
AMSC 664 Final Report: Upgrade to the GSP

Gyrokinetic Code

George Wilkie (gwilkie@umd.edu)
Supervisor: William Dorland (bdorland@umd.edu)

July 1, 2012

Abstract

Simulations of turbulent plasma in a strong magnetic field can, in
some cases, take advantage of the gyrokinetic approximation, the result
of which is a closed set of equations that can be solved numerically. An
existing code, GSP, uses a novel Particle-in-Cell method. In this project,
we change the velocity-space representation in GSP. This transformation
will eventually make the algorithm more suitable for simulations of tur-
bulence in Tokamak plasmas, while retaining the efficiency and accuracy
of the original code.

1 Background

Plasma physics concerns the collective dynamics of collections of many charged
particles interacting self-consistently with their respective electromagnetic fields.
In a uniform magnetic field, the motion of a charged particle (we are usually
referring to ions unless otherwise specified) in the plane perpendicular to the
magnetic field is a circle whose radius (the gyroradius ρ) depends on its velocity
in that plane:

ρ =
v⊥
Ω

(Ω is the gyrofrequency). If this radius is much smaller than the characteristic
size of the plasma, we can use that ratio as an expansion parameter. Gyroki-
netics specifically is the regime in which turbulent fluctuations can be about
the size of this gyroradius. This is in contrast to drift-kinetic theory, where the
gyroradius needs to be much smaller than the size of the fluctuations. In order
to get a closed theory in gyrokinetics, we demand that the drift velocity be small

compared to the thermal velocity vt ≡
√

T
m . Such drifts come about when there

is curvature or a gradient in the magnetic field or if there exists another force
field (such as the electric field).

We can summarize the gyrokinetic assumptions thusly:

ρ

L
∼ vE

vt
∼ ω

Ω
∼ ν

Ω
∼ ε� 1

1

Here, vE = E
B0

is the E × B drift speed, ω is the frequency of turbulent fluc-
tuations, and ν is the characteristic collision frequency. These assumptions are
well justified in plasmas found in magnetic fusion confinement devices and in
astrophysical plasmas.

The gyrokinetic equation results from expanding the distribution function
in the small parameter ε ≡ ρ

L :

f(r,v, t) = F0 + εδf + . . .

Where δf represents the fluctuations in the distribution function, which is in
turn responsible for fluctuations in density, flux, and temperature, and all per-
turbed fields that depend thereon.

The function we will be solving for is the gyroaverage of the perturbed
distribution g ≡ 〈δf〉R (we use these two symbols interchangeably depending

on the circumstance). When changing to coordinates E ≡ 1
2v

2 and µ ≡ v2⊥
2B0

, we
get our form of the gyrokinetic equation

∂g

∂t
+v‖·

∂g

∂z
+(vE + vc + v∇B)·∇Rg = C [g]−vE·∇F0+(vc + v∇B)·〈E〉R F0+〈Ez〉R v‖F0

Where:

• vE = E× ẑ is the “E cross B” drift velocity due to the perturbed electric
field.

• vc =
v2‖
Rc

r̂× ẑ is the curvature drift of a particle in a curved magnetic field
of radius Rc.

• v∇B = − 1
2v

2
⊥
∇B
B0
× ẑ is the ”grad-B” drift velocity in a nonuniform mag-

netic field.

• E ≡ −∇φ is the perturbed electric field.

• F0 = n0

(2πT)3/2
e−

1
2
v2

T is the equilibrium distribution function

• C[g] is the collision operator, descirbed further below.

We have equated the ẑ-direction to be along the background magnetic field so
that B = B0ẑ.

2 Approach

We solve the gyrokinetic equation above by the method of characteristics, follow-
ing randomly-placed Lagrangian markers in phase space and integrating when
appropriate. The form of the equation shown is intended to emphasize that:

• Gyrocenter markers move in well-defined trajectories according to the
standard drifts of charged particle motion.

2

• With the exception of specifying the geometry (which would include knowl-
edge of ∇F0, ∇B, and Rc) and the collision operator, the gyroaveraged
electric field (and thus the electrostatic potential φ) determines several
terms in the gryokinetic equation and calculating it is an important part
of the algorithm.

