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Problem Class - Advected Fields

!
!t
"(x, t) +# $v"(x, t)[ ] =%#2"(x, t) + SPassive Scalar:

Navier Stokes:

Kinematic Dynamo:
!
!t
B + v "#B = B "#v +$#2B

!
!t
" + v #$" = %$2" + S ! = " # v

Common Features:  Field transported by flow
Dissipation at smallest scale length 

! , ", # Small

Important Restriction:       Spatial scale of transported fields is smaller than that of
flow



 Question: What are the properties of the transported field in
cases in which v(x,t) gives rise to chaotic fluid orbits?

Transport versus Mixing

Examples: Transport in
destroyed magnetic surfaces

M. N. Rosenbluth, R. Z. Sagdeev, J. B.
Taylor, G. M. Zaslavsky, Nucl. Fusion 6,
297 (1966).
A. B. Rechester and M. N. Rosenbluth,
Phys. Rev. Lett. 40, 38 (1978).

RMS size of blob increases
with time

Transport

Enhanced Diffusion

  x 2 !(x,t)    "  2 Denhancedt

Blob becomes larger than spatial scale of flow



Transport versus Mixing

Mixing

Blob acquires fine structure; high 
and low values of scalar are mixed 
together.

Reviews of Chaos and Mixing:

H. Aref, J. Fluid Mech. 143, 1 (1984)

J. M. Ottino, The Kinematics of Mixing: Stretching, 
Chaos, and Transport (Cambridge U. P., 1989)

IUTAM Symposium of Fluid Mechanics of Stirring 
and Mixing, Phys Fluids  A3, 1009-1469 (1991).



Decay of Passive Scalar

� 

!
!t"(x,t) + v # $"(x,t) = %$ 2"(x, t)Passive Scalar:

� 

v(x, t)Fluid flow velocity: Periodic with period Lf

� 

!(x,o) = !0(x)Initial value of Scalar: Periodic with period LD

Microscopic diffusion:

� 

!

Chaotic for almost all initial conditionsFluid trajectories:

� 

dxi(t)
dt = v(xi,t)

Question:   What is the long time behavior of ! in the limit "  #  0  ?



Time Decay of Scalar

•  Exponential decay of $,  “Strange Eigenfunction”
R. T. Pierrehumbert, Chaos Solitons and Fractals 4, 1091 (1994).

• Decay rate predicted based on local stretching rates.
 TMA, Fan and Ott, PRL 75, 1751 (1995).
•  Validity of local stretching theory?  Decay rate determined by longest scale.

J. Sukhatme and R. T. Pierrehumbert (2002)
J. -L. Thiffeault and S. Childress  (2003)
D. R. Fereday, P. H. Haynes, A. Wonhas, J. C. Vasilicos (2002)
D. R. Fereday and P. H. Haynes, Phys. Fluids 16, (2004)

•  Experiment: decay determined by spatial diffusion
Voth et al. Phys Fluids (2003).

•  Properties of strange eigenfunctions
Chertkov and Lebedev, PRL 90, (2003)
Balkovsky and Flouxon,Phys Rev. E 60 (1999).
A. Pikovsky and O. Popovych,  Europhys. Lett. 61, 625 (2003).
A. A. Schekocihin, P. H. Haynes and S. C. Cowley, PRE 046304 (2004).
Haynes and Vanneste, Phys Fluids 17, 097103 (2005)



What do you want to know?

Power Spectrum

C(k,t)  =  d2r  e-ik! r"(x+r) "(x) x

F(k,t)  =  d2k '
2! 2  "(k - k ')  C(k',t)

Fourier transform of two
 point correlation function

Averaged over 
angle in k-space

Decay rate

Structure Function

Fractal Properties of Dissipation Field

 !(r,t) ∼ e
"# t

 
S2q (r) = !(x + r,t) " !(x, t) 2q ∼ r#2q

! "# 2

All can be tied to the properties of the underlying flow



2D Model Flow

� 

v(x,t) = U
ˆ x f (t)cos 2!y / L f + "1(t)( )
+ ˆ y 1# f (t)( )cos 2!x / L f + "2(t)( )
$ 
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Random angles:  %1(t) and %2(t)
Constant values randomly chosen
for each interval n+1 > t/T & n
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Sample Solutions - max resolution (6.4 ' 104)2

Tsang et al. PRE 71, 066301 (2005).

� 

C(t) =
1
2Ld

2 dxdy!2"

UT/Lf= (,  
Lf = LD

� 

!0 = 2sin 2" (x + y ) / LD[ ]Initial condition

Scalar variance: t = 20T



Wave Packet Model -Reduced k Spectrum
[RKS]

Scale length of $ is much smaller than scale length of v.
WKB description is suggested
Action Density:  N(k,x,t), 

Dispersion relation: ) = k*v

Characteristics:

dx
dt  = ∂!

∂k
 = v(x,t)   ,   dk

dt  = -∂!
∂x

 = - "v # k
 
 

∂N
∂t

  + !" (∂#
∂k

 N) - ∂
∂k " ( ∂#∂x  N)  =  -2Dk2N!2"



Wave Packet Model
TMA, Z. Fan, E. Ott and E Garcia-Lopez, Phys Fluids 8,

3094 (1996).

F(k,t)  =  wj(t)  +(k - kj(t) )∑
j

 

wj(t) = wj(0) exp[ -2" dt' kj
2(t')

0

t

] 

 
 

•  Power spectrum constructed
from an ensemble of trajectories
labeled by the index j:

•   wj(t) is the scalar variance
associated with the jth trajectory.

d xj(t)
dt   =  v(xj(t),t) ,     

dkj(t)
dt    =  -!v(xj(t),t) " kj(t) xj(t)

kj(t)
wj(t)

Trajectory Equations:

F(k,t)  =  d2k '
2! 2  "(k - k ')  C(k',t)



Local Stretching Theory

Chaotic Orbits

Fluid trajectories:

Differential separation:

Chaotic:

dx(t)
dt  = v(x(t),t)

d!x(t)
dt

 = !x(t)"# v(x,t)

!x(t)   "  !x(0)  eht ,     h>0
!x(0) Neighboring 

trajectories diverge

!x(t)  " 
 
!x(0) eht

Lyapunov exponent is the same for almost all
initial conditions in a given chaotic regionh  = limt!∞  1t  ln "x(t)

"x(0)

Compare with Eq. for kj(t):
d
dt
k j (t) = !"v(x, t) #k j

d
dt

!x "k j( ) = 0
Lyapunov exponent:



Diverging and Converging Orbits

Differential separation:

n  Dimensions  (n = 2,3)

n solutions for +x +x1,+x2,...+xn,

Incompressible flows

Converging solution

Due to converging solution  !"(x,t) grows exponetially

!"(x,t)   #  !"(x0,0)  exp[ h2 t]

d!x(t)
dt

 = !x(t)"# v(x,t)

h1,h2, ... hn 

hi∑
i

   =   0

[In 2D  ]hn   <  0 h2   =  h1  =  h



Finite Time Lyapunov Exponents

h(x0,t)  =  1
t  ln !x(t)

!x(0)
h  =  limt!∞ h(x0,t)Finite time Lyapunov exponent:

Finite time Lyapunov exponents are characterized by a distribution, P(h,t).

h
0
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6

P(
h,
t)

h

t = t1
t = t2
t = t3

As t #  ∞

� 

P(h,t) ! exp " tG(h)[ ]



Long Time Decay Based on Local
Stretching

F(k,t)  =  wj(t)  +(k - kj(t) )∑
j

 

wj(t) = wj(0) exp[ -2" dt' kj
2(t')

0

t

] 

kj(t)  
  

! 
 
cos"kj(0)  exp(ht)

#xn(0)

kj(0)

"

Typical trajectory: kj(t) grows
exponentially, leads to faster than
exponential decay

Dominant contribution from % = (/2
kj(0) is perpendicular to contracting direction.

� 

!0 = minh"0 h + G(h)[ ]Predicted decay rate:

� 

P(h,t) ! exp " tG(h)[ ]



Decay Rate Evaluation

� 

!0 = minh"0 h + G(h)[ ]

Predicted decay rate:

 
exp[!" t] ∼ dhd# P(h, t) exp[!2$ k0

2e2ht cos2# ]%

� 

P(h,t) ! exp " tG(h)[ ]

Evaluate by steepest descent

G(
h)

, G
(h

)+
h

h

G

G+h

h

! 0



Comparison with Numerics

D
ec

ay
 R

at
e

� 

!0 = minh"0 h + G(h)[ ]

UT/Lf= (,  
Lf = LD

Logarithmic correction,
 Haynes and Vanneste, 
Shekochihin, Haynes and Cowley



Upper Bound on Decay in "#0 Limit
Tsang, TMA, and Ott, PRE 71 (2005)

For Strange Eigenfunctions:   

� 

Lf
!1 << k << h "( )!1/ 2

� 

S0(k )exp !"t[ ] = d # k 
0

$
% S0( # k ) &(k ! # k 'x(0) / 'x(t) h ,(

Power spectrum of Scalar
Eigenfunction Actual Decay Rate

Local stretching of k

Assume Power Law:  

� 

Ak !" > S0(k) > Bk !"

Then can show:

� 

! = minh"0 h + G(h) # $ h[ ] < minh"0 h + G(h)[ ] = ! 0

� 

! = 1+ minh" 0
G(h) # $

h
% 
& 

' 
( 



Power Spectra

� 

Savg(k) = S(k,t) / C(t) t

� 

90T < t < 100T

Flat Spectrum is signature of
short wave length mechanism

� 

S0(k ) ! k
"#

� 

! = 1+ minh" 0
G(h) # $0

h
% 
& 

' 
( = 0



Damping of Modes by Spatial Diffusion

Experiment: Decay determined by spatial diffusion
Voth et al. Phys Fluids (2003). 

