac{1}{\tau_{E}}\left(\mathbf{E}-\mathbf{E}^{(0)}\right)
$$

with speed of light $c=\left(\frac{1}{2} \theta\right)^{1 / 2}$. Substituting $\mathbf{E}^{(0)}=-\mathbf{u} \times \mathbf{B}$ gives

$$
-\frac{1}{c^{2}} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\frac{1}{c^{2} \tau_{E}}(\mathbf{E}+\mathbf{u} \times \mathbf{B})
$$

Maxwell's equation plus Ohm's law

In deriving

$$
-\frac{1}{c^{2}} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\frac{1}{c^{2} \tau_{E}}(\mathbf{E}+\mathbf{u} \times \mathbf{B})
$$

we have recovered the full Maxwell equation

$$
-\frac{1}{c^{2}} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}
$$

with the relativistic displacement current, and Ohm's law

$$
\mathbf{J}=\sigma(\mathbf{E}+\mathbf{u} \times \mathbf{B})
$$

with conductivity

$$
\sigma=\frac{1}{c^{2} \mu_{0} \tau_{E}}
$$

The kinetic equations for the moments \mathbf{B} and \mathbf{E} give Maxwell's equations plus Ohm's law for resistive MHD.

Making this more systematic

We previously obtained the resistive MHD equations by expanding

$$
\boldsymbol{\Lambda}=\mathbf{\Lambda}^{(0)}+\tau_{E} \mathbf{\Lambda}^{(1)}+\cdots, \quad \mathbf{M}=\mathbf{M}^{(0)}+\tau_{M} \mathrm{M}^{(1)}+\cdots
$$

while leaving \mathbf{B} unexpanded. The evolution equation for $\boldsymbol{\Lambda}$ gave

$$
\boldsymbol{\Lambda}^{(1)}=-\tau_{E}\left(\partial_{t_{0}} \boldsymbol{\Lambda}^{(0)}+\nabla \cdot \mathbf{M}^{(0)}\right)=-\tau_{E} \theta \nabla \mathbf{B}+O\left(\mathrm{Ma}^{3}\right)
$$

Using van Kampen's (1985) terminology, \mathbf{B} is a slow variable (conserved by collisions) while Λ and M are fast variables.

Maxwell's equations follow from making $\tau_{M} \ll \tau_{E}$, then treating both \mathbf{B} and Λ as unexpanded slow variables. M alone is fast.
We derived Maxwell's equation for \mathbf{E} by substituting the leading order term of

$$
\mathrm{M}=\mathrm{M}^{(0)}+\tau_{M} \mathrm{M}^{(1)}+\cdots
$$

into the exact evolution equation

$$
\partial_{t} \boldsymbol{\Lambda}+\nabla \cdot \mathrm{M}=-\frac{1}{\tau_{E}}\left(\boldsymbol{\Lambda}-\boldsymbol{\Lambda}^{(0)}\right)
$$

Radiation from an oscillating line dipole

Change collision operator to impose

$$
\mathbf{E}^{(0)}=\mathbf{E}-\tau c^{2} \mu_{0} \mathbf{J}_{0}
$$

E now evolves according to

$$
-c^{-2} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\mathbf{J}_{0}
$$

as in Maxwell's equations with a prescribed current source

$$
\mu_{0} \mathbf{J}_{0}=\frac{2}{\sqrt{\pi} \ell^{2}} \frac{x}{\ell} \exp \left(-\frac{x^{2}+y^{2}}{\ell^{2}}\right) \Theta(t) \sin (\omega t) \hat{\boldsymbol{z}}
$$

This particular source makes it easy to solve Maxwell's equations by expanding in 3D Fourier modes,

$$
\mathbf{E}=\sum_{\mathbf{k}} \mathbf{E}_{\mathbf{k}}(t) e^{i \mathbf{k} \cdot \mathbf{x}}, \quad \mathbf{B}=\sum_{\mathbf{k}} \mathbf{B}_{\mathbf{k}}(t) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

and using the exact solution of the ODE

$$
c^{-2} \ddot{G}+k^{2} G=\sin (\omega t), \text { with } G(0)=\dot{G}(0)=0
$$

Convergence

Conclusions

Lattice Boltzmann approach offers linear, constant-coefficient advection. Nonlinearity is confined to the collision operator.
"Nonlinearity is local, nonlocality is linear"
[Succi]
Keep just enough kinetic theory to recover a Navier-Stokes-level approximation. Lattice Boltzmann magnetohydrodynamics uses vector distribution functions \mathbf{g}_{i}.
Parallel algorithm scales linearly across 32,768 processors on BlueGene/L.
The "electric field" tensor Λ has a symmetric part, as well as the antisymmetric part that carries the electric field via $E_{\gamma}=\epsilon_{\alpha \beta \gamma} \Lambda_{\alpha \beta}$.
More complicated collision operators implement improved plasma physics, but must pick out the antisymmetric part of Λ.

Although only designed for non-relativistic magnetohydrodynamics, this lattice Boltzmann scheme contains the full Maxwell equations. We get more physics than we expected...