To find the fields, we first find the potential:

φ =

∑
s

∫
d3vJ0

(
k⊥v⊥

Ω

)
〈δf〉R,s∑

s

q2sn0,s

Ts

[
1− e−k2⊥ρ2sI0 (k2

⊥ρ
2
s)
]

Once we have this, we can calculate the fields with E = −ikφ and gyroaverage
by multiplying by J0.

Change of Coordinates

Define, as constants of motion, the appropriately normalized energy E ≡ 1
2v

2

and magnetic moment µ =
v2⊥
2B0

. The Jacobian becomes:

J d3v = dvxdvydvz = dθv⊥dv⊥dv‖ = dθ
B√

2

dEdµ√
E − µB

It is important to note that, when doing analytic integrations in these coordi-
nates, one must sum over positive and negative v‖ since the square root leaves
this ambiguous. When we do this integral numerically, there are already both
signs of v‖ present.

Important quantities expressed in these coordinates include:

• v‖ = ±
√

2
√
E − µB

• v⊥ =
√

2µB

• F0 = n0

(2πmT)3/2
e−E

Monte Carlo Integration

Given our normalized w ≡ 〈δf〉 /F0, we solve the above integral discretely in µ
and Monte Carlo in E:

φ ∝

Emax
B∫

0

dµJ0

(
a
√
µB
) Emax∫

µ

dEe−E√
E − µB

w(E,µ)

≈
Nµ∑
j

(∆µ)jJ0(a
√
µjB)Ij

3

Where

Ij =

∫
dE e−E√
E − µB

w(E,µj) = 〈w〉p(E) ≈
1
Np

Np∑
i

w(Ei, µj) =

Nµ∑
j

(∆µ)jJ0(a
√
µjB)Ij

We have defined the probabilistic density of markers:

p(E|µj) ≡
Ae−E√
E − µjB

Below are illustrations of how this distribtion of markers appears at different
magnetic field strengths.

It is important that this distribution remain constant in time near each
given z-grid location. Below it is shown that the number of particles at a given
z location, once normalized properly, remain with that density. To show that
the distribution (and not just the overall density) remains at least approximately
constant, we also show that the error in the integral, while stochastic, does not
diverge:

4

The Collision Operator

To calculate the effect of the collision operator, we switch over to using the
distribution function h = 〈φ〉F0 + g to comply with the literature.

We apply Godunov splitting to the gyrokinetic equation so that all the terms
besides C[h] are evaluated explicitly, after which the effect of the collision op-
erator (a mixture of diffusion and integral terms) is calculated implicitly. Let
A[h] represent the explicit part of the gyrokinetic equation, such that:

dh

dt
= A[h] + C[h]

Applying a finite difference scheme in time, we arrive at the pre-collision distri-
bution:

h∗ = hn + ∆tA[hn]

And use this to obtain the distributon after a full timestep:

hn+1 = h∗ + ∆tC[hn+1]

Since C[h] contains integral terms, it ought to be considered as a non-sparse
matrix. However, as in the code GS2, we apply the Sherman-Morrison method
that allows us to use one or two tridiagonal matrices (the ones used for the dif-
fusive part of the operator) to properly invert the integral terms. See Appendix
B of [Barnes, 2009] for details.

The collision operator is written as the sum of several terms:

C[h] = L[h] +D[h] + CLUL[h] + CDUD[h] + CEE[h]

The table defines and interprets each of these terms:

L νD
2
∂2h
∂ξ2 −

1
4α

2νD
(
1 + cos2 ξ

)
h Diffusion in pitch-angle

(at constant energy)

UL νDF0J0(α)v‖
∫
d3v′νD(v′)v′‖J0(α′)h(v′) Conserves momentum

+νDF0J1(α)v⊥
∫
d3v′νD(v′)v′⊥J1(α′)h(v′) due to L operator.

D 1
2v2

∂
∂v

(
ν‖v

4F0
∂
∂v

h
F0

)
− 1

4α
2ν‖ sin2 ξh Diffusion in energy

(at constant pitch angle)

UD −∆νF0J0(α)v‖
∫
d3v′∆ν(v′)v′‖J0(α′)h(v′) Conserves momentum

−∆νF0J1(α)v‖
∫
d3v′∆ν(v′)v′⊥J1(α′)h(v′) due to D operator.

