SOME THINGS (WE THINK) WE HAVE LEARNED ABOUT PEDESTALS

Peter J. Catto, Plasma Science and Fusion Center, MIT Matt Landreman (MIT PSFC), Grigory Kagan (LANL) & Istvan Pusztai (Chalmers)

Cambridge, 27 July 2010

Motivation: pedestal = transport barrier

- Higher energy content
- Larger energy confinement time

Existence of the pedestal associated with decreased transport and turbulence

Density pedestal results in strong radial electric field and electrostatically confined banana regime ions

Pedestal width w ~ ρ_{pol}

Particle orbits in pedestal

Strong radial electric field: $(v_{\parallel}\vec{n} + \vec{v}_{E})\cdot\nabla\theta \approx (v_{\parallel} + cI\Phi'/B)\vec{n}\cdot\nabla\theta$

ExB drift ~ $v_i \rho/w \sim v_i \rho/\rho_{pol} << v_{||} \sim v_i$, but geometry makes it comparable to poloidal projection of $v_{||}$

Overview of Topics

- Version of gyrokinetics useful in pedestal: w ~ ρ_{pol}
- Ion temperature profile: DIII-D
- Subsonic flow implications
- Ion and impurity flow with finite ExB
- C-Mod comparisons
- Bootstrap current enhanced since ion flow modified
- Neoclassical ion heat flux
- Intrinsically ambipolar but diffusivities depend on E
- Modification to the Rosenbluth-Hinton zonal flow

Gyrokinetic variables

 $\vec{B} = I(\psi)\nabla\zeta + \nabla\zeta \times \nabla\psi = B\vec{n}$ R ζ

Canonical angular momentum $\psi_* = \psi - (Mc/Ze)R^2\nabla\zeta \cdot \vec{v}$ $= \psi + \Omega^{-1} \vec{v} \times \vec{n} \cdot \nabla \psi - I v_{\parallel} / \Omega$ gyration drift $(\rho/a)\psi$ $(\rho_{pol}/a)\psi$ Toroidal angle ζ_* Poloidal angle θ_*

- Total energy E
- Magnetic moment μ
 - Gyrophase φ

Axisymmetric gyrokinetic equation

Axisymmetric ($\partial/\partial \zeta = 0$) gyrokinetic equation

$$\frac{\partial \langle f \rangle}{\partial t} + \langle \frac{d\theta_*}{dt} \rangle \frac{\partial \langle f \rangle}{\partial \theta_*} = \langle C\{f\} \rangle - \frac{Ze}{M} \frac{\partial \langle \Phi \rangle}{\partial t} \frac{\partial \langle f \rangle}{\partial E}$$

Steady state $(\partial/\partial t = 0)$ to leading order in ρ_{pol} : transit averaging in banana regime $\overline{\langle C\{f_*\}\rangle} = 0$ where $\overline{Q} = \oint d\tau Q / \oint d\tau$ with $d\tau = d\theta_* / \langle \dot{\theta}_* \rangle$

Are there non-Maxwellian solutions in pedestal?

Entropy production analysis: no!

Kagan & Catto 2008 PPCF 50 085010

Pedestal ion temperature variation

In the banana regime $\partial f_* / \partial \theta_* = 0$ so $f_*(\psi_*, E, \mu)$

The only Maxwellian possible is

$$f_* = \eta \left(\frac{M}{2\pi T}\right)^{3/2} exp\left(-\frac{Ze\Phi}{T} + \frac{M\omega^2 R^2}{2T} - \frac{Ze\omega\psi}{cT}\right) exp\left[-\frac{M(\vec{v} - \omega R\vec{\zeta})^2}{2T}\right]$$

where η , ω , and T are constants to lowest order, n is Maxwell-Boltzmann, and

$$\omega = -c[\partial \Phi / \partial \psi + (1 / Zen) \partial p / \partial \psi]$$

Non-isothermal modifications can only enter to next order in the B_p/B expansion

T, η , ω must vary slowly compared to ρ_{pol}

Physical interpretation

flux surface ρ ion trajectory

Core gradients are weak so ion departures from a flux surface are unimportant - any flux surface is a closed system

