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The Magnetic Reconnection eXperiment - MRX
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Flux cores
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Probe arrays Unreconnected field lines
Reconnected field lines

Figure 1. Experimental set-up of MRX device. The toroidal direction points along the

current sheet while the poloidal direction wraps around the flux cores.
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• Size ~ (150x150)cm
• Te ~ 5 eV
• n=(1-10)⋅1013 cm-3

• electron m.f.p. ~ (0.5-5)cm
• layer width ~ 1cm
• di~ 5cm;  



Motivation 

• Why use fully kinetic simulations?

• Very weak guide field, complicated orbits

• Near Dreicer limit

• Instabilities of interest are in the lower-hybrid range and 
can involve both ion & electron kinetic effects

•  Broader goal - physics may also be relevant to reconnection 
in the Earth’s magnetosphere

• By benchmarking kinetic simulations, we can more confidently 
extrapolate from laboratory to space parameters

ER ! Ecrit ≈ (meTe)
1/2νe/e

Can we better understand the structure of the diffusion 
region & the role of instabilities on reconnection?



Electromagnetic instabilities in the lower-hybrid range are 
observed in both MRX and in the magnetosphere

Magnetic fluctuation at the MRX 
layer center (Ji et al., PRL 04)

Cluster observations in the tail
(Zhou, et al., GRL, 2009)

field power spectrum (Figures 1a, 1b, and 1c, respectively).
The data analyzed here are from the instruments on board
Cluster. The magnetic field with a 22 Hz time resolution is
obtained from the Fluxgate Magnetometer (FGM) [Balogh
et al., 2001], and the proton bulk velocity with spin
resolution is provided by the Cluster Ion Spectrometry
composition distribution function [Rème et al., 2001]. The
Electric Field and Wave Experiment (EFW) instrument
provides a 25 Hz high-resolution electric field with x and
y components. It also provides plasma density with resolu-

tion of 0.2 s [Gustafson et al., 1997]. One remarkable
feature of this event is that the current sheet coordinate
system is close to the geocentric solar magnetospheric
(GSM) coordinate [Borg et al., 2005], so all of the variables
are presented in the GSM coordinates.
[6] Large bulk flow began near 2325 UT and lasted about

9 min. There is a reversal of plasma flow from tailward to
earthward (Figure 1d) just coincident with Bz being from
negative to positive near 2330 UT (Figure 1c), which
implies that a tailward moving X line passed the Cluster

Figure 1. Cluster observation during the period of 2325–2335 UTwith flow reversed. (a–c) The x, y, z
components of magnetic field, (d) x component of proton bulk velocity, and (e and f) power spectra of
magnetic field and electric field by wavelet analysis. The dashed gray lines indicate the time instances
when lower hybrid waves were observed. The black and blue dashed lines in Figures 1e and 1f indicate
the lower hybrid frequency and the proton cyclotron frequency, respectively. SC1, SC2, SC3, and SC4
are marked by black, red, green, and blue lines, respectively.
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Simulation Geometry
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Slab geometry (short-wavelength modes)

conducting

flow
Jy(t)

absorbing

y: periodic
periodic

Mostly used in 2D Used in 3D



First started in 2D collisionless limit

Dorfman et al, 
PoP 2008

profile at 40% of the maximum at the location of peak elec-
tron outflow. These definitions are illustrated in panels !a"
and !c" of Fig. 8. LBt and !Bt define the electron dissipation
region; this was checked in several simulations to correspond
well to a region where E ·J is nonzero.

Since there is always some uncertainty in choosing the
drive time, we consider the influence of both mi /me and " on
the structure of the electron layer. A mass ratio scan was
performed in the range mi /me=10→150 for three different
drive times: "#i0=90, 150, 300 !" /"A0=11.5, 19.1, 38.2".
For all runs, the ion scaling was fixed such that di#5 cm
during the quasi-steady-state portion of the run. As illustrated
in the top panel of Fig. 9, the thickness of the electron layer
is observed to scale approximately linearly with the electron
skin depth de computed using the line-averaged density at the
relevant simulation times, with similar weak power law de-
pendencies on both mi /me and "#i0. The power law expo-
nents on the fitted curves shown are 0.13$0.01, 0.15$0.02,
and 0.17$0.02 for drive times of "#i0=90, 150, and 300,
respectively. When scaled by "#i0 raised to the one-sixth
power, the three curves approximately overlap.

The bottom panel of Fig. 9 also shows an extrapolation
to realistic mass ratio using this weak dependence. Square
symbols represent the layer thickness in the experiment
which is approximately 8de for all three gases used. Extrapo-
lating the 0.18$0.01 power law scaling at the drive time of
"#i0=185 !which was found to be well-matched to a hydro-
gen discharge in Figs. 7 and 8", the result is only !Bt#3de at
realistic hydrogen mass ratio, an estimate that is significantly
below the lower error bar of the experimental measurement.
Extrapolation to deuterium and helium mass ratios is less
certain because the drive has not been matched, but the ex-
trapolation leads to an estimate that is still well below the
experimental value for a range of likely drive times. Thus,
the mass ratio limitation is unlikely to be responsible for the
broader electron layers in the experiment.

