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Wide range of applications to consider:

magnetopause

Planetary magnetospheres — .
magnetotail

Solar applications ——  chromosphere, transition region,
corona - flares, prominences,
coronal mass ejections

Solar wind

Laboratory fusion machines

stellar flares }
: galactic magnetotails ¢ Hydrogen
Astrophy5|ca| prOblemS accretion disks ! :

pulsar winds

gamma-ray bursts Electron-Positron
jets from AGN



When do we need a kinetic description!?
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Kinetic Particle-in-cell
Simulations



First-Principles Approach for all Regimes
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Difficult due to vast scale separation
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Peta-scale machines offers new opportunities,
but also new challenges

Roadrunner

Cell CBE Chip
~| 10,000 cores
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These efforts are permitting an
exponential increase in problem size
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What 3D problems are we looking at!?
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Flux rope



Extended current sheets and
secondary-islands are a common
feature of large-scale 2D studies
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Strong and weak guide fields

Collisional == > Collisionless




Motivation for 3D Kinetic Treatment

¢ Thin sheets are the preferred sites for the onset of reconnection

¢ Reconnection leads to the formation of new current sheets
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€ Secondary magnetic islands may play an important role in the
reconnection rate, energy partition & particle acceleration



Results confirmed for hydrogen mass ratio
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. . Daughton et al, PRL, 2009
Fokker-Planck Treatment of Collisions = |5, hcon et al PoP 2009

¢ Rigorous treatment of transition
between fluid & kinetic regimes

1Q,; = 200

¢ Benchmarks with Braginskii

¢ For S ~1000, transition from

Sweet-Parker to kinetic observed 3 //’%

0 sp ~ d; |—> critical resistivity

¢ Simple estimate fails completely in
large systems due to plasmoids

¢ New electron layers also unstable ; NN
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Reconnection Rate Modulated with Plasmoid Formation
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How do these results

extend to real 3D systems!?

Secondary magnetic islands > Flux ropes
More freedom to form islands in 3D

Can interact in complex ways not possible in 2D
Stochastic magnetic fields?

Influence of pre-existing turbulence upstream?

Potential influence on nearly every aspect of the
problem - basic cartoon, dissipation rate, etc

Real need for theory - primary & secondary islands



Focus in detail on one problem:

Island Formation
in Guide Field Reconnection




Island formation is more complicated in 3D

Drift Tearing - Coppi et al, 1979, Basu & Coppi, 1981, Catto 1974,
Bussac et al, 1978, Drake et al, 1983

Magnetopause - Galeev, Kuznetsova, Zeleny, 1986, Gladd, 1990,
Daughton et al, 2005

Volume filling islands - Drake et al, Nature, 2006

Galeev et al, 1986 Drake et al, 2006



Harris Sheet Geometry with a Guide Field

Uniform background plasma Z
No initial temperature gradients A

Consider: |. Electron-positron plasma
2. Hydrogen plasma



Tearing Modes are Localized about Resonant Surfaces
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General
Perturbation

Electrostatic part “shorts out”
response - except when

k-B=20

Outer Region E| — ()

Singular Layer E’ =+ ()

Outer Region E|| — 0
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Resonant Surfaces for Harris Sheet Geometry
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Kinetic Theory is Tricky in Thin Layers — L < p;,

Use formally exact technique —>  Daughton, PoP, 2003
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Numerically solve integro-differential eigenvalue problem



We also developed new asymptotic theory

Serious issues |. Incorrect outer layer equation
with previous I::> 2. Which means A’ is not right
theories 3. Oblique modes sensitive to matching

Tendency to drives modes oblique
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Conditions to Drive Oblique Modes

Range of allowable angles is limited

—> 0 <tan" ' (B,/Byo)

Fastest growing modes are oblique when
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Bar;o

-

1 —kL

1 — kL/2

>1/2

For long wavelength kL <1 thisis simply B,, > B,

How well does asymptotic theory compare with
exact linear Vlasov approach ?
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Example comparisons for pair limit
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2D Simulations Only Permit Resonant Surface at z=0

N
—
)
-
@\
™
LOD
1

120d;

240d; — 1024 cells




~ 10° cells

~ 107 cells




Somewhat later > {Q).. = 150

Oﬁque modes begin to dominate at later times



3D Evolution on Roadrunner

N,
L 240d,

0.5 billion cells  ~200 billion particles



— 768 cells

180d;

->

New Run on Kraken - Scaling Study
~ 3.3 x 10%ells ~ 1.3 x 10'? particles

480d; — 2048 cells



3D Structure from Kraken Run

~ 3.3 x 10%cells ~ 1.3 x 10** particles

| Current filaments
T “Secondary Islands”



3D Complexity slows energy dissipation!

myg = Me
0.1

0.08

0.06

0.04

0.02

or ~2 fact
wer sl¢

Fractional decrease in magnetic energy

0
0 T 200 400 ¢y . 600 300 1000

linear
tearing



Coherent flow pattern from 2D is disrupted

\ 2D
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Does this work the same
way for hydrogen plasmas!’



For hydrogen - location of matching between
inner and outer regions is important
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Early Structure at High Mass Ratio

~ 3.3 x 10%ells ~ 1.1 x 10** particles
m; /me = 64

| Primary Islands
L



Dynamics does NOT result in this picture
based on the initial tearing modes

= —— l )
S S

Galeev et al, 1986

What about secondary instabilities?



Electron layers that form along separatrices
are also unstable to secondary islands

2D Simulation

Secondary islands
along separatrix
needs finite ky

in-plane current

Can’t occur in 2D




Time Evolution of Current Structures m;/m. = 64
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Secondary magnetic islands form oblique flux ropes



Electron current layers along separatrices
produce strong magnetic shear
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Secondary magnetic islands along
separatrices form oblique flux ropes in 3D

Oblique Flux
Rope

Current filaments
Secondary lIslands



Summary & Future Outlook

¢ Petascale computing is allowing kinetic studies ~(100-1000)x larger
than previous state-of-the-art efforts

¢ Real potential for breakthrough progress - but computing will never
be a substitute for thinking - still desperately need theory, laboratory

experiments, space observations, etc

¥ We can move beyond simple cartoons

¢ New asymptotic theory offers simple predictions of when to expect
this complex evolution - need similar theory for secondary islands



Summary & Future Outlook

¢ For guide field regimes, reconnection be inherently 3D, which may
have far reaching implications for:

@ Dissipation rate

€ Generation of stochastic magnetic fields
¢ Structure of exhaust

€ Transport and acceleration of particles

@ Studies of reconnection in large 3D systems will be increasingly
interconnected with turbulence

¢ Influence of pre-existing upstream turbulence may be huge issue!

¢ Finally - we can also now start to think about 2D global kinetic
modeling of many more kinds of problems



