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• Motivation 
• Effect of rotational shear on 

turbulent transport 
•  Implications for local gradients (0D) 
• Extension to radial profiles (1D) 

Overview 



Objective 

Connor et al. (2004) 

•  Identify mechanism(s) for 
achieving enhanced 
confinement 

•  Internal transport barriers 
observed with temperature 
gradients well above threshold 

•  Often accompanied by large      
E x B shear and low or negative 
magnetic shear 

•  Experimentally observed power 
threshold for formation 
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Linear stability 

•  ITG drive at 
small shear 

•  ITG/PVG drive 
at moderate 
shear 

•  Stabilization 
at large shear 

•  Roughly linear 
dependence 
of critical flow 
shear on R/LT 

Barnes et al., 2010 

ŝ = 0.8q = 1.4r/R = 0.18Cyclone base case: 



Transient growth 

•  Beyond critical 
shear value, 
transient linear 
growth 

•  Amplification of 
initial amplitude 
increases with 
shear 

•  Cf. Newton et 
al., 2010 

Barnes et al., 2010 
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•  Fluxes follow linear trends 
up to linear stabilization 
point 

•  Subcritical (linearly 
stable) turbulence 
beyond this point 

•  Optimal flow shear for 
confinement 

•  Possible hysteresis 
•  Maximum in momentum 

flux => possible 
bifurcation 
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Turbulent Prandtl number 
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Pr =
νi

χi

Πi = −mivth(qR0/r)νiγE

Qi = −χidTi/dr

•  Prandtl number 
tends to shear- 
and R/LT-
independent 
value of order 
unity (in both 
turbulence 
regimes) 

Barnes et al., 2010 



Stiffness 
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•  Complicated 
dependence on 
shear 

•  Generally, critical 
gradient shifts 
higher and stiffness 
increases at low 
shear 

•  Critical gradient 
shifts lower and 
stiffness decreases 
at high shear (when 
turbulence driven 
by shear instead of 
R/LT) Barnes et al., 2010 



Zero magnetic shear  

Highcock et al., 
2010 

•  Similar…sort 
of 

•  All 
turbulence 
subcritical 



Zero magnetic shear  

•  Similar…sort 
of 

•  All 
turbulence 
subcritical 

•  Very 
different 
critical flow 
shear values 
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Π
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=
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Π, Q

heat, momentum 

Power/Torque balance for 
beam injection 



Two possible bifurcations 

• Adding neoclassical leads to a 
bifurcation 
–  It seems to contradict phenomenology 

• Adding intrinsic rotation leads to 
another type of bifurcation 
–  Speculative  



Balance w/o neoclassical 
•      = red lines 
•           = green lines 

•  Critical gradient = 
dashed line 

•  For given    
and     , only one 
solution 

 No bifurcation! 
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Neoclassical energy flux 



Neoclassical energy flux 



Curves of constant    
•  Neoclassical 

•  Turbulent 

•  Prandtl numbers 

 Banana orbits 
give energy flux, 
not momentum 
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Curves of constant    Π/Q



Possible solutions 
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Possible solutions 



Total energy flux 



Bifurcations 

Highcock et al., 
2010 

•  Consider inverse 
problem: for fixed 
fluxes, what are 
gradients? 

•  With inclusion of 
neoclassical 
fluxes, we see 
bifurcation to 
much larger flow 
shear and R/LT  



Total energy flux 



Smooth transitions to 
neoclassical 



Curves of constant    
Slope increases for 
•  Small 

 Favors neutral 
beam heating 

•  Small 

 Favors small 
magnetic shear 
regions 

Π/Q

d(R/LT |c)
dγE

Π/Q



Total energy flux 



Intersecting lines 



Neoclassical bifurcation 

• Bifurcation happens due to lower 
neoclassical Prandtl number 

• Numerically tested 
• Possible to obtain large jumps 
• Favors neutral beams and low 

magnetic shear 
•  It is easier at lower power!  