For cases well within the linear regime where a clear
scaling is possible, the layer length LBt displays a mass ratio
scaling similar to the thickness during the quasi-steady-state
time period. This is illustrated in the top panel of Fig. 10,
where the aspect ratio is plotted as a function of time for four
different mass ratios at a long drive time of "#i0=300. Dur-
ing the quasi-steady-state period the four curves approxi-
mately overlap, indicating that the aspect ratio of the layer is
electron mass independent for this set of parameters. There-
fore, extrapolation to realistic mass ratio should not affect the
aspect ratio of the layer. This means that because the width
that results from this extrapolation is too small compared to
the experiment, the length that results from the same ex-
trapolation will also be too small by a similar factor.

However, despite this estimate, a clear scaling for the
length of the layer is difficult to obtain. As can be seen from
the time evolution of the aspect ratio and from Fig. 3, the
layer is lengthening during the quasi-steady-state period, so
any scaling is dependent on the time period chosen. Further-
more, as seen in the bottom panel of the figure where the
aspect ratio is plotted for a variety of drive times, the point in

time at which the layer lengthens as well as the lengthening
rate is highly sensitive to the drive. All six cases start with an
aspect ratio $1.5–2 at t=0.25", but as the simulation-
evolves, the subsequent evolution varies widely. In the over-
driven case, i.e., " /"A0=9.6, a magnetic island forms near
0.7", which leads to a collapse in the length of the layer.
Neither layer lengthening nor magnetic islands have been
conclusively identified in the experiment, further complicat-
ing comparisons.
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FIG. 9. !Color online" Scaling of the electron layer thickness in simulation
compared with experiment. Electron layer thickness in units of de, an elec-
tion skin depth computed using the line-averaged density between the flux
cores at the time of comparison, as a function of mi /me is plotted for three
different drive times !top". All other quantities are held fixed in terms of ion
units; relevant parameters are n0=2%1013 cm−3 and &e0$0.06. Data are
averaged over the quasi-steady interval t= !0.5−0.7""; error bars in the
simulation data represent the standard deviation from this averaging. In all
three cases, the layer thickness scales approximately as !Bt /de' !mi /me"1/6;
exponents for each curve are given in the text. In the bottom panel, the same
scaling is shown using n0=2.6%1013 cm−3 and "#i0=185, parameters from
the case that best matches a hydrogen discharge. Experimental data are
shown with error bars from a fit of the layer width as a function of de; an
extrapolation curve to realistic hydrogen mass ratio is shown. This extrapo-
lation yields a layer width of !Bt$3de.
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sembles that observed in many other kinetic simulations. The
essential features are illustrated Fig. 4 at the simulation time
t!i0=105. To illustrate the global simulation geometry, the
top panel shows the plasma density for the entire simulation

domain while the subsequent panels illustrate the basic struc-
ture of the reconnection layer in the region indicated between
the flux cores. As expected, there are strong density gradients
as plasma builds up around the flux cores, while the density
is depleted in the center of the layer. It should be noted that
no density hole is observed in the experiment; however, this
may be due to insufficient Langmuir probe resolution. Since
ions and electrons become demagnetized on different spatial
scales, the ion outflow channel is significantly broader com-
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FIG. 3. !Color" Time evolution of the electron current sheet for a simulation
with dimensionless parameters mi /me=150, "!i0=150 !equivalent to
" /"A0=19.1", #e0=0.067, vte0 /c=0.16, and full particle absorption at the
flux core surfaces. The initial density is n0=2$1013 cm−3 corresponding to
a flux core spacing of Z0=7.8di0. Shown is out-of-plane component of the
electron flow Uey #−Jy / !ne" normalized to the initial electron thermal ve-
locity vte0; black lines correspond to the magnetic flux surfaces. Movie
showing the evolution is available in Ref. 38.
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FIG. 4. !Color" Typical structure of the reconnection layer for the same case
as Fig. 3 at time t!i0=105. Top panel shows the electron density for the
entire global domain while subsequent panels show various quantities of
interest within the window indicated in the top panel. Black lines represent
flux surfaces in all panels except the bottom, where the black lines indicate
the streamlines for the electron flow. The density is normalized to n0, the ion
and electron flow velocities are normalized to the initial thermal velocity for
each species and By is normalized to the initial reference magnetic field B0.
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2D simulations reproduce the ion-scale current sheet 
structure

Experiment 2D collisionless PIC

Ji et al., GRL (2008)



Discrepancy motivated need for 3D + collisions

3D, high-performance explicit electromagnetic code VPIC 
(K. Bowers) + collision model

