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Motivation: pedestal = transport barrier

• Higher energy content

• Larger energy confinement time

Existence of the pedestal associated with decreased
transport and turbulence

Density pedestal results in strong radial electric field
and electrostatically confined banana regime ions

Pedestal width w ~ ρpol
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Particle orbits in pedestal

ExB drift ~ viρ/w ~ viρ/ρpol << v|| ~ vi, but geometry makes it
comparable to poloidal projection of v||

Strong radial electric field:   
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Overview of Topics
• Version of gyrokinetics useful in pedestal: w ~ ρpol

• Ion temperature profile: DIII-D

• Subsonic flow implications

• Ion and impurity flow with finite ExB

• C-Mod comparisons

• Bootstrap current enhanced since ion flow modified

• Neoclassical ion heat flux

• Intrinsically ambipolar but diffusivities depend on E

• Modification to the Rosenbluth-Hinton zonal flow



Gyrokinetic variables
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Magnetic moment  µ
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Axisymmetric gyrokinetic equation
Axisymmetric (∂/∂ζ =0) gyrokinetic equation

Steady state (∂/∂t = 0) to leading order in ρpol:
transit averaging in banana regime

Are there non-Maxwellian solutions in
pedestal?

Entropy production analysis: no!
Kagan & Catto 2008 PPCF 50 085010
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Pedestal ion  temperature variation

T, η, ω  must vary slowly compared to ρpol

Non-isothermal modifications can only enter to next order
in the Bp/B expansion

In the banana regime so f*(ψ*,E, µ)

The only Maxwellian possible is

where η, ω, and T are constants to lowest order, n is
Maxwell-Boltzmann, and 
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Physical  interpretation

Core gradients are weak so ion departures
from a flux surface are unimportant - any

flux surface is a closed system

Pedestal gradients are as large as 1/ρpol  so
drift departures affect the equilibration of

neighboring flux surfaces - the entire
pedestal region is a closed system (rather

than individual flux surfaces)

flux surface

ion
trajectory

ρpol



The last closed 
flux surface



Pedestal pressure balance

Radial electron pressure balance:

subsonic
pedestal
(w ~ρpol)

pedestal electric field inward for subsonic ion flow

Thus, the electric field balancing the 1/ρpol density gradient
requires a stationary ion Maxwellian & large electron flow

Radial ion pressure balance using       gives  
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Additive, making ωeR ~ vi  so that Jped ~ envi & co-current



Pedestal  orderings  &  ExB drift effects

Drift departure ρpol is of order pedestal width w

Finite drift orbits effects enter in leading order

Ñ/polTZefr :
?Ñ?Ñ|| Êvvnqqr:
Evr
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Ze∇Φ ~ T/ρpolEstimating    gives

where      is the ExB drift velocity

 ExB ~ poloidal streaming

Orbit localization from ε = a/R << 1
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Trapped particles: Φ(ψ) ≠ Φ(ψ∗)
ExB drift:

i) Increases effective potential
well depth: µ = 0 trapped by Φ
poloidal variation at fixed ψ∗

ii) Shifts the axis of symmetry of
the trapped particle region -
fewer trapped!

Trapped fraction decays
exponentially if u= cIΦ’/B > vi
Neoclassical and polarization
phenomena strongly modified

Recall u ≈ (ρpol/ρ)vE >> vE  so particle dynamics qualitatively
changed by a finite subsonic ExB drift
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Neoclassical ion heat flux & parallel flow

Need a model for the collision operator - must
keep energy scatter as well as pitch angle scatter

Solve for g

Calculate flow & transport (take appropriate
moments of the distribution function)
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Ion motion for ε = a/R << 1

using E -ZeΦ*/M, µ  and ψ* invariance:

ExB energymagnetic
dipole energy

orbit squeezing

S > 0 (S < 0) trapped particles outboard (inboard)
For ε << 1 can find the useful form

Assume a quadratic potential well and expand about ψ*
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Collisions in the pedestal

Pitch-angle scattering is not sufficient to retain
transitions across the trapped-passing boundary!

Kagan & Catto 2010 PPCF 52 055004 and 079801
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Neoclassical parallel ion flow

J

Localized portion of g higher order in ε
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No orbit squeezing effect on ion flow

J changes to Pfirsch-Schluter
sign at u/vi ~ 1.2

Seems to explain C-Mod flow
measurements in pedestal

More pedestal bootstrap current

J(0) = 1
(Kagan & Catto PPCF 2010 + errata)



Pedestal impurity flow

J

Change in poloidal ion flow alters impurity flow

For Pfirsch-Schluter impurities & banana ions:
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Pfirsch-Schluter: ~ agree

Banana: problem - need Er



Poloidal ion flow: C-Mod vs theory
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Pedestal bootstrap             
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J(u) alters electron friction with ions thereby modifying the
bootstrap current (p = total pressure)

Z >> 1:
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Arbitrary Z:

J(u/vi) changes sign at u/vi ~ 1.2 to enhance bootstrap
current in pedestal (Kagan & Catto PRL 2010)
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Pedestal ion heat flux             
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Modified ion heat flow:
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Radial ion heat flux & trapped
population exponentially small
for u/vi > 1

Ion heat flux more
sensitive to Φ′ than Φ′′
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Neoclassical polarization in the pedestal
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Ignore collisions, but retain strong radial electric field:
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Solving keeping distinction between ψ and ψ* gives
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Summary
• Pedestal ions nearly isothermal (ρpol∇Ti «1): subsonic ions

electrostatically confined + magnetically confined electrons

• Banana regime ion heat flux reduced & poloidal ion flow can
change sign in the pedestal due to Φ′ as in C-Mod

• Pedestal bootstrap current enhanced!

• Pedestal zonal flow turbulence regulation stronger due to Φ′
(see Kagan PoP and Landreman PPCF)

• Plateau regime ion heat flux increases before decreasing, no
sign change for ion flow (remains PS sign) or bootstrap
current, no orbit squeezing effects (Pusztai & Catto)

• QSS almost the same as a tokamak! (Landreman & Catto)