Intrinsic rotation terms 
•  Idea: expansion on poloidal gyroradius 

• For low flow, only temperature matters 

– Generation of intrinsic rotation (Parra & 
Catto, PPCF 2010) 

• Assume  

Π = Π0 + αρp
∂2T
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Curves of constant    

αtαn > 0

Π/Q



Curves of constant    

αtαn < 0

Π/Q



Intrinsic rotation bifurcation 



Total energy flux 



Intrinsic rotation bifurcation 

• There is a power threshold 

• Very speculative 

• Requires high energy input  
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Why do radial profile analysis? 

• Ultimately, we want to predict mean 
profiles 

• Magnetic geometry varies radially.  
Want to know where barrier forms 

• Can address Coriolis pinch, turbulent 
and viscous heating, temperature 
equilibration, etc 

•  Inverse problem more forgiving 
(stiffness phenomenon reversed) 



Multiple scale problem 

�
L�/∆�

�
× (L⊥/∆⊥)2 × (Lv/∆v)2 × (Lt/∆t) ∼ 1021simulation cost: 



Transport equations in GK 
Moment equations for evolution of mean quantities: 
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Multiscale grid 

•  Turbulent fluctuations calculated in small regions of 
fine space-time grid embedded in “coarse” grid (for 
mean quantities) 

Flux tube simulation domain 



TRINITY schematic 

Macro 
profiles 

Steady-state 
turbulent fluxes 

and heating 
GS2/GENE 

GS2/GENE 

GS2/GENE 
Transport 

solver 

Flux tube 1 

Flux tube 2 

Flux tube N 

Flux tube 3 

GS2/GENE 



Sampling profile with flux tubes 



Sampling profile with flux tubes 

Simulation volume reduced 
by factor of ~10s 



TRINITY transport solver 

•  Transport equations are stiff, nonlinear PDEs.  Implicit 
treatment via Newton’s Method (multi-step BDF, 
adaptive time step) allows for time steps ~0.1 seconds 
(vs. turbulence sim time ~0.001 seconds) 

•  Challenge: requires computation of quantities like 

•  Local approximation: 

•  Simplifying assumption: normalized fluxes depend 
primarily on gradient scale lengths 
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TRINITY scaling 

•  Example calculation with 10 radial grid points: 

–  evolve density, toroidal angular momentum, and 
electron/ion pressures 

–  simultaneously calculate fluxes for equilibrium 
profile and for 4 separate profiles (one for each 
perturbed gradient scale length) 

–  total of 50 flux tube simulations running 
simultaneously 

–  ~2000-4000 processors per flux tube => scaling to 
over 100,000 processors with high efficiency 



JET shot #42982 

•  ITER demo discharge 
•  H-mode D-T plasma, 

record fusion energy 
yield 

•  Miller local 
equilibrium model: q, 
shear, shaping 

•  B = 3.9 T on axis 
•  TRANSP fits to 

experimental data 
taken from ITER 
profile database 



Evolving density profile 

•  10 radial grid points 
•  Costs ~120k CPU hrs 

(<10 clock hrs) 
•  Dens and temp 

profiles agree within 
~15% across device 

•  Energy off by 5% 
•  Incremental energy 

off by 15% 
•  Flow shear absent 



Fluctuations 



Conclusions 

•  Maximum temperature gradient for given heat flux.  
Occurs at finite flow shear. 

•  Turbulent Prandtl number is constant of order unity for 
moderate to large flow shear values. 

•  Stiffness modestly decreased for high flow shear (PVG 
driven turbulence).  Main effect at low flow shear is 
upshift of critical temperature gradient 

•  Two possible bifurcation types in 0D model: 
–  Neoclassical bifurcation (observed from GS2 simulations) 

–  Intrinsic rotation bifurcation (demonstrates power threshold)  

•  Current work focuses on extension to self-consistent, 
1D transport simulations 



TRINITY transport solver 

•  Calculating flux derivative approximations: 

–  at every radial grid point, simultaneously calculate                           
aaaaaaaaa and                     a        using 2 
different flux tubes 

–  use 2-point finite differences: 

–  possible because flux tubes independent (do not 
communicate during calculation) 

–  perfect parallelization (almost) 