Pedestal gradients are as large as $1/\rho_{pol}$ so drift departures affect the equilibration of neighboring flux surfaces - the entire pedestal region is a closed system (rather than individual flux surfaces)

The T_i gradient for the bulk ion in a DIII-D ECH H-mode pedestal is small relative to gradients in electron temperature and density

- The thermal ion full banana width is computed to be 2ρ_θ = 10 mm for He⁺⁺ at the top of the density pedestal.
- The smooth spline fits to the data (solid lines) end at the LCFS as computed by EFIT. Note the clear break in slope for T_i beyond the LCFS.
- In a nominally identical companion discharge we measured T_i for the minor C^{6+} impurity constituent. The T_i profile for C^{6+} has a very similar slope to that for He⁺⁺, but is ~ 150 eV greater in this region, probably because this discharge had an increase in β_N of ~ 10% compared with the one shown here.

c.f. deGrassie, Groebner, and Burrell, PoP vol 13, 112507-1 (2006).

Pedestal pressure balance

Radial ion pressure balance using $\vec{V}_i = \omega_i R \vec{\zeta} + u_i \vec{B}$ gives

 $\omega_{i} \approx -c[\partial \Phi / \partial \psi + (1/en) \partial p_{i} / \partial \psi]$

subsonic pedestal $\omega_i/[(T_i/en)\partial n/\partial \psi] \sim \omega_i R/v_i << 1 \implies \frac{\partial \Phi}{\partial \psi} \approx -\frac{1}{en_i} \frac{\partial p_i}{\partial \psi} > 0$ (w $\sim \rho_{pol}$)

pedestal electric field inward for subsonic ion flow

Radial electron pressure balance: $\vec{V}_e = \omega_e R \vec{\zeta} + u_e \vec{B}$

 $\omega_{e} = -c[\partial \Phi / \partial \psi - (en_{e})^{-1} \partial p_{e} / \partial \psi]$

<u>Additive</u>, making $\omega_e R \sim v_i$ so that $J_{ped} \sim env_i \&$ co-current

Thus, the electric field balancing the 1/ ρ_{pol} density gradient requires a stationary ion Maxwellian & large *electron* flow

Pedestal orderings & ExB drift effects

Decouple neoclassical & classical by assuming $\rho_{pol} >> \rho$

Trapped particles: $\Phi(\psi) \neq \Phi(\psi_*)$

ExB drift:

i) Increases effective potential well depth: $\mu = 0$ trapped by Φ poloidal variation at fixed ψ_* ii) Shifts the axis of symmetry of the trapped particle region fewer trapped!

Trapped fraction decays exponentially if $u = cI\Phi'/B > v_i$ Neoclassical and polarization phenomena strongly modified

Recall $u \approx (\rho_{pol}/\rho)v_E >> v_E$ so particle dynamics qualitatively changed by a finite subsonic ExB drift

Neoclassical ion heat flux & parallel flow

 ∇T drive only

$$\overline{C_{1}\{g + f_{M} \frac{Iv_{\parallel}Mv^{2}}{2\Omega T^{2}} \frac{\partial T}{\partial \psi}\}} = 0$$

Need a model for the collision operator - must keep energy scatter as well as pitch angle scatter

Calculate flow & transport (take appropriate moments of the distribution function)

Ion motion for $\varepsilon = a/R << 1$

Assume a quadratic potential well and expand about ψ_{\star}

$$\Phi = \Phi_* + \frac{Iv_{\parallel}}{\Omega} \Phi'_* + \frac{I^2 v_{\parallel}^2}{2\Omega^2} \Phi''_* \qquad \psi_* \approx \psi - Iv_{\parallel}/\Omega \qquad u = cI\Phi'/B$$

using E -Ze Φ_*/M , μ and ψ_* invariance:

$$\frac{(v_{||}+u)^{2}}{2S} + \mu B + \frac{u_{*}^{2}}{2S} = E - \frac{Ze\Phi_{*}}{M} \qquad v_{||} + u = Sv_{||} + u_{*}$$
orbit squeezing magnetic magnetic dipole energy $S = 1 + cI^{2}\Phi''/B\Omega$

