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Abstract. A basic prerequisite for investigating relativistic astrophysical magnetoplasmas is the achievement ol an accurale
description of single-particle covariant dynamics, based on gyrokinetic theory. In astrophysical contexts, these magnetized
plasmas occur in accretion discs, plasma inflows and outflows and relativistic jets, close to neutron stars and black holes (both
of stellar mass and in galactic nuclei). If radiation-reaction effects are negligible, the covariant theory is developed on the
assumption that both the space-time metric and the EM fields are suitably prescribed. while allowing for the possible presence
of gravitational/EM perturbations driven by collective plasma interactions which may arise naturally in such systems. An
interesting issue concerns the situation when the background electric field (produced either by the plasma itself or by other
sources) 18 suitably small (or vanishing) with respect to the magnetic field, while at the same time short-wavelength EM
perturbations can be present. In the present work, we extend the relativistic gyrokinetic theory developed by Beklemishev
at al. [1999-2005] to include also the treatment of such a case. In particular, we show that this requires the development
of a perturbative expansion involving simultaneously both the particle 4-position vector and the corresponding 4-velocity
vector. For treating this, we derive the asymptotic dynamical equations using a synchronous form of the relativistic Hamilton
variational principle, which allows one to satisfy exactly the physical realizability condition for the 4-velocity and to display
the inner relationships between the gyrokinetic variables.



INTRODUCTION

Gyrokinetic transformation: phase-space
transformation to hybrid variables.

Simpler equations of motion.
Gyrophase angle @ is ignorable.

Asymptotic theory based on perturbative
expansions.

Covariant formulation of GKT theory for
magnetoplasmas.



MOTIVATIONS

Astrophysical problems: relativistic plasma
flows in curved space-time.

Accretion discs and relativistic jets close
to compact objects.

Collisionless relativistic plasmas In strong
maghnetic fields:

B ~ 102G

Relativistic Vlasov-Maxwell equations in
GKT variables.



ASSUMPTIONS
* Covariant GKT theory.

 Background space-time metric and EM
fields prescribed.

* Short-wavelength EM and gravitational
perturbations included:
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HAMILTON VARIATIONAL PRINCIPLE

* Synchronous hybrid variational principle.

* Constrained dynamics - Lagrange
multipliers.
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GKT TRANSFORMATION

 Extended phase-space transformation:
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In particular:
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EM FUNDAMENTAL TETRAD
- Basis tetrad formalism: (tH [ ['H ["H)

* Eigenvectors of the Faraday tensor.

* Leading-order 4-velocity expressed as:
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GKT FUNCTIONAL

* Example: perturbative theory correct to O(e).

* GKT functional independent of the
gyrophase angle:
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* Constraint equation:
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AVERAGED QUANTITIES
* Larmor-radius 4-vector — using the
fundamental EM tetrad:
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* Relativistic magnetic moment:
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DYNAMICAL EQUATIONS

* Particular case: slowly-varying EM fields
and nearly flat space-time:
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