Recent Progress and Future Outlook for Kinetic Simulations of Magnetic Reconnection

William Daughton

Los Alamos National Laboratory

Workshop on Gyokinetics in Laboratory and Astrophysical Plasmas Isaac Newton Institute for Mathematical Sciences Cambridge, UK July 26, 2010

LA-UR-10-04934

Acknowledgements

Wide range of applications to consider:

- Solar applications —> chromosphere, transition region, corona - flares, prominences, coronal mass ejections
- Solar wind
- Laboratory fusion machines

• Astrophysical problems

When do we need a kinetic description?

Kinetic Particle-in-cell Simulations

First-Principles Approach for all Regimes

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f_s}{\partial \mathbf{v}} = \sum_{s'} \mathcal{C}_{ss'} \downarrow$$

Fokker-Planck Collision Operator

+ Maxwell's Equations

Using particle-in-cell method: VPIC code - Bower et al, 2008, 2009

- I. Relativistic, full Maxwell treatment
- 2. Monte-Carlo Coulomb collisions
- 3. Optimized to exploit newest computers

Difficult due to vast scale separation

Peta-scale machines offers new opportunities, but also new challenges

Roadrunner Cell CBE Chip ~110,000 cores

Kraken - NSF Cray XT5 ~100,000 cores

Jaguar - DOE Cray XT5 ~220,000 cores

These efforts are permitting an exponential increase in problem size

What 3D problems are we looking at?

Extended current sheets and secondary-islands are a common feature of large-scale 2D studies

Motivation for 3D Kinetic Treatment

- Thin sheets are the preferred sites for the onset of reconnection
- Reconnection leads to the formation of new current sheets

Secondary magnetic islands may play an important role in the reconnection rate, energy partition & particle acceleration

Results confirmed for hydrogen mass ratio

$$\frac{m_i}{m_e} = 1836$$

Recent VPIC run on Kraken

Open boundary conditions

Fokker-Planck Treatment of Collisions -

Daughton et al, PRL, 2009 Daughton et al, PoP, 2009

Rigorous treatment of transition between fluid & kinetic regimes

Benchmarks with Braginskii

For S ~1000, transition from
Sweet-Parker to kinetic observed

Simple estimate fails completely in large systems due to plasmoids

New electron layers also unstable to plasmoids

Reconnection Rate Modulated with Plasmoid Formation

How do these results extend to real 3D systems?

Secondary magnetic islands Flux ropes

- More freedom to form islands in 3D
- Can interact in complex ways not possible in 2D
- Stochastic magnetic fields?
- Influence of pre-existing turbulence upstream?
- Potential influence on nearly every aspect of the problem - basic cartoon, dissipation rate, etc
- Real need for theory primary & secondary islands

Focus in detail on one problem:

Island Formation in Guide Field Reconnection

Theory **Simulations**

 $\frac{m_i}{m_i} = 1 \to 1836$ m_{e}

 $\frac{m_i}{-} = 1 \to 64$ m_e

Island formation is more complicated in 3D

Drift Tearing - Coppi et al, 1979, Basu & Coppi, 1981, Catto 1974, Bussac et al, 1978, Drake et al, 1983

Magnetopause - Galeev, Kuznetsova, Zeleny, 1986, Gladd, 1990, Daughton et al, 2005

Volume filling islands - Drake et al, Nature, 2006

Galeev et al, 1986

Drake et al, 2006

Harris Sheet Geometry with a Guide Field

Consider: I. Electron-positron plasma 2. Hydrogen plasma

Tearing Modes are Localized about Resonant Surfaces

Outer Region
$$E_{\parallel} = 0$$
Singular Layer $E_{\parallel} \neq 0$ Outer Region $E_{\parallel} = 0$

General Perturbation $\hat{\mathbf{E}} = -\nabla\phi - \frac{1}{c}\frac{\partial\hat{\mathbf{A}}}{\partial t}$

$$\hat{\mathbf{A}} = \tilde{\mathbf{A}}(z) \exp\left[-i\omega t + ik_x x + ik_y y\right]$$
$$\hat{\phi} = \tilde{\phi}(z) \exp\left[-i\omega t + ik_x x + ik_y y\right]$$

Electrostatic part "shorts out" response - except when $\mathbf{k} \cdot \mathbf{B} = 0$

$$\hat{E}_{\parallel} = \mathbf{b} \cdot \hat{\mathbf{E}} = -ik_{\parallel}\hat{\phi} + i\frac{\omega}{c}\mathbf{b} \cdot \hat{\mathbf{A}}$$
Resonant surface

Resonant Surfaces for Harris Sheet Geometry

Kinetic Theory is Tricky in Thin Layers $\rightarrow L \leq \rho_i$

Use formally exact technique \longrightarrow Daughton, PoP, 2003

Method of
Characteristics
$$\longrightarrow \tilde{f}_s = -\frac{q_s f_{os}}{T_s} \left[\tilde{\phi} - \frac{U_s}{c} \tilde{A}_y + i \left(\omega - k_y U_s \right) \tilde{S} \right]$$