+ Maxwell’s equations

∂fs

∂t
+ v ·∇fs +

qs

ms

(
E +

1
c
v ×B

)
·∇vfs =

∑

s′

C{fs, fs′}

The code runs on a variety of peta-scale machines. 
Largest simulation to date: over a trillion particles

Roadrunner
(LANL)

Kraken
NICS/NSF

Jaguar
ORNL



CM frame

: random, Gaussian

θ

δ = tan(θ/2)

〈δ2〉 =
2πe4ns ln Λ

m2
ss′ |vs − v′

s|3 ∆tcol

Takizuka-Abe particle-pairing algorithm: expensive, but 
accurate

• converges to Landau collision integral
• conserves momentum and energy in each collision 

λD

C{fs, fs′}→ 2πe4 ln Λ
ms

∇v ·
∫

d3v
u2I− uu

u3
·
(

fs′

ms
∇vf − f

ms′
∇v′fs′

)

The collision model has been benchmarked on a variety of problems: W. Daughton et al., Phys. Plasmas 
16, p. 07211 (2009); D. Lemons et al., J. Comp. Phys., 228, p. 1391  (2009)



Choice of the scaling approach is crucial

Not possible to match same dimensionless parameters as MRX.
It is crucial to re-scale the problem in dimensionless form.

Our choice: reference values of 

are close to experiment

di = c/ωpi L : system size τ : time scale for the coil 
current ramp-down

are treated as numerical parameters. Typical values: 
(100-400) and (2-5) respectively

mi/me, ωpe/ωce

β L/diτΩci



Several scaling choices are possible for the 
collision frequency scaling

S =
LVA

Dm
∝ L

di

Ωce

νei

δ2
SP

d2
i

∝ L

di

νei

Ωce

Appropriate for resistive regimes since it ensures matching of 

1) Match νei/Ωce (representative range for MRX:   0.01-0.1)

2) Match the ratio between reconnection electric field and the Driecer 
field (representative range of the experiment: 0.1-0.5). The relevant 
choice in 2D weakly collisional regimes



reconnection in weakly coupled regimes with arbitrary colli-
sionality to be analyzed.

The simulation geometry and boundary conditions
closely resemble those described in Ref. 6. As illustrated in
Fig. 1, the simulation domain consists of a rectangular box of
size !150!75" cm, with conducting boundary conditions
for electromagnetic field and reflecting boundary conditions
for particles at the walls. The MRX flux cores housing po-
loidal and toroidal coils are modeled entirely through particle
boundary conditions, chosen to be fully absorbing. This
choice of the boundary conditions is discussed in detail and
motivated in Ref. 6. The particle boundary conditions at the
flux cores are potentially important since they may affect the
buildup of pressure in the downstream region, which is
known to be an important parameter in MRX.25 In the real
device the region near the flux core is dominated by the
processes of plasma formation and notoriously complicated
plasma-wall interactions. Instead of being a detailed model
of these processes, the flux core particle boundary conditions
in the simulations should be viewed as a way of manipulat-
ing the downstream pressure. The results presented in this

paper are obtained with fully absorbing boundary conditions,
which in the absence of information about the experimental
pressure profile in the downstream region is a reasonable
choice for modeling a pull scenario, where the magnetic flux
is pulled into the flux core. Preliminary exploration of par-
tially reflecting boundary conditions shows that the thickness
of the current layer is not affected appreciably by simple
reflection of particles off the flux core surface.

The 2D simulations in this study are performed in the x-z
plane and spatial gradients in y are not allowed in the evo-
lution equations. The MRX poloidal field !PF" coils are mod-
eled by prescribing, as a function of time, the out-of-plane
current density in the two regions inside the flux cores, as
shown in Fig. 1. The time dependence of the coil currents in
the simulations is chosen to closely mimic the actual PF coils

Icoil!t" = I0#1 + 5 cos2!"t/2#"$/6. !2"

The characteristic time scale for the current ramp down #
represents the strength of the external drive, as discussed
in Sec. III. The magnitude of the current I0 is chosen to
yield the desired value of electron beta $e=8"n0T0 /B0

2 at
a reference position between the coils at t=0, where the
reference value of the initial magnetic field created by the
coils is B0. The reference point is located at !x ,z"
= !8.1,75" cm, as illustrated in Fig. 1. The initial distribution
function for each species is a uniform Maxwellian fs0
=n0ms

3/2!2"T0"−3/2exp#−msv2 / !2T0"$ with density n0 and
temperature T0. This choice of the initial configuration rep-
resents the simplest possible assumption in the absence of
detailed information on such parameters as initial global den-
sity profiles. Other choices of the initial configuration are
possible and have been explored. In general, the initial con-
figuration does not have to represent an exact equilibrium at
t=0 since the relatively low-$ plasmas adjust quickly to the
given structure of the magnetic field and a dynamical quasi-
equilibrium is typically established on a time scale of a few
ion cyclotron times, which is much shorter than #.

