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plan

e Solar wind properties and turbulence
e Plasma physics measurements in the solar wind

e [nstabilities (as opposed to ‘turbulence’)

e For the future...

Thesis: there is finite power at and above kp ~ 1 that is unrelated to
the turbulent cascade



Solar wind properties (at, say, 1 AU)
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Fast wind (1 AU)

Vsw ~ 500-1000 km/s
T, ~10-20 eV

Te ~ 5-20 eV
n~1-10cm-3

B ~ 5nT, 0B is larger

g~ 1

Slow wind (1 AU)
Vsw ~ 250-500 km/s

T, ~5-20 eV

Te ~ 5-20 eV
n~5-25cm-3

B~5nT

g~ 1



‘Heating’ Is required to accelerate the solar wind

¢ Parker solar wind model
(unmagnetized, zero angular
momentum, critical points,
etc.)

e Requires energy input at
exobase beyond available
photospheric thermal energy

e Plenty of magnetic energy
density available

® \waves
® reconnection

e ambipolar electric field
(exosphere)

vice

(Parker, 1958)




‘Heating’ Is required to sustain the solar wind

L fast wind =~
e Local (Rs) and extended (AU) ' -_= == =_ ==
heating are required Ll fee_—. K= =4
e Extended heating implies waves =V e e
e Alfven waves - - _;_. i :éx_! B r-:iixi“ AR
* observed and copious (i.e. - | | g i i;ﬂ;!?!_'!?‘i i
Belcher & Davis, 1971) Ll ks = - - &= =
e weakly damped (compared to | : % - - _EC-m - § 3:— r
fast- and slow-mode) | %_ I e T
¢ excited by large-scale motion ; o ! I |'.
near the Sun, n-i coupling, 10 T o T o
etc. altitude (Rg)

Helios proton temperature in the fast wind

Hence, turbulence...



Alfvenic turbulence and heating

e Kolmogorov (isotropic, hydro) turbulence - scale free inertial range
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Alfvenic turbulence and heating

e Goldreich-Sridhar (anisotropic) turbulence - also scale free, ‘strong’

perpendicular cascade k” < k|

critical balance W ~~ kHUA ~ ]‘CJ_UJ_

ewézconst T~ ANvp ~ 1 va

e ~ V3 /X v~ (eX)/3

P~ Xu? ~ ¢2/3)\5/3 Py~ /7

k|| ~ ki/g evolution is primarily in perpendicular wavenumber



—vidence for a perpendicular cascade
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Alfvenic turbulence and heating

e Goldreich-Sridhar (anisotropic) turbulence - also scale free

perpendicular cascade k” < k|

critical balance W ~~ k||’UA ~ IZCJ_'UJ_

At ki p; =1
w/Q ~ (p;/L)/38;

Is very small. Far from cyclotron
resonance! So we think that w = K vsw IS

pretty good.

Heating is by Landau damping or
transit-time damping
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—vidence for a KAW/perpendicular cascade

e Cluster measurements of the ' s 5
electric field of solar wind -y ﬁ\"*\
turbulence show that: |
1. the cascade is Alfvenic - E —
and B are strongly correlated 3
2. the short wavelength electric § o2

field power is enhanced | e
3. the E/B ratio is consistent

with Alfvenic inertial range

and evolution to kinetic

Alfven waves at short

wavelengths

E',/B, (km/s)

4. density spectrum is k™3 o 1
NS 0.8
O
S 0.6
Caveats: X £ ,xé,
1. Cluster is only in the solar wind for short intervals © 0:04 : : :
2 Spin tones (more later ) 0.001 0.010 0.100 1.000 10.000
- [N} k .
3. EFW noise levels and sampling rates i

(Bale et al, 2005)
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Magnetic turbulence in the Solar Wind :

Evidence for slope break in the electron range
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n,, (cm™)

Measurements of
spacecraft potential

can be calibrated to

give density (locally)

VSC

XCC

—vidence for a perpendicular cascade
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cross-correlation of density and fields

Density and fields are poorly correlated - not much compressive power!



—lectric fleld measurements

- Voltage probes (and spacecraft) are Langmuir

probes
- Current balance (thermal, photoelectron,
secondaries) determines floating voltage 30
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—O- Results from simulations
—— Hallen model
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Radial distance from the midpoint of the boom [m]

Cluster (and THEMIS) satellites have double-probe
measurements, but ecliptic plane wire booms spin through

the plasma wake (and have large photoelectron variations)



—lectric fleld measurements

- Voltage probes (and spacecraft) are Langmuir

probes

- Current balance (thermal, photoelectron,

secondaries) determine floating voltage
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Fig. 2. Three-electrode probe system. Potential along a line in the plasma through the probes and
along a line through the lead ABD.
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- Bias current minimizes voltage variations
due to natural currents

- Unbiased probes measure primarily
current variations - this is historically the
case for SW experiments



LF/DC electric field measurements

Good LF gain requires that we R
maximize the base resistance Ry or
minimize or control Ry

antenna
enciosure

C, DAD |
(\

element

-~ Rs+ Rp

GLF

in shadow Rs ~ Te/jp Which is highly variable ’7’00@%5
in sunlight Rs ~ Vp/(je + jbias) Which is smaller, less variable, and €4sier to control

to make Ry large, minimize electron exchange between the spacecraft and sensors
put sensors far from spacecraft (ie. sensors at the end of booms)
put up a voltage barrier (voltage ‘guard’ surfaces)

sensors are acting as Langmuir probes - put them as CLOSE as possible to each other on the |-V curve
- Rs and Ry should be same for each antenna - symmetry w.r.t the Sun is critical!

summary: antennas in sunlight with good symmetry and away from the wake and shorter Ap allows the
measurement of DC/LF electric field
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—lectric field measurements in the solar wind

- Longer booms are better (for SNR), however spin-tones occur in the
most interesting frequency range!
- Minimize variations in solar illumination
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- Short axial booms can

do pretty well,
especially when Ap is
small
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—lectric field measurements in the solar wind

- Longer booms are better (for SNR),
_— however spin-tones occur in the most
interesting frequency range!