E νEv
2J0(α)F0

∫
d3v′νE(v′)v′2J0(α′)h(v′) Conserves energy

5

The different νs here are various functions of speed v, to be interpreted as
collision frequencies, and α = k⊥v⊥

Ω . The constants CL, CD, and CE can be
computed ahead of time, and are just integrals over velocity space independent
of h.

This collision operator is artificial: it is not derived from first principles but
it does satisfy important physical conservation laws as well as the Boltzmann
H-theorem. All of these are shown by integrating the collision operator over
velocity space. The zeroth, first, and second moments of the collison operator
vanish by design (note that the integrand and the outside factor of each of these
terms have a similar form; integration by parts along with special definitions of
νD, ν‖, νE and ∆ν are required).

All terms, including inter-species collision terms between electrons and ions,
are included in the upgraded GSP. This part of the code still requires validation,
especially the conservation options.

3 Implementation

Our approach is the Particle-in-Cell technique: a hybrid Eulerlian/Lagrangian
scheme. A pure Lagrangian approach would require the fields be superimposed
from every particle onto every particle (requiring O(N2

part) operations). Instead,
particles are locally deposited onto a grid; the relevant quantities are calculated
on that grid; then reinterpolated back to the particles who then time-advance.
This is computationally advantageous if Npart � Ngrid, which makes the grid
operations cheap and requiring only O(Npart) + O(Ngrid logNgrid) operations
(the Ngrid logNgrid comes from the Fourier transform required to accurately
compute the gyroaverage.

The particles are each assigned a random position, a random E drawn from
a continuous distribution (see Appendix E), one of several discrete values of µ,
and a “weight” w. This weight is simply the normalized version of the function

we are solving for: w ≡ 〈δf〉F0
. It is initialized randomly, but is advanced in time

according to the ODE along characteristic curves (the right-hand-side of the
gyrokinetic equation).

The time-stepping algorithm for the particle weights is a second-order Runge
Kutta ”predictor/corrector” method:

1. Initialize particles in phase space

2. Predictor step

• Calculate fields at step n

• Calculate marker weights along characteristics for step n+1 /2

• Advance marker positions for half timestep

• Update weights with collision operator for step n+1 /2

3. Corrector step

6

• Calculate fields at step n+1 /2

• Calculate marker weights along characteristics for step n+ 1

• Advance marker positions for the full timestep

• Update weights with collision operator for step n+ 1

4. Output results as necessary

• Repeat steps 2 to 4 as necessary.

Further details on the algorithm are in Appendices C and D.

4 Databases

• GSP Source code (includes relevant revision history under branches/gwilkie
and branches/df):
http://gyrokinetics.svn.sourceforge.net/viewvc/gyrokinetics/gsp/bran ches/df

– Important sections of code (lines):

∗ Main body, particle orbits: (429-609)

∗ Calculating Phi: (931-1119)

∗ Calculating Fields: (1237-1364)

∗ Updating the weights: (1366-1424)

∗ Collision operator: (1457-2883)

• Original GSP source code
http://gyrokinetics.svn.sourceforge.net/viewvc/gyrokinetics/gsp/trunk/

• Article with analytic result:

– Ricci, et al, “Gyrokinetic linear theory of the entropy mode in a Z
pinch.” Physics of Plasmas, 13: 062102

• Data files included in attached tarball.

5 Validation

We need to ensure that the changes we have made to GSP do not affect its
accuracy, especially in regimes in which it was originally accurate. We performed
this in two stages: a local validation of the φ integral, and a global validation
of the code overall, including particle orbits and time-dependence.

7

Validation of Phi

Since it is such a key part of the algorithm, we validate the φ integral separately.
We are validating both the Monte Carlo integration over E and the discrete
midpoint rule of µ. To so, we give the function w(E,µ) an artificial value such
that we know the value of the integral analytically. We have used the following
three functions:

1. w = 1→ φ ∝ e−k2⊥/2

2. w = E → φ ∝ 1
2

(
3− k2

⊥
)
e−k

2
⊥/2

3. w = sin(2π
√
E − µB)→ φ ∝ D+(π)e−k

2
⊥/2

Where D+ is the Dawson integral. The latter function is most indicative of the
kinds of perturbations that are seen, and have the added advantage of having
some structure in velocity space and depends on both E and µ.

Each of these integrals is performed for many different combinations of kx

and ky (where the result depends only on k⊥ =
√
k2
x + k2

y), and the numerical

result is compared with the known analytic function, given in green. We also
plot the logarithmic scale of these graphs to the right to more clearly show the
differences as a function of k⊥.

8

Upon more careful examination, it is realized that the error is stochastic
and simply changing the random number seed will result in a different error.
Below is an example of several different resolutions, each run 40 times each with
different seeds.

And finally, to make it clear that the error that we see is from the Monte
Carlo integration (and is thus remedied by adding more particles), we calculate
the integral 40 times for many different numbers of particles per cell (there are
1024 cells to generate the appropriate resolution of k⊥ shown agove).

9

Physical Validation: Z-pinch Entropy Mode

Here, we combine the calculation of the fields along with particle trajectories
subject to curvature and gradient drifts. The geometry of the problem is show
below:

The gradient of the magnetic field and the plasma density is toward the cen-
ter (−x̂). Such a configuration gives rise to an instability along the ŷ-direction
whose dispersion relation is known (see [Ricci, 2006]). We compare our code to
another, more established code GS2. This code is purely Eulerian and solves
the gyrokinetic equations fully implicitly.

To study the growth rates, we look at the growth of the following function:

Φ(ky) =
∑
kx,kz

|φ(kx, ky, kz)|2

This is a measure of how much electrostatic energy is in a particular ky mode.
Its growth rate is found by solving the finite difference formula for exponential
growth:

Φn+1 − Φn

∆t
= γ

(
Φn+1 + Φn

2

)
Where the superscript denotes the time step, and γ is the growth rate. This
quantity is updated as an exponentially-weighted moving average so that the
output is easily read. Alternatively, one could simply estimate the slope of a
logarithmic chart of such growth.

According to the dispersion relation, different ky modes are going to have
different growth rates. Here, we compare to this growth rate spectrum to the
GS2 prediction for a variety of test conditions. Let Ln be the density gradient
length scale (such that ∇nn = 1

Ln
); similarly for the temprature scale LT ; R is

the radius of curvature; and Ti and Te are the ion and electron temperatures,
respectively.

1. Standard Case: Ln
R = 0.5, R = 1, Te = Ti = 1, 1

LT
= 0

2. High n Gradient Case: Same as standard with Ln
R = 2.0

10

3. Temperature Gradient Case : Same as standard with LT
R = 0.5 in

addition to a density gradient

4. Cold Electron Case: Same as standard with Te = 0.5

5. Large Radius Case:Same as standard with Ln
R = 0.5, but R = 4

The growth rate spectra are plotted below:

11

The general conclusion is that the predictions begin to fail at higher ky.
This corresponds to “finite Larmor radius” effects: where the scale of perturba-
tions are smaller than a typical gyroradius. As smaller scales are desired, more
particles would be required to achieve accuracy. Otherwise, the agreement is
remarkable.

6 Testing

Here we ensure that the parallelization of GSP is maintained. The parallization
scheme is relatively simple:

• Each processor is responsible keeping track of a fraction of all the particles.

• Each processor manipulates its own copy of the grid (including Fast Fourier
Transforms)

12

– The exception is the collision operator. Since the grid there is in 5D
phase, space, it makes sense to split these among the processors.

• The only communication among processors is when the grid is calculated.
A sum allreduce operation is performed which adds the contribution from
all the particles on each of the processors.

We perform the following scaling tests:

• Weak scaling: Increase the number of processors in proportion to the
problem size. (1 to 192 cores)

• Strong scaling: Increase the number processors for fixed problem size.
(1 to 960 cores)

The former is just as important: it means that we can always add more proces-
sors to reduce noise. We do not expect this parallelization scheme to work when
the number of particles per processor approaches the number of grid points. We
have added an expensive per-particle operation (the sqrt necessary to find v‖)
that may cause scaling to become poor well before this point.

These tests were run on Hopper, a NSERC supercomputer, utilizing up to
960 cores. For these cases, Npart.percell = 1600 and Ngrid = 256, giving 400k
particles total. Therefore, we would not expect the problem to scale well as
Nproc → 1600.

