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Ang. Mom. flux = 2! R "  vrot vD!

“viscous” ang. mom flux!



Accretion disks have acquired the status of an icon
in modern astrophysics.  



•  Accretion involves loss of angular momentum from 
fluid elements.   How?  

•   Ordinary viscosity is much too inefficient.

•   Turbulence  must be present.  

    This permits broad correlations of the form:       
                                              <δvr δvϕ > 

     as opposed to:                   λc dvϕ/dr

THE PROBLEM: 



Angular Momentum Flux: 

< ρR2   vR vϕ > = ρR2   <δvR δvϕ >  +ρR3 Ω   vDRIFT          

This angular momentum flux must be constant
in a steady disk, so:

vDRIFT  = - <δvR δvϕ> / RΩ  

A fluctuation dissipation relation.



Energy Flux: 

< 0.5 ρR vR vϕ 
2
  > = 

                            ρR vϕ<δvR δvϕ > +0.5 ρR vϕ 
2 vDRIFT          

                        = -0.5 ρR vϕ 
2 vDRIFT ,   plus

the potential energy drift,  -ρR vϕ 
2 vDRIFT, 

gives

                     -1.5 ρR vϕ 
2 vDRIFT.



Energy must be dissipated by this transport: 

Energy Flux = -3/2  ρR vϕ 
2 vDRIFT

Accretion rate  2 πρR vDRIFT  is constant, so 
the Energy Flux is  NOT conserved: 

The energy dissipated per unit area in the disk
is     
     1.5 (ρH)  vϕ 

2 vDRIFT = (3/4π) GM Mdot/R3
                       



All well and good..... but δvr  and δvϕ lack
phase coherence in a Keplerian disk.  The 
correlation <δvrδvϕ > is ~ zero (Ji et al. 
2006).    

That is why hydrodynamical shear turbulence 
theories of accretion disks don’t work.   Lack 
of phase coherence is often a reason why 
large turb. flucs. don’t transport well. 

Lies, damned  lies, and turbulence phenomenology 



All of this changes when a magnetic field is 
added...       

Lies, damned  lies, and turbulence phenomenology 
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If perturbations ~eikz,

(kvA)2 + dΩ2/d lnR > 0

for stability (vA
2 =B2/µρ) .

MRI Stability Criterion:



Introduces powerful correlations
between (δvR & δvϕ ) as well as 
(vAR  & v Aϕ )

vA
2 =B2/µρ.

MRI:



Flux arguments go through just as 
before, but change  <δvR δvϕ > 

to   <δvR δvϕ – vAR v Aϕ >.

Upshot:



 TRϕ  =  < ρ(δvR δvϕ – vAR v Aϕ ) >

The Stress tensor:



  dE/dt = - TRϕ   dΩ/d ln R

This is the rate at which energy
is exchanged with differential
rotation.   For local turb., it is also
the rate of dissipation.   For waves,
the energy need not be dissipated.

Energy Extraction:



Log-normal fit to Cygnus X-1 
(low/hard state) 
Uttley, McHardy & Vaughan (2005) 



Log-normal fit Gaussian fit 

Non-Gaussianity in numerical simulations. 

(From Reynolds et al. 2008)



•  The MRI exhibits linear local exponential growth that is 
abruptly terminated when fluid elements are mixed.  

•   Lifetime of linear growth is a random gaussian (symmetric 
bell-shaped) variable, t.

•  Local amplitudes of fields grow like exp(at), then 
themalized and radiated; responsible for luminosity.

•  If t is a gaussian random variable, then exp(at) is a 
lognormal random variable.

Why is MRI lognormal? 



Global Simulations of the MRI, Hawley 2000 

Meridional Plane Equatorial Plane 



The  Kolmogorov picture of hydrodynamical turbulence   
(large scales insensitive to small scale dissipation) …

MHD Turbulence ≠ Hydro Turbulence 

Re=1011                Re=104

…appears not to hold for MHD turbulence.



1.  Alpha models: T = αP
2.  What determines T?  (Pm, Rm)
3.  Is the turbulence local? 
4. How does MHD turb. relate to 
astrophysical phenomenology?
(Dead zones, disk states, QPOs)

Disk turbulence folklore/issues:



STARS



STELLAR CONVECTIVE ZONES:

Convective stars spontaneously develop
differential rotation.

The <δv δT> fluctuations are designed 
by nature to transport heat, not angular 
momentum.    Heat goes out, while 
angular momentum tends to go in .... 



To rotation center

Ω2

 Ω1

L1 < L2, Ω1 =  Ω2

L2

L1



To rotation center

L 2, Ω2

L1, Ω1

With L preserved, L1 < L2, 
and when elements mix,
Ω1 <  Ω2 .   Dissipation then 
requires  inward transport.  



GONG DATA
(Howe 2009)
GONG data © 2009,
courtesy R. Howe 
       “ISOTACHS”



GONG DATA
(Howe 2009)

“Tachocline”



GONG DATA
(Howe 2009)
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Convective transport and shear:    

1.  Convection mixes entropy S along the rolls.   So. . .

2.  In a spherical star,  why is there a dS/ dr in steady-state?
Answer: require some dS/dr to maintain convective turbulence.
Sustained by radial, radiative driving from below.    But . . . 

3. With rotation, Coriolis induces steady 2D profile S = S( r, θ).
How can this be?   Radiative driving from below can maintain 
only a 1D radial profile, and convection is always mixing entropy.



    Answer must be that the excess entropy  

    S’=S (r, θ)  - S(r) 

    is indeed well-mixed:  it is  

   constant “along the convective rolls…”

Excess entropy is well-mixed 
along “convective rolls”



              v⋅∇[ S-S(r )] =  0.  

 Convective rolls  live in --and maintain-- 
 constant excess entropy surfaces.



BUT:

Convective rolls, especially coherent,
long lived structures, are sheared 
into---and therefore also live in---surfaces of 
constant Ω .



Shearing Convective Roll



A “Proof:     

 ∇⋅v = 0,

 v = ∑  μ(k) exp (ik⋅x -iωt)

k = k(0) – mt ∇Ω,   

k⋅μ =0, 

μ⋅∇Ω =0.



SO:

If the same convective rolls live in surfaces of 
constant excess sntropy, and they live in surfaces
of  constant Ω, 

these MUST then be the same surfaces.

                       S’  =  f(Ω2) 



Angular Velocity Residual entropy Entropy

Miesch 2009, private communication



∇. (1/r sin θ) ( vωΦ – ωvΦ)  = (1/ρ2)∇ρ×∇P, 

WHY IS THIS IMPORTANT?  

and if  S’  =  f(Ω2),  an explicit solution is 
possible.  

Because in stars, the vorticity flux is more
important than the angular momentum flux.
The vorticity equation is 



Fit by J. Bonart (2009)



GONG DATA
(Howe 2009)

What about the tachocline?



θ

                         θ = 54.7o 



θ

P2(cos θ) = 0,  θ = 54.7o 
The tachocline displays a dominant quadrupolar structure.



∇. (1/r sin θ) ( vωΦ – ωvΦ)  = (1/ρ2)∇ρ×∇P, 

WHY IS THIS IMPORTANT?  

Vortex stretching:  bulk of convective zone

Vortex advection:  outer layer, tachocline
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P2(cos θ) = 0,  θ = 54.7o 
The tachocline displays a dominant quadrupolar structure.

P2 (cos θ)  forcing in tachocline

Vortex Advection:



sin2θ forcing

P2 forcing



sin2θ forcing

P2 forcing



Meridional flow has long been known to be
present in the solar convective zone....



∇. (1/r sin θ) ( vωΦ – ωvΦ)  = (1/ρ2)∇ρ×∇P, 

Less well known is the fact that it
produces sin2θand P2 (cosθ) forcing,
and nothing else, via vortex advecton...   

Vortex advection:  outer layer, tachocline



What the precise physical interpretation
of these secondary global flows is and 
how they contribute to the vorticity flux 
divergence is an active area of ongoing
research.   



A (fairly) SIMPLE DYNAMICAL 
THEORY IS  COMPATIBLE WITH  
THE OBSERVATIONS.    

dΩ2

dr
= T on

dR2

dr
= −2g

γ
f ′(Ω2)



1.) Accretion Disks are MHD turbulent, 
MRI driven by differential rotation;
ang. mom. out, mass in.  Secondary 
drift velocity corresponds to mass 
accretion.   DR to fluc. to diss. all local.          



2.) Convective stars driven by entropy 
gradient; vorticity flux is crucial.  
Rotation related to residual entropy.  
Advected vorticity important in outer 
layers, tachocline, not in bulk of CZ.  
Secondary flow is circulatory, probably 
driven by acquisition and loss of 
vorticity and ensuing equatorial/polar
drift.     