The computational requirements of the fully kinetic al-
gorithm require the parameters of the real experiment to be
scaled in order to obtain simulations of manageable size.
We utilize the same scaling approach as in Ref. 6, namely,
we try to match a set of relevant dimensionless parameters
between the simulations and the experiment. In particular,
the initial values of $e, #%ci

0 , and Z0 /di
0 are chosen to be

close to the ones typically observed in the experiment.
Here Z0 is the distance between the flux cores, ds

0=c /&ps
0 ,

&ps
0 = !4"n0e2 /ms"1/2, and %cs=eB0 / !msc". Representative

plasma parameters in MRX are n= !0.1–1"!1014 cm−3,
B= !100–500"G, and Te= !1–10" eV, which imply Z0 /di
= !5.5–17.5" and $e= !0.01–2". Since we are interested in
the electron dynamics, the collisionality is set by
prescribing22 the initial value of 'e

0 /%ce
0 in the range of

0.01–0.25 characteristic of the experiment. Here 'e
0

=4%2"n0(e4 / !3%meT0
3/2" is the electron collision fre-

quency12 and ( is the Coulomb logarithm.
This scaling approach ensures that the reference value of

Lundquist number in the simulation S= !Z0 /di
0"%ce

0 /'e
0 corre-

sponds to that in the experiment. The dimensionless param-
eters that are not expected to strongly affect the reconnection
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FIG. 1. !Color online" !a" The geometry of the simulation domain. Bound-
ary conditions are conducting for the fields and reflecting for the particles at
the outer walls. Two current-carrying regions of the simulation, denoted by
black disks, create the in-plane magnetic field. They are housed inside flux
cores, which are denoted by gray disks and are absorbing for the particles.
The asterisk marks the reference point where B0 is prescribed. !b"
Current density jy in a collisionless simulation with mi /me=100, n0=2
!1013 cm−3, and #%ci

0 =300. !c" Current density jy in a simulation with the
same parameters, but with 'e /%ce&0.03. In both cases jy is normalized to
its peak value. The white lines show isocontours of the magnetic flux.
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collisionless

collisional

Roytershteyn et al, 
PoP, 2010



2D Simulations with Collisions:

Ey/Ecrit
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1
c
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)
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FNI

= −∇ · P + Rei −men
dUe
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Rei,y =
∫

d3v vyCei{fe, fi}
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Roytershteyn et al, 2010



Ey/Ecrit

δ c
/ρ

! e
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2D simulations

δc/ρ!
e = const

The electron layer width (related to the reconnection 
mechanism) is systematically smaller in simulations

experiment

δc

ρ!
e

=
1
βe

Ecrit

Ey
(βe = 0.5− 1.5)

Simple limits:

collisionless

E = ηSpitzerj

resistive

δc

ρ!
e

=
1
βe

Ecrit

Ey

δ/ρ!
e = const

V. Roytershteyn et al., Phys. Plasmas, 17, 055706 (2010)



The origin of the large discrepancy is not understood

Clearly, effects beyond those present in 2D kinetic simulations 
are responsible for the observed layer width

Among the possible candidates

1) 3D instabilities/turbulence

2) Influence of neutrals and ionization processes

3) Broadening due to the probes

all of these possibilities can be addressed by simulations. some of 
the work is being carried out



Influence of 
Lower-hybrid drift 
instability (LHDI)

2D Harris sheet



Very Thin Sheets

Longer wavelength EM fluctuations 
are localized about center of the 
sheet while ES fluctuations remain 
confined to edge 

Thicker Sheets

Both ES and EM fluctuations are 
confined to the edge region for all 
wavelengths

 

Properties Depend on Sheet Thickness

kyρe ∼ 1Regardless 
of 

Thickness

1.  Fastest growing modes
2.  Both electrostatic and 

 electromagnetic fluctuations
3.  Broad range of unstable modes

ky

√
ρeρi ∼ 1

ρi

L
≤ 1

ρi

L
> 1.5

Characteristic
Wavelength



Linear Theory of Thin Current Sheets

€ 

dˆ f s
dt

+
qs

ms

ˆ E + v × ˆ B 
c

 

 
 

 

 
 •
∂fos

∂v
= 0

€ 

ˆ E = −∇φ − 1
c
∂ ˆ A 
∂t

ˆ B =∇ × ˆ A 

Linear Vlasov for
ions and electrons

€ 

∇2 ˆ A − 1
c 2
∂ 2 ˆ A 
∂t 2 = −

4π
c

ˆ J 

∇2 ˆ φ −
1
c 2
∂ 2 ˆ φ 
∂t 2 = −4π ˆ ρ 

Work with the Potentials:

Lorentz 
Gauge

Perturbations of the form:

Maxwell’s Equations:

€ 

∇ • ˆ A + 1
c
∂ ˆ φ 
∂t

= 0

Â = Ã(x) exp [−iωt+ ikyy + ikzz]

φ̂ = φ̃(x) exp [−iωt+ ikyy + ikzz]