The quantities plotted should be constant for perfect scaling. We find that
the algorithm scales well weakly, but is sensitive to strong scaling. The inclusion
of the sqrt operation is likely to blame for this decrease in performance at high
numbers of processors.

13

14

7 Schedule and Milestones

Phase I: Analytics
September - December 2011

• Understand rigorous derivation of the gyrokinetic equation
• Become familiar with analytical aspects of the gyrokinetic equation
• Make velocity coordinate change
• Understand algorithm used by GSP to solve GK equation
• Understand Abel collision operator and how it is to be implemented in

GSP
• Milestone: Derive GK equation in velocity coordinates E and µ.

Phase II: Numerics
December 2011 - March 2012

• Become familiar with GSP code
• Make proposed changes to the code
• Ensure code still runs
• Code collision operator
• Milestone: GSP Code updated with new velocity coordinates.

Phase III: Testing and Validation
April 2012

• Debug updated GSP code
• Validate and test against previous version and known results
• Run test cases, organize results
• Milestone: GSP code in new velocity coordinates validated and tested

Phase IV: Communication
May 2012

• Prepare final presentation
• Milestone: Final presentation given

8 Deliverables

• Updated GSP source code
• Sample input file and instructions
• Test case comparison data
• Final presentation
• Final Report

15

9 Bibliography

• Abel, et al. “Linearized model Fokker-Planck collision operators for gy-
rokinetic simulations. 1. Theory.” Physics of Plasmas, 15:122509 (2008)

• Antonsen and Lane, “Kinetic equations for low frequency instabilities in
inhomogeneous plasmas.” Physics of Fluids, 23:1205 (1980)

• Aydemir, “A unified Monte Carlo interpretation of particle simulations
and applications to non-neutral plasmas.” Physics of Plasmas, 1:822
(1994)

• Barnes, et al. “Linearized model Fokker-Planck collision operators for gy-
rokinetic simulations. 2. Numerical Implementation and Tests.” Physics
of Plasmas, 16:072107 (2009)

• Barnes, “Trinity: A Unified Treatment of Turbulence, Transport, and
Heating in Magnetized Plasmas.” PhD Thesis, University of Maryland
Department of Physics (2009)

• Broemstrup, “Advanced Lagrangian Simulations Algorithms for Magne-
tized Plasma Turbulence.” PhD Thesis, University of Maryland Depart-
ment of Physics (2008)

• Catto, “Linearized gyro-kinetics.” Plasma Physics, 20:719 (1978)

• Dimits, et al, “Comparisons and physics basis of tokamak transport mod-
els and turbulence simulations.” Physics of Plasmas, 7: 969 (2000)

• Frieman and Chen, “Nonlinear gyrokinetic equations for low-frequency
electromagnetic waves in general plasma equilibria.” Physics of Fluids,
25:502 (1982)

• Howes, et al. “Astrophysical gyrokinetics: basic equations and linear
theory.” The Astrophysical Journal, 651: 590 (2006)

• Ricci, et al, “Gyrokinetic linear theory of the entropy mode in a Z pinch.”
Physics of Plasmas, 13: 062102 (2006)

Appendix A: Gyroaveraging

Often, quantities will need to be ”gyroaveraged” over a circle determined by the
particles’ velocity and the local magnetic field. This operation is defined by:

〈A(r)〉R ≡
∫
dθ A(R + ρ(θ))

Where 〈A(r)〉R means the ”gyroaverage of A at fixed gyrocenter R”. Likewise,
we have:

〈A(R)〉r ≡
∫
dθ A(r− ρ(θ))

In Fourier space, we find that the gyroaverage operation becomes a Bessel func-
tion factor:

〈ã(kr)〉R = J0

(
k⊥v⊥

Ω

)
ã(kR)

16

Appendix B: Poisson’s Equation

The fields above are found by applying Poisson’s equation, which to this order
is the condition of quasineutrality :∑

s

δnsqs = 0

Where the sum is over all species (typically ions and electrons). The perturbed
density δn is the moment of the distribution function:

δn =

∫
d3v 〈δf〉r

Where we acknowledge that the charges form rings and we need to average
at constant position in space and not at constant gyrocenter since particles
of different gyrocenters will contribute to the charge at a particular point in
space. Since the function h (which we eliminate in our formulism) is already a
gyroaveraged quantity: