Waves and fluctuations associated with local instabilities in the solar wind

Stuart D. Bale Physics Department and Space Sciences Laboratory University of California, Berkeley

- Solar wind properties and turbulence
- Plasma physics measurements in the solar wind
- Instabilities (as opposed to 'turbulence')
- For the future...

Thesis: there is finite power at and above $k\rho \sim 1$ that is unrelated to the turbulent cascade

Solar wind properties (at, say, 1 AU)

Fast wind (1 AU) v_{sw} ~ 500-1000 km/s T_p ~10-20 eV

 $T_e \sim 5-20 \text{ eV}$ n ~ 1-10 cm-3 B ~ 5 nT, δ B is larger $\beta \sim 1$

Slow wind (1 AU)

 $v_{sw} \sim 250-500 \text{ km/s}$ $T_p \sim 5-20 \text{ eV}$ $T_e \sim 5-20 \text{ eV}$ $n \sim 5-25 \text{ cm}-3$ $B \sim 5 \text{ nT}$ $\beta \sim 1$

'Heating' is required to accelerate the solar wind

- Parker solar wind model (unmagnetized, zero angular momentum, critical points, etc.)
- Requires energy input at exobase *beyond* available photospheric thermal energy
- Plenty of magnetic energy density available
 - waves
 - reconnection
 - ambipolar electric field (exosphere)

(Parker, 1958)

'Heating' is required to sustain the solar wind

Helios proton temperature in the fast wind

Hence, turbulence...

Alfvenic turbulence and heating

• Kolmogorov (isotropic, hydro) turbulence - scale free inertial range

$$\begin{aligned} \epsilon \sim \frac{u^2}{\tau} &= const \qquad \tau \sim \lambda/u \\ \epsilon \sim u^3/\lambda \qquad u \sim (\epsilon\lambda)^{1/3} \qquad 10^4 \\ P \sim \lambda u^2 \sim \epsilon^{2/3} \lambda^{5/3} \qquad \qquad 10^4 \\ The total field |B|, field components, density, temperature, and velocity all show evidence of k^{-5/3} behavior (sometimes) \\ \end{aligned}$$

Alfvenic turbulence and heating

• Goldreich-Sridhar (anisotropic) turbulence - also scale free, 'strong' perpendicular cascade $~k_{||} \ll k_{\perp}$ critical balance $~\omega \sim k_{||} v_A \sim k_{\perp} v_{\perp}$

$$\epsilon \sim \frac{v_{\perp}^2}{\tau} = const \qquad \qquad \tau \sim \lambda/v_{\perp} \sim l_{\parallel}/v_A$$

$$\epsilon \sim v_{\perp}^3 / \lambda$$
 $v_{\perp} \sim (\epsilon \lambda)^{1/3}$

$$P \sim \lambda u_{\perp}^2 \sim \epsilon^{2/3} \lambda^{5/3} \qquad P_{\parallel} \sim l^2$$

 $k_{\parallel} \sim k_{\perp}^{2/3}$

evolution is primarily in perpendicular wavenumber

Evidence for a perpendicular cascade

- Magnetic field fluctuation power shows k^{-5/3} spectrum in the perp direction only
- Parallel power << perpendicular power
- Indices at high frequen sistent with evolution to KAW

Figure 4. Perpendicular and parallel power for each of the five periods in Table 1, compensated to remove a spectral gradient of -5/3 from the perpendicular power and -2 from the parallel.

Figure 5. Power spectral density vs. frequency for angle bins centered at $\theta = 3$ (bottom), 9, 15, 21,..., 93 deg (top) computed using the 2008 February data in Table 1 by means of Equation (27). The different curves have been offset vertically for easier viewing. (Podesta, 2009)

(A color version of this figure is available in the online journal.)

Alfvenic turbulence and heating

perpendicular cascade $k_{||} \ll k_{\perp}$

Goldreich-Sridhar (anisotropic) turbulence - also scale free

At $k_{\perp}\rho_i \approx 1$ $\omega/\Omega_i \approx (\rho_i/L)^{1/3} \beta_i^{-1/2}$ is very small. Far from cyclotron resonance! So we think that $\omega = k v_{sw}$ is pretty good.

Heating is by Landau damping or transit-time damping

Evidence for a KAW/perpendicular cascade

- Cluster measurements of the electric field of solar wind turbulence show that:
 - 1. the cascade is Alfvenic E and B are strongly correlated
 - 2. the short wavelength electric field power is enhanced
 - 3. the E/B ratio is consistent with Alfvenic inertial range and evolution to kinetic Alfven waves at short wavelengths
 - 4. density spectrum is k^{-5/3}

Caveats:

- 1. Cluster is only in the solar wind for short intervals
- 2. Spin tones (more later...)
- 3. EFW noise levels and sampling rates

Magnetic turbulence in the Solar Wind : Evidence for slope break in the electron range

Evidence for a perpendicular cascade

Electric field measurements

- Voltage probes (and spacecraft) are Langmuir probes

- Current balance (thermal, photoelectron, secondaries) determines floating voltage

Cluster (and THEMIS) satellites have double-probe measurements, but ecliptic plane wire booms spin through the plasma wake (and have large photoelectron variations)

Elect ' ? .

Fig. 2. Three-electrode probe system. Potential along a line in the plasma through the probes and along a line through the lead *ABD*.

(Fahleson)

LF/DC electric field measurements

to make R_b large, minimize electron exchange between the spacecraft and sensors put sensors far from spacecraft (ie. sensors at the end of booms) put up a voltage barrier (voltage 'guard' surfaces)

sensors are acting as Langmuir probes - put them as CLOSE as possible to each other on the I-V curve - R_s and R_b should be same for each antenna - symmetry w.r.t the Sun is critical!

summary: antennas in sunlight with good symmetry and away from the wake and shorter λ_D allows the measurement of DC/LF electric field

Electric field measurements in the solar wind

Electric field measurements in the solar wind

Magnetic field measurements

Figure D.2-6. Sensitivity of magnetic field and waves measurements. The SCM and MAG together cover the full range of required measurements. SCM becomes more sensitive than MAG at ~10 Hz. The HF SCM measures z-mode, very intense radio bursts, and very fast solitary waves.

δB^2 vs solar wind speed

high speed wind has larger magnetic fluctuation levels δB - this is well known

- is there something special about the source?

δB^2 vs collisional age

on the other hand, 'age' = ν R/v_{sw} is a measure of the number of Coulomb collisions since leaving the Sun. So maybe it's not the source (alone) but rather the local evolution

 10^{-1} More 'active' 10⁻² plasma is more collisionless 10⁻³ lðBl² (nT) 10-4 10⁻⁵ 10⁻⁶ 0.0001 0.0010 0.0100 0.1000 1.0000 10.0000 100.0000 collisional age

Local instabilities inject power directly at small scales

- Ion pressure anisotropy instabilities
 - Mirror and/or AIC for T/T > 1
 - Firehose for T/T < 1
- Electron pressure anisotropy instabilities
- Streaming instabilities
 - proton-proton
 - proton-alpha
- Heat flux instabilities
- Electron beam instabilities
 - Langmuir/beam mode generation at near fpe

These instabilities will generate power at $k\rho_i \sim 1$ or shorter

Proton pressure anisotropy

WIND magnetic field data - bandwidth

Proton anisotropy instabilities

- Solar wind expansion and compression drive the proton distributions towards pressure-anisotropy instability thresholds
 - 1. Alfven/Ion-cyclotron
 - 2. Mirror mode
 - 3. Oblique firehose instability
- Wind measurements show δB fluctuations associated with instability thresholds, suggest mirror and oblique firehose (no δE measurements!)
- These instabilities inject fluctuation power directly at k $\rho \sim$ 1 (in contrast to the turbulent cascade)

Proton anisotropy instabilities - δv data

Proton anisotropy instabilities - new things

Proton anisotropy instabilities - new things

Proton anisotropy instabilities - new things

 $< (\delta v)^2 + (\delta b)^2 > (\Delta t = 3 \text{ sec}, T = 15 \text{ sec})$

anisotropic viscous stress

$$W_{r\phi} = -\left(1 - \frac{p_{\parallel} - p_{\perp}}{B^2}\right) \frac{B_r B_{\phi}}{4\pi} + \rho v_r \delta v_{\phi}$$

- can be comparable to the Maxwell stress in astrophysical plasmas
- results in ion and electron heating
- constrained by μ invariance and instabilities

Evidences for both collisions and instabilities shaping the eVDFs

Stverak et al., JGR, 2008 Similar for protons : Kasper et al., Hellinger et al.

electron anisotropies

- Wind/3DP electron distributions at same time intervals as before
 1 million independent measurements
- corrected for spacecraft potential using SWE moments
- integrated into two populations:
 - core: 0 80 eV
 - halo: 80 1000 eV (anisotropy only)
- core is very isotropic collisions
- halo is ordered by electron β

core anisotropy vs collisional age

- a 'collisional age' can be estimated from collision frequency and transit time (viz. Salem et al)
- core electrons appear to be wellordered by collisions (here, at 1 AU)
- some anisotropy consistent with conservation of magnetic moment

Halo anisotropies are constrained by instabilities

 halo is constrained by a whistler instability for $T_{\perp}/T_{\parallel} > 1$ 2.0 0.1% halo is constrained by the 1.5 whistler 1% thresholds electron firehose instability for $T_{\perp}/T_{\parallel} < 1$ T_{e,⊥}∕T_{e,II} 0'1 0.5 $T_{\perp}/T_{\parallel} < 1 + S/\beta_{e,\parallel}^{\alpha}$ electron firehose thresholds 0.1% 0.0 whistler e- firehose 0.1 1.0 10.0 $\beta_{e,II}$ S S count level α α 0.275 -0.982 0.577 0.1% 0.579 1% 0.147 0.647 -0.682 0.485

-0.429

0.744

10%

Halo anisotropies are constrained by instabilities

• halo is constrained by a whistler instability for $T_{\perp}/T_{\parallel} > 1$

Wind SCM data - ~20 Hz

• halo is constrained by the electron firehose instability for $T_{\perp}/T_{\parallel} < 1$

Conclusions

- Solar wind requires heating, both at the source and extended
- Extended, distributed heating implies turbulent dissipation
- Resistively-coupled electric field measurements provide critical diagnostics
- Local instabilities generate power in precisely the same spectral range as turbulent dissipation occurs
- Excellent opportunities for these measurements on the next generation of solar wind missions.

Solar Orbiter RPW Instrument

- ESA Cosmic Vision, M-class competitor
- Inner heliosphere 0.28 AU perihelion
- Particles and fields measurements
- 2017 launch

Radio and Plasma Waves = RPW (PI Maksimovic)

- Selected with 3 antenna booms
- 5m x 1.5 cm sensor on a 1m boom
- 3-axis stable spacecraft
- good and stable Sun symmetry

Solar Probe Plus