- Minimize variations in solar illumination
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Magnetic field measurements

Burst 2
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Figure D.2-6. Sensitivity of magnetic field and waves measurements. The SCM and MAG together cover
the full range of required measurements. SCM becomes more sensitive than MAG at ~10 Hz. The HF
SCM measures z-mode, very intense radio bursts, and very fast solitary waves.



dB? vs solar wind speed

high speed wind has larger magnetic fluctuation levels 0B - this is well known
- is there something special about the source?
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0B< vs collisional age

on the other hand, ‘age’ = v R/vswis a measure of the number of Coulomb

collisions since leaving the Sun. So maybe it’s not the source (alone) but
rather the local evolution
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Local instabillities inject power directly at small scales

® |on pressure anisotropy instabilities
e Mirror and/or AIC for T/T > 1
e Firehose for T/T < 1
e Electron pressure anisotropy instabilities
e Streaming instabilities
® proton-proton
e proton-alpha
e Heat flux instabilities
e Electron beam instabillities
e | angmuir/beam mode generation at near fpe

These instabilities will generate power at kpi ~1 or shorter



Proton pressure anisotropy
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WIND magnetic field data - bandwidth

0.001 0.010

Freq[HZ]

(Leamon et al., 1998)

...corresponds to

0.100

<pi ~ 0.0

(in part, because

b ~ Vsw)

1.000 10.000

N—
©
Q

magnetic fluctuation data
integrated over this band (3

sec and faster)...
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Proton anisotropy instabllities

10.0 v-

e Solar wind expansion and compression
drive the proton distributions towards
pressure-anisotropy instability thresholds

1. Alfven/lon-cyclotron
2. Mirror mode
3. Oblique firehose instability

e \\Vind measurements show 0B

fluctuations associated with instability
thresholds, suggest mirror and oblique
firehose (no 0E measurements!)

® These instabilities inject fluctuation power
directly at k p ~ 1 (in contrast to the

turbulent cascade)

(Bale et al., 2009)
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Proton anisotropy instabllities
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Proton anisotropy instabllities - new things

cross helicity
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Proton anisotropy instabilities - new things

Alfven ratio
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Proton anisotropy instabilities - new things
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anISotropic VISCOUS Stress

= + OV.OV
¢ B* A PV

e can be comparable to the Maxwell stress in astrophysical plasmas
¢ results in ion and electron heating

e constrained by u invariance and instabilities
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electron anisotropies

¢ \Wind/3DP electron distributions

at same time intervals as before
~ 1 million independent measurements

e corrected for spacecraft
potential using SWE moments

¢ integrated into two populations:
e core: 0-80¢eV

e halo: 80 - 1000 eV
(anisotropy only)

® core is very isotropic - collisions

e halo is ordered by electron 8

Te,.L/Te,II

0.10

1.00 10.00 100.00
Be,ll



core anisotropy vs collisional age

e a ‘collisional age’ can be 2.0 ]

estimated from collision frequency

and transit time (viz. Salem et al) -

e core electrons appear to be well-

ordered by collisions (here, at 1 g
AU) al
e some anisotropy consistent with 027

conservation of magnetic moment

0.0 |

0.1 1.0 10.0 100.0

e,e



Halo anisotropies are constrained by instabilities

* halo is constrained by a whistler

instability for T /T} > 1 2.0°
* halo is constrained by the 1.5-:
electron firehose instability for
TJ_/T” <1 K
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Halo anisotropies are constrained by instabllities

* halo is constrained by a whistler
instability for T /T > 1

Wind SCM data - ~20 Hz

e halo is constrained by the
electron firehose instability for
TJ_/TH <1
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Conclusions

e Solar wind requires heating, both at the source and extended
e Extended, distributed heating implies turbulent dissipation

¢ Resistively-coupled electric field measurements provide critical
diagnostics

¢ | ocal instabilities generate power Iin precisely the same spectral
range as turbulent dissipation occurs

¢ Excellent opportunities for these measurements on the next
generation of solar wind missions.



Solar Orbiter RPW Instrument

|
- ESA Cosmic Vision, M-class competitor =~ Radio and Plasma Waves = RPW

- Inner heliosphere - 0.28 AU perihelion (Pl Maksimovic)
- Particles and fields measurements
- 2017 launch - Selected with 3 antenna booms

-5m x 1.5 cm sensor on a 1m boom
- 3-axis stable spacecraft
- good and stable Sun symmetry




Solar Probe Plus
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- NASA LWS mission

o - Inner heliosphere - 9.5 Rs perihelion
_ - Particles and fields measurements
— - 2018 launch

o) - nasty plasma wake
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