Orbit Integral

 $\tilde{\rho} = \sum_{s} q_{s} \int \tilde{f}_{s} \, d\mathbf{v}$ $\tilde{\mathbf{J}} = \sum_{s} q_{s} \int \mathbf{v}\tilde{f}_{s} \, d\mathbf{v}$ $\frac{d^{2}\tilde{\phi}}{dz^{2}} - \left(k_{x}^{2} + k_{y}^{2} - \frac{\omega^{2}}{c^{2}}\right)\tilde{\phi} = -4\pi\,\tilde{\rho}$ $\frac{d^{2}\tilde{\mathbf{A}}}{dz^{2}} - \left(k_{x}^{2} + k_{y}^{2} - \frac{\omega^{2}}{c^{2}}\right)\tilde{\mathbf{A}} = -\frac{4\pi}{c}\tilde{\mathbf{J}}$

Numerically solve integro-differential eigenvalue problem

We also developed new asymptotic theory

Conditions to Drive Oblique Modes

Range of allowable angles is limited $\rightarrow \theta < \tan^{-1}(B_{xo}/B_{yo})$

Fastest growing modes are oblique when

$$\frac{B_{yo}}{B_{xo}} > \left(\frac{1-kL}{1-kL/2}\right)^{1/2}$$

For long wavelength $kL \ll 1$ this is simply $B_{yo} > B_{xo}$

How well does asymptotic theory compare with exact linear Vlasov approach ?

Example comparisons for pair limit

 $m_i = m_e$ $B_{yo} = B_{xo}$

2D Simulations Only Permit Resonant Surface at z=0

X

Z

3D Evolution on Roadrunner

0.5 billion cells ~200 billion particles

New Run on Kraken - Scaling Study $\sim 3.3 \times 10^9$ cells $\sim 1.3 \times 10^{12}$ particles

 $480d_i \rightarrow 2048 \text{ cells}$

 \boldsymbol{Z}

 \mathcal{X}

3D Structure from Kraken Run $\sim 3.3 \times 10^9$ cells $\sim 1.3 \times 10^{12}$ particles

Current filaments "Secondary Islands"

 $\cdot T$

3D Complexity slows energy dissipation!

tearing

Fractional decrease in magnetic energy

Coherent flow pattern from 2D is disrupted

2D $\sim 10^6$ cells

3D cut $\sim 10^9 \text{ cells}$ Does this work the same way for hydrogen plasmas?

For hydrogen - location of matching between inner and outer regions is important

$$\Delta' \equiv \lim_{\epsilon \to 0} \left[\frac{1}{\tilde{A}_{\parallel}(z_s)} \left(\frac{d\tilde{A}_{\parallel}}{dz} \Big|_{z_s + \epsilon} - \frac{d\tilde{A}_{\parallel}}{dz} \Big|_{z_s - \epsilon} \right) \right] \qquad \qquad \delta_j = \frac{\omega l_s}{k V_{th_j}}$$

Early Structure at High Mass Ratio

 $\sim 3.3 \times 10^9$ cells $\sim 1.1 \times 10^{12}$ particles $m_i/m_e = 64$

Dynamics does NOT result in this picture based on the initial tearing modes

Galeev et al, 1986

What about secondary instabilities?

Electron layers that form along separatrices are also unstable to secondary islands

Secondary islands along separatrix needs finite k_y

Can't occur in 2D

Time Evolution of Current Structures $m_i/m_e = 64$

Secondary magnetic islands form oblique flux ropes

Electron current layers along separatrices produce strong magnetic shear

Near peak current
$$\theta_J = \tan^{-1} \left(\frac{J_y}{J_x} \right) \approx 66^\circ$$
 $\theta_B = \tan^{-1} \left(\frac{B_y}{B_x} \right) \approx 60^\circ$
 $\mathbf{k} \cdot \mathbf{B} = 0 \longrightarrow \begin{bmatrix} y \\ \theta_B \\ \theta_B \end{bmatrix} \begin{pmatrix} \mathbf{B} \\ \theta_T \\ \mathbf{k} \end{pmatrix} \begin{bmatrix} \theta_T = \frac{\pi}{2} - \theta_B \approx 30^\circ \\ \theta_T \\ \mathbf{k} \end{bmatrix}$

Secondary magnetic islands along separatrices form oblique flux ropes in 3D

Summary & Future Outlook

Petascale computing is allowing kinetic studies ~(100-1000)x larger than previous state-of-the-art efforts

Real potential for breakthrough progress - but computing will never be a substitute for thinking - still desperately need theory, laboratory experiments, space observations, etc

We can move beyond simple cartoons

New asymptotic theory offers simple predictions of when to expect this complex evolution - need similar theory for secondary islands

Summary & Future Outlook

For guide field regimes, reconnection be inherently 3D, which may have far reaching implications for:

- Dissipation rate
- Generation of stochastic magnetic fields
- Structure of exhaust
- Transport and acceleration of particles

Studies of reconnection in large 3D systems will be increasingly interconnected with turbulence

Influence of *pre-existing* upstream turbulence may be huge issue!

Finally - we can also now start to think about 2D global kinetic modeling of many more kinds of problems