� 

!0 = 2sin 2" (x + y ) / LD[ ]

� 

v(x,t) = U
ˆ x f (t)cos 2!y / L f + "1(t)( )
+ ˆ y 1# f (t)( )cos 2!x / L f + "2(t)( )
$ 

% 

& 
& 

' 

( 

) 
) 

� 

LD / L f = M > 1
Period of scalar greater than period of flow
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Decay Rate vs M=LD/Lf

� 

! < "
1
T
ln J0(

#UT
MLf

)
$ 

% 
& 
& 

' 

( 
) 
) 

2

Decay of coherent part of $

� 

!0 = minh"0 h + G(h)[ ]

For M>>1

Where:

� 

! = 2k 2" eff

� 

k = 2! / MLf

� 

! eff =
1
8U

2TM=LD/Lf



Power Spectra for Slowly Decaying Modes

� 

S0(k ) ! k
"#

predicted

computed

Power Law:

� 

! = 1+ minh" 0
G(h) # $

h
% 
& 

' 
( 



Intermittency of !(x,t)

1. Structure function exponents:

2. Multi-fractal dimension:

� 

!(x + r ) " !(x) q # r $ ( q )

� 

!(q) = minh" 0
G(h) # q$

h
% 
& 

' 
( 

� 

Dq = lim!" 0 1# q( )#1 ln µq

i
$% 
& 

' 
( 

) 
* + 

, 
- . / ln L / !( )

µi = fraction of in , ' , box i.

� 

dxdy!( x,y)"

� 

Dq = 2 ! "(q) ! q"(1)
1! q



Forced and Damped Scalar

Power Spectrum:

!
!t
"(x, t) +# $v"(x, t)[ ] =%#2"(x, t) & T &1"(x, t) + S

Source

 
F(k) ∼ 1

k1+!
d" M (" )

0

#

$ exp %2&"k2'( )*

! = min[G(h) + T
"1

h
]Correction to Batchelor’s Law

Diffusive Rollover - Pdf of “recent stretching”  M(-) ! = d "t
0

t

# k2 ( "t ) / k2 (t)

diffusive rollover

finite lifetime

Nam et al, PRL 83, 
(1999)

Yuan et al. Chaos, (2000)

Leads to intermittency: Abraham, Nature (1998), Chertkov Phys Fluids (1998)



Power Law Spectrum
 Nam et al, PRL 83, (1999)

 
F(k) ∼ 1

k1+!

Flow: 2D turbulence with drag

! = min[G(h) + T
"1

h
] DNS

Wave packets

.th =0.5



High k Roll-Over
 Yuan et al. Chaos, (2000)

DNS

 
F(k) ∼ 1

k1+!
d" M (" )

0

#

$ exp %2&"k2'( )*

diffusive rollover

Pdf of “recent stretching”  M(-)

! = d "t
0

t

# k2 ( "t ) / k2 (t)



2D Turbulence with Drag
Nam et al. PRL (2000), Bernard EuroPhys Ltr. (2000)

!
!t
" + v #$" = %$2" & T &1" + SVorticity Evolution ! = " #v $ ẑ

If v is smooth then:

If . > 0, then v is smooth.
 
F(k) ∼ 1

k1+!
d" M (" )

0

#

$ exp %2&"k2'( )*

Formally the same as the passive scalar problem, except ) and v are linked

E(k) = F(k) / k2



Numerical solution of 2D NS Equation
Tsang et al. PRE 71, 066313 (2005)

Numerical Parameters:

Simulation Domain:

4096 ' 4096

forcing at longest scale

drag µ=0.1 for |k|<6

drag µ=0.1 or 0.2,  for |k|>6

µ = T !1
inverse life time



Stretching Distributions and Power Spectra



Intermittency - Structure Function Exponent

 
S2q (r) = !(x + r) "! (x) 2q ∼ r#2q

DNS

Theory

For intermittent case exponent
depends nonlinearly on q



Fractal Dimension of Dissipation Field

Vorticity Gradient
Squared Field

!" (x,t = 61) 2

Dq = 2 +
!2q " q!q
q "1

 
d2x

cuber2
! "# 2q ∼ rDq

 
d2x !"

cube# r
$

2q
∼ rDq



Other Problems

Kinematic Dynamo:
!
!t
B + v "#B = B "#v +$#2B

Linearized 3D Navier Stokes:
Reyl et al, PRL, 1997

!
!t
w + v "#w = $#2w + S w = ! " v

Smooth flow, v0 satisfying NS with forcing is unstable to perturbed flow v1 that
is intermittent with multiple spatial scales.  Power spectrum, structure function,
etc determined by finite time Lyapunov exponents

growth rate and fractal properties depend on stretching distribution



Conclusion

For a wide class of problems, the distribution of local stretching rates governs
the fine scale structure of transported fields.

Passive Scalar
2D Turbulence with Drag
Kinematic Dynamo
Stability of smooth 3D NS flows

Decay Rates
Power Spectra
Structure Functions
Fractal Dimension of Dissipation Field