Short Wavelength LHDI Eigenmode

€ 

kyρe =1 ⇒ kyL =11.3

€ 

ωr

Ωlh

= 0.89 γ
Ωlh

= 0.27

Eigenfunction

Eigenvalue

€ 

Ωlh ≈ ΩceΩci€ 

˜ φ 

x/L x/L

Â = Ã(x) exp [−iωt+ ikyy + ikzz]

φ̂ = φ̃(x) exp [−iωt+ ikyy + ikzz]

B̃z

Ãx Ãy



Electrostatic Fluctuations

€ 

ωr /Ωlh = 0.54 γ /Ωci =1.93

€ 

ωr /Ωlh = 0.57 γ /Ωci = 2.26

Two fastest 
Growing 
modes

€ 

kyρe ≈ 0.75

€ 

y /L

Fluctuations are confined to the edge of the sheet

x

L

φ̃(x)

φ̃(x)

x/L x/L

φ̃(x)



Longer Wavelength LHDI Eigenmode

€ 

kyL = 2 ⇒ ky ρiρe ≈ 0.84

€ 

ωr

Ωci

= 6.2 γ
Ωci

= 0.84

Eigenfunction

Eigenvalue

€ 

˜ φ 

x/L x/L

Â = Ã(x) exp [−iωt+ ikyy + ikzz]

φ̂ = φ̃(x) exp [−iωt+ ikyy + ikzz]

B̃z

Ãx Ãy



ne

Jy

mi/me = 1836Example simulation for



Weak Guide Field Example

Benchmark Comparisons of Vlasov Theory and
Kinetic Simulations of Current Sheet Instabilities

William Daughton and Vadim Roytershteyn

February 26, 2010

1 Abstract

This working document summarizes our benchmark comparison efforts with Yu Lin and
collaborators. Here we lay out our normalization conventions and give results from full
PIC simulations and linear Vlasov theory for parameters relevant to the Wang et al, 2008
paper. The goal is to clearly lay out all normalizations along with initial results in order
to be sure we are really working the same physical problems.

2 Equilibrium and Normalization

The notation and normalization follows Daughton, 2003. The equilibrium is a Harris
sheet with uniform guide field in the direction of the current

By = Byo , (1)

Bz = Bzo tanh (x/L) ,

n = no sech (x/L)2 + nb ,

where Bzo is the asymptotic Harris field, Byo is the uniform guide field and L is the
half thickness of the current sheet, no is the peak Harris density and nb is the density of
uniform background. As a first try, we consider case 2 (mode B) in Wang et al, 2008.
Converting to our standard dimensionless parameters, this case can be expressed as:

ρi

L
= 5.77,

mi

me
= 1836,

ωpe

Ωce
= 4,

Ti

Te
= 10, Byo/Bxo = 0.2 no/nb = 0.1923 (2)

where ρi = vthi/Ωci is an ion gyro-radius, Ωcs = eBzo/(msc) is the gyrofrequency com-
puted from the asymptotic field Bzo and ωpe = (4πnoe2/me)1/2 is the electron plasma
frequency calculated from the central density no, and the thermal velocities are defined
as vths ≡ (2Ts/ms)1/2. The ratio of the ion fluid to thermal velocity may be express as
Ui/vthi = ρi/L and from force balance the electron thermal velocity can be written as

vthe/c = [
√

1 + Ti/Te(ωpe/Ωce)]−1.

Important - I was confused on which density is used to normalize ωpe, so I simply
picked ωpe/Ωce = 4 for this initial comparison. We can iterate on this parameter (or
others) in future work.
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Figure 1: Real (red) and imaginary (blue) part of the eigenmode structure for most
unstable mode from the linear Vlasov calculation (Daughton, 2003). Current sheet pa-
rameters are in Eq. (2) and wavelength is kyL = 1.7. The real frequency is ω/Ωci ≈ 53.4
with growth rate γ/Ωci ≈ 1.87. Note the parity of this mode corresponds to a kink-type
perturbation of the current layer.

3 Linear Vlasov Theory

We treat the linear stability of this equilibrium using a full Vlasov-Maxwell description
as described in Daughton, 2003. In the calculation, we work with the potentials

Ê = −∇φ̂− 1

c

∂Â

∂t
, (3)

B̂ = ∇× Â .

and perform a normal mode analysis with perturbations of the form

φ̂ = φ̃(x) exp(−iωt + ikyy + ikzz) ,

Â = Ã(x) exp(−iωt + ikyy + ikzz) .

For this work, we take kz = 0 and examine mode B with kyL ≈ 1.7 corresponding to
kyρi = 9.81 in our normalization (which should be kyρi ≈ 6.8 using Wang et al conventions,
but please check).