S > 0 (S < 0) trapped particles outboard (inboard) For ϵ << 1 can find the useful form

$$\frac{1}{2}(v_{\parallel}+u)^2 = W(1-\lambda/h) \qquad h = 1 - 2\varepsilon \sin^2(\vartheta/2) = B_0/B$$

with $\lambda = 1/(1+2\varepsilon)$ at trapped-passing boundary

Collisions in the pedestal

Pitch-angle scattering is not sufficient to retain transitions across the trapped-passing boundary! Kagan & Catto 2010 PPCF 52 055004 and 079801

Neoclassical parallel ion flow

Localized portion of g higher order in $\boldsymbol{\epsilon}$

$$V_{||i|} = -\frac{cI}{B} \left(\frac{\partial \Phi}{\partial \psi} + \frac{1}{Zen} \frac{\partial p_i}{\partial \psi} \right) - \frac{7cI}{6ZeB_0} \frac{\partial T_i}{\partial \psi} J(u/v_i)$$
(Kagan & Catto PPCF 2010 + errata)
No orbit squeezing effect on ion flow

J

J changes to Pfirsch-Schluter sign at $u/v_i \sim 1.2$

Seems to explain C-Mod flow measurements in pedestal

More pedestal bootstrap current

 u/v_i

Pedestal impurity flow

Change in poloidal ion flow alters impurity flow

For Pfirsch-Schluter impurities & banana ions:

$$V_z^{\text{pol}} = V_i^{\text{pol}} - \frac{cIB_{\text{pol}}}{eB^2} \left(\frac{1}{n_i} \frac{\partial p_i}{\partial \psi} - \frac{1}{Zn_z} \frac{\partial p_z}{\partial \psi} \right) \quad \& \quad V_i^{\text{pol}} \approx \frac{7cIB_{\text{pol}}}{6eB_0^2} \frac{\partial T_i}{\partial \psi} J(\frac{u}{v_i})$$

C-Mod pedestal flow (Marr *et al* 2010):

Pfirsch-Schluter: ~ agree

Banana: problem - need E_r

Poloidal ion flow: C-Mod vs theory

Pedestal bootstrap

J(u) alters electron friction with ions thereby modifying the bootstrap current (p = total pressure)

$$Z >> 1: \qquad J_{\parallel}^{bs} = -1.46\sqrt{\epsilon} \frac{cIB}{\langle B^2 \rangle} \left[\frac{dp}{d\psi} - 1.17J(u/v_i) \frac{n_e}{Z} \frac{\partial T_i}{\partial \psi} \right]$$

Arbitrary Z:
$$J_{\parallel}^{bs} = -1.46\sqrt{\epsilon} \frac{cIB}{\langle B^2 \rangle} \left[\frac{Z^2 + 2.21Z + 0.75}{Z(Z + 1.414)} \right]$$

$$\left[\frac{dp}{d\psi} - \frac{(2.07Z + 0.88)n_e}{(Z^2 + 2.21Z + 0.75)} \frac{\partial T_e}{\partial \psi} - 1.17J(u/v_i) \frac{n_e}{Z} \frac{\partial T_i}{\partial \psi} \right]$$

J(u/v_i) changes sign at u/v_i ~ 1.2 to enhance bootstrap current in pedestal (Kagan & Catto PRL 2010)

Pedestal ion heat flux

Neoclassical polarization in the pedestal

Ignore collisions, but retain strong radial electric field:

Summary

- Pedestal ions nearly isothermal ($\rho_{pol} \nabla T_i \ll 1$): subsonic ions electrostatically confined + magnetically confined electrons
- Banana regime ion heat flux reduced & poloidal ion flow can change sign in the pedestal due to Φ' as in C-Mod
- Pedestal bootstrap current enhanced!
- Pedestal zonal flow turbulence regulation stronger due to Φ' (see Kagan PoP and Landreman PPCF)
- Plateau regime ion heat flux increases before decreasing, no sign change for ion flow (remains PS sign) or bootstrap current, no orbit squeezing effects (Pusztai & Catto)
- QSS almost the same as a tokamak! (Landreman & Catto)