# Imperial College London



# Anisotropy of Solar Wind Turbulence in the Dissipation Range

<u>C. H. K. Chen</u><sup>1</sup>, T. S. Horbury<sup>1</sup>, A. A. Schekochihin<sup>2</sup>, R. T. Wicks<sup>1</sup>, O. Alexandrova<sup>3</sup>, and J. Mitchell<sup>1</sup>

<sup>1</sup>The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK <sup>2</sup>Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK <sup>3</sup>LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, 92190 Meudon, France

### Abstract

- We measure the anisotropy of turbulence in the fast solar wind between the ion and electron gyroscales
- A multi-spacecraft technique is used to calculate structure functions at different angles to the local magnetic field
- From this we infer the variance anisotropy, power anisotropy and spectral index anisotropy
- The fluctuations are spatially anisotropic (k<sub>1</sub> > k<sub>1</sub>)
- The spectral index of the perpendicular component varies with angle, suggesting critically balanced whistlers or kinetic Alfven waves
- The spectral index of the parallel component is shallower, which does
  not match theoretical predictions

# Multi-Spacecraft Structure Functions

- We combine data from the STAFF and FGM magnetometers to get magnetic field data, B, valid up to 10 Hz
- The steeper dissipation range can be seen in the power spectrum:



 Assuming Taylor's hypothesis, we calculate 2<sup>nd</sup> order structure functions, δB<sup>2</sup><sub>i</sub> (I) = <|B<sub>i</sub>(r+I) - B<sub>i</sub>(r)|<sup>2</sup>>, from pairs of spacecraft measurements (purple lines):



• The structure function values are binned depending on parallel and perpendicular separations to the *local* mean field [B(r+l)+B(r)]/2:



 For both field components the contours are elongated in the field parallel direction ⇒ fluctuations are anisotropic

### Variance Anisotropy

- The data are also binned in angle/magnitude coordinates
- The overall power in the parallel component is lower than that in the perpendicular component
- $\delta B_{\mu}^2$  is around 5% of  $\delta B_{\mu}^2$
- This is roughly what is expected from kinetic Alfven wave predictions

#### **Power Anisotropy**

- The interpolated structure function value at 200 km is found for each angle
- Both components show power clearly increasing with angle
- Perp component:  $S_{\perp}/S_{\parallel} = 5 \pm 1$ Par component:  $S_{\perp}/S_{\parallel} > 3$
- This means  $k_{\perp} > k_{\parallel}$ , which is an important assumption for many theories

#### Spectral Index Anisotropy

- Structure function scaling, g, is related to spectral index,  $-\alpha$ , by  $\alpha = g + 1$
- Scaling in different directions to the magnetic field is measured from the structure functions and the spectral index is found
- Critically balanced whistler / kinetic Alfven wave predictions are -7/3 at large angles and -5 at small angles
- In the perpendicular component at large angles the spectral index is -2.6, which is slightly steeper than the prediction
- In the perpendicular component at small angles it is -3, but since the steepest possible measurement with this technique is -3, this is consistent with the predictions
- In the parallel component we measure a shallower scaling of -1.9 at large angles, which is not consistent with the kinetic Alfven wave theory

## Summary and Conclusions

- · We measure three types of anisotropy in the solar wind dissipation range
- Variance anisotropy: power in the parallel component is 5% of power in the perpendicular component
- Power anisotropy: there is larger power at larger angles to the field  $\Rightarrow k_{\perp}\!> k_{\parallel}$
- Spectral index anisotropy: for the perpendicular component it steepens at small angles, suggesting a critically balanced cascade; for the parallel component it is shallower, which is not yet understood
- A larger survey is needed to determine whether the behaviour seen here is typical for the solar wind

#### Acknowledgements

This work was funded by STFC and the Leverhulme Trust Network for Magnetized Plasma Turbulence. FGM and CIS data was obtained from the Cluster Active Archive.