For this wavelength, the most unstable eigenmode has ω/Ωci ≈ 53.4 and growth rate
γ/Ωci ≈ 1.87. The parity of the mode corresponds to a kinking of the current layer and the
mode propagates in the direction of the ion diamagnetic drift. The mode structure [Ã(x)
and φ̃(x)] is given in Fig. 1, while the corresponding magnetic field perturbation B̃(x) is
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Figure 1: Real (red) and imaginary (blue) part of the eigenmode structure for most
unstable mode from the linear Vlasov calculation (Daughton, 2003). Current sheet pa-
rameters are in Eq. (2) and wavelength is kyL = 1.7. The real frequency is ω/Ωci ≈ 53.4
with growth rate γ/Ωci ≈ 1.87. Note the parity of this mode corresponds to a kink-type
perturbation of the current layer.

3 Linear Vlasov Theory

We treat the linear stability of this equilibrium using a full Vlasov-Maxwell description
as described in Daughton, 2003. In the calculation, we work with the potentials

Ê = −∇φ̂− 1

c

∂Â

∂t
, (3)

B̂ = ∇× Â .

and perform a normal mode analysis with perturbations of the form

φ̂ = φ̃(x) exp(−iωt + ikyy + ikzz) ,

Â = Ã(x) exp(−iωt + ikyy + ikzz) .

For this work, we take kz = 0 and examine mode B with kyL ≈ 1.7 corresponding to
kyρi = 9.81 in our normalization (which should be kyρi ≈ 6.8 using Wang et al conventions,
but please check).

For this wavelength, the most unstable eigenmode has ω/Ωci ≈ 53.4 and growth rate
γ/Ωci ≈ 1.87. The parity of the mode corresponds to a kinking of the current layer and the
mode propagates in the direction of the ion diamagnetic drift. The mode structure [Ã(x)
and φ̃(x)] is given in Fig. 1, while the corresponding magnetic field perturbation B̃(x) is
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Benchmark Comparisons of Vlasov Theory and
Kinetic Simulations of Current Sheet Instabilities
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1 Abstract

This working document summarizes our benchmark comparison efforts with Yu Lin and
collaborators. Here we lay out our normalization conventions and give results from full
PIC simulations and linear Vlasov theory for parameters relevant to the Wang et al, 2008
paper. The goal is to clearly lay out all normalizations along with initial results in order
to be sure we are really working the same physical problems.

2 Equilibrium and Normalization

The notation and normalization follows Daughton, 2003. The equilibrium is a Harris
sheet with uniform guide field in the direction of the current

By = Byo , (1)

Bz = Bzo tanh (x/L) ,

n = no sech (x/L)2 + nb ,

where Bzo is the asymptotic Harris field, Byo is the uniform guide field and L is the
half thickness of the current sheet, no is the peak Harris density and nb is the density of
uniform background. As a first try, we consider case 2 (mode B) in Wang et al, 2008.
Converting to our standard dimensionless parameters, this case can be expressed as:

ρi

L
= 5.77,

mi

me
= 1836,

ωpe

Ωce
= 4,

Ti

Te
= 10, Byo/Bxo = 0.2 no/nb = 0.1923 (2)

where ρi = vthi/Ωci is an ion gyro-radius, Ωcs = eBzo/(msc) is the gyrofrequency com-
puted from the asymptotic field Bzo and ωpe = (4πnoe2/me)1/2 is the electron plasma
frequency calculated from the central density no, and the thermal velocities are defined
as vths ≡ (2Ts/ms)1/2. The ratio of the ion fluid to thermal velocity may be express as
Ui/vthi = ρi/L and from force balance the electron thermal velocity can be written as

vthe/c = [
√

1 + Ti/Te(ωpe/Ωce)]−1.

Important - I was confused on which density is used to normalize ωpe, so I simply
picked ωpe/Ωce = 4 for this initial comparison. We can iterate on this parameter (or
others) in future work.
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Figure 1: Real (red) and imaginary (blue) part of the eigenmode structure for most
unstable mode from the linear Vlasov calculation (Daughton, 2003). Current sheet pa-
rameters are in Eq. (2) and wavelength is kyL = 1.7. The real frequency is ω/Ωci ≈ 53.4
with growth rate γ/Ωci ≈ 1.87. Note the parity of this mode corresponds to a kink-type
perturbation of the current layer.

3 Linear Vlasov Theory

We treat the linear stability of this equilibrium using a full Vlasov-Maxwell description
as described in Daughton, 2003. In the calculation, we work with the potentials

Ê = −∇φ̂− 1

c

∂Â

∂t
, (3)

B̂ = ∇× Â .

and perform a normal mode analysis with perturbations of the form

φ̂ = φ̃(x) exp(−iωt + ikyy + ikzz) ,

Â = Ã(x) exp(−iωt + ikyy + ikzz) .

For this work, we take kz = 0 and examine mode B with kyL ≈ 1.7 corresponding to
kyρi = 9.81 in our normalization (which should be kyρi ≈ 6.8 using Wang et al conventions,
but please check).

For this wavelength, the most unstable eigenmode has ω/Ωci ≈ 53.4 and growth rate
γ/Ωci ≈ 1.87. The parity of the mode corresponds to a kinking of the current layer and the
mode propagates in the direction of the ion diamagnetic drift. The mode structure [Ã(x)
and φ̃(x)] is given in Fig. 1, while the corresponding magnetic field perturbation B̃(x) is
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Figure 1: Real (red) and imaginary (blue) part of the eigenmode structure for most
unstable mode from the linear Vlasov calculation (Daughton, 2003). Current sheet pa-
rameters are in Eq. (2) and wavelength is kyL = 1.7. The real frequency is ω/Ωci ≈ 53.4
with growth rate γ/Ωci ≈ 1.87. Note the parity of this mode corresponds to a kink-type
perturbation of the current layer.

3 Linear Vlasov Theory

We treat the linear stability of this equilibrium using a full Vlasov-Maxwell description
as described in Daughton, 2003. In the calculation, we work with the potentials

Ê = −∇φ̂− 1

c

∂Â

∂t
, (3)

B̂ = ∇× Â .

and perform a normal mode analysis with perturbations of the form

φ̂ = φ̃(x) exp(−iωt + ikyy + ikzz) ,

Â = Ã(x) exp(−iωt + ikyy + ikzz) .

For this work, we take kz = 0 and examine mode B with kyL ≈ 1.7 corresponding to
kyρi = 9.81 in our normalization (which should be kyρi ≈ 6.8 using Wang et al conventions,
but please check).

For this wavelength, the most unstable eigenmode has ω/Ωci ≈ 53.4 and growth rate
γ/Ωci ≈ 1.87. The parity of the mode corresponds to a kinking of the current layer and the
mode propagates in the direction of the ion diamagnetic drift. The mode structure [Ã(x)
and φ̃(x)] is given in Fig. 1, while the corresponding magnetic field perturbation B̃(x) is
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Example frequency spectrum for 2D Harris sheet

linear Vlasov code (~ the center of the spectrum for each k,ω)

short-wavelength, localized 
at the edge

long-wavelength, localized 
in the center

mi/me = 1836

Ωlh

|B̃z|2



The instability is very strong in Harris equilibrium

y

Jy, tωci = 1
2D simulation, Harris current sheet 
with δ/ρe=10; mi/me=1836; nB=0.3

tωci
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The mode induces 
sizable momentum 
exchange between 

electrons and ions, but 
only when the amplitude 

becomes quite large
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3D Simulations



3D simulations shows that under conditions typical of 
MRX, the layers are unstable against multiple instabilities 

Flux cores

Ion outgoing 
particle flux

magnetic field

0.72 billion cells,  158 billion particles, 2880 MPI ranks on Roadrunner

n0 = 2 · 1013cm−3, mi/me = 300, (νei/Ωce) ≈ 0.01, (9× 3× 11.5)d0
i



3D simulations shows that under conditions typical of 
MRX, the layers are unstable against multiple instabilities 

mi/me = 300
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Mode localization is similar to MRX observations

Similar to MRX observations, electric field fluctuations are localized at the 
edge of the layer, while magnetic fluctuations peak at the center



Linking MRX observations and instabilities in 
collisionless (e.g. magnetospheric) plasmas



Asymmetric configuration (relevant to the magnetopause)

we specify the equilibrium by prescribing 
the value of plasma beta on one side of 

the sheet and the ratio of densities 
between the two sides. Examples shown 

are from simulations with:

The initial state is not a Vlasov equilibrium, 
but is in a pressure balance. 

The asymmetry is preserved as 
reconnection proceeds

Te, Ti = const

n−∞/n+∞ = 5 Te/Ti = 1
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Figure 1. Location of 128 high-shear magnetopause crossings 
in GSM latitude and local time. The subset of 59 crossings used 

in the superposed epoch analysis (section 3) is represented by 
solid circles. 

process which serves to eliminate or strongly reduce temporal 

variations contained in the individual profiles. 

To investigate whether any systematic variations with local 

time occur, we have subdivided the present data set into smaller 

local time subsets and performed the superposed epoch analysis 
for each subset. No noticeable differences between the subsolar 

profiles and the less subsolar ones were found except for the 

faster tangential flow speed of the magnetosheath plasma in the 

latter category. However, we emphasize that the present results 

are only applicable to the dayside low-latitude MP/LLBL 
within 0800-1600 hrs LT. 

3.1. Methodology 

The superposed epoch analysis is similar, but not identical, 

to that used by Paschmann et al. [1993] and Phan et al. [1994]. 

Figure 2 illustrates the procedure, using as an example the 

magnetospheric field and remain rather stable for at least 1 min. 

This condition ruled out selection of crossings spaced very 
close together. It may also exclude some crossings where the 

dayside magnetosheath region is connected to a quasi-parallel 
shock (small IMF cone angle), since the field orientation tends 

to be highly fluctuating downstream (and upstream) of such 
shocks. Second, we also required each case to include a 

complete crossing of the magnetopause and the LLBL. The 

location of the 128 magnetopause crossings are shown in Figure 
1 in terms of GSM latitude and local time. Because of the 

nature of the AMPTE/IRM orbit, all crossings occur within 30 ø 
of the equatorial plane. 

The boundary normal coordinate system [Russell and Elphic, 
1979] is used throughout this paper. It is defined such that the N 

axis points outward along the magnetopause normal and the (L, 

iV) plane contains the GSM z axis with L due approximately 
north and M approximately west. The magnetopause normal is 

taken from the Fairfield magnetopause model [Fairfield, 1971 ]. 

3. Average Structure of the Magnetopause 
Regions 

In order to study the average variations of key plasma and 
magnetic field parameters in the vicinity of the magnetopause, 
we perform a superposed epoch analysis. It should be 

emphasized that an average profile is meaningful only when it 
is representative of the behavior of the majority of individual 
cases. If significant variations exist with local time or other 

parameters, then lureping all crossings into one profile would 

mask such effects and could give partially misleading results. 
The focus of the present survey is on the structure of the 

high-shear low-latitude subsolar magnetopause and LLBL. To 
minimize local time and latitude effects, we have limited our 

analysis to crossings which occurred within the local time range 
of 0800-1600 LT, and by the nature of the AMPTE/IRM orbit, 

to a latitude range of ñ30 ø. Within this restricted subsolar 

region, examination of a large number of individual cases has 

revealed little dependence of most of the plasma and magnetic 

field structures on the amount of local magnetic shear across 

the MP, provided the shear angle exceeds 45 ø. Thus it is 

desirable to combine all high-shear crossings to obtain an 

average profile by means of a superposed epoch analysis, a 
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Figure 2. Outbound pass across the low-latitude boundary 

layer (LLBL) and the magnetopause (MP). (a)Azimuth angle 
go B of the magnetic field in the LMN boundary normal 

coordinate system with 0 ø along the L axis and +90 ø along the 

M axis; the magnetic field components (b)BL and (c)BM; 

(d) the total proton number density No; (e)the proton and 
electron temperatures T/, and T e. Vertical dotted lines A-C mark 
the inner edge of the LLBL, the inner edge of the current flow 

region, and the beginning of rotation of the magnetosheath 
magnetic field, respectively. 

UT 21:39:30 21:40:30 21:41:30 21:42:30 

R 10.98 11.02 

LAT 5.44 GSM 5.41 

LT 11:21 11:22 

MP current sheet structure 
(Phan and Paschmann, JGR, 1996)

n (Te + Ti) +
B2

z

8π
= Const

Bz = Bs +BH tanh(x/δ)

n = nc − δn tanh(x/δ) +
n0
H

cosh2(x/δ)

β|x→−∞ = 1



At higher mass ratio, instability saturates at modest 
amplitude 

|nVe|

isosurface of constant jy. color=Ey
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Open boundary driven simulation, mi/me=400, 8103 cells, 3.2 x 1011particles at t=0

strong fluctuation 
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Spectrum near center is similar

Open-boundary, asymmetric configuration, mi/me=400
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The mode produces finite 
modifications to the Ohm’s law

Consider y-averaged electron momentum balance
〈

ne

(
E +

1
c
v × B

)〉
= −∇ · 〈Pe〉 −me

〈
n

dVe

dt

〉

〈AB〉 = 〈A〉〈B〉 + 〈̃AB〉

Split non-linear terms

〈ABC〉 = 〈A〉〈B〉〈C〉 + ˜〈ABC〉

Two largest terms:

〈̃nE〉

1
c

˜〈n(v × B)y〉

induces electron-ion momentum 
exchange. Localized away from the X-line

describes momentum re-distribution 
across the layer due to kinking
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Fluctuations are strong along the separatrices
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To be relevant - instability must be faster than 
transit time for plasma through this region

y-averaged 3D run

approximate localization of the mode

∼ di

current

∼ ρe

The entire population in the “interaction” region is replaced on a time-scale

∼ VAe

∆ ∼ 10ρe

The instability can grow to large amplitude and strongly interact 
with particles only if

τ ∼ ∆di

ρeVAe
∼ 10 Ω−1

ci

(
me

mi

)1/2

= 10ω−1
LH

γτ > 1
1) Growth rate must be a large fraction of the lower-hybrid frequency
2) Instability may be stronger in elongated layers (larger τ) - to 
investigate this, need larger system

Uey



The layer structure remains similar to 
corresponding 2D case

y-averaged 3D run 2D run

Uey Uey

cut cut

There is a tendency for layers to be longer in 3D simulations. This may become 
important in larger systems 

(the size of this simulation is < 10 di in the outflow direction)



Summary & Future Outlook

 For 3D reconnection geometries, contributions from anomalous drag 
are small near the x-line, but anomalous transport is larger

 Along separatrices, there is strong anomalous drag, and this potentially 
could influence the global evolution

  As another interesting possibility, there is some evidence that these 
instabilities may seed the formation of flux ropes in 3D


