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 When rotation velocities are of order of the Mach number, the 
centrifugal force is kept in the rotating frame of reference.

− Mach numbers up to 0.9 are observed in spherical tokamaks

− Mach numbers up to 0.6 are observed in conventional tokamaks

− Heavy impurities have large Mach number even at low bulk rotation

 The centrifugal force has been implemented in the local flux tube 
code GKW [1] using the formulation of Brizard [2]:

 A rigid body rotation is assumed.  The rotation of the frame is 
chosen to be the rotation of the plasma on the local flux surface.

− In a local model the co-moving system yields compact equation similar 
in form to the non rotating system. 

− The large ExB velocity of strong toroidal rotation is transformed away

− Not suited for a global description since a gradient in the rotation would 
lead to a time dependent metric

 The inertial terms have three effects [3]:
− Coriolis drift (gives a momentum pinch) [4]

− Centrifugal drift

− Enhanced trapped (from the parallel component of the centrifugal force)

 The enhanced trapping is kept in the equilibrium:

This work has been submitted to Physics of Plasmas (2010), preprint may be given on request.
Simulations performed using resources of HPC-FF (FSCFIM / FSCENU) and HECTOR (EP/H002081/1)
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Linear results

 ITG dominated GA-STD case shows increased ion heat flux due to 
increased trapped electron drive, and reduced zonal flow (but note 
that no shearing in the rotation is included for these results)

 Cases with linear transition to TEM at all scales behave differently

 Increase in electron heat transport for TEM case with stronger R/LN

 Linear threshold for TEM dominance does not translate to nonlinear
 Null particle flux state is independent of choice for fixed density point
 Particle pinch with increasing rotation due to increased inward 

contribution from slower trapped electrons [6]

Nonlinear resultsInclusion of the centrifugal force
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Mass dependent centrifugal force different for electrons and ions 

Must retain a background electro-static potential which is a function of the poloidal angle
 in order to satisfy quasi-neutrality

Normal trapping. Any distribution (like the Maxwellian) which is isotropic is an equilibrium distribution 
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Density and rotation are 
not independent parameters “Centrifugal potential” found by solving for 

quasineutrality – here for a 2 species 
plasma

 In order that the density gradient  has the intuitive meaning of being in the 
radial direction, the radial derivative of R0 (at constant θ) must be kept.

 The other parts of the derivative of the density exponential cancel with the    
                                term of the Maxwellian

  The “centrifugal potential” traps electrons, but detraps ions, resulting in the 
same  trapping condition for both species. 
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GA-STD Case

Dispersion relation shows 
TEM dominates at larger scales with rotation

Trace impurities show stronger 
convective particle pinch for ITG:
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Trapped region enlarges with rotation,
so TEM is enhanced

Linear transition from ITG to TEM 
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Transition does not translate to this 
nonlinear case

Electron heat transport increase 
for R/LN driven TEM case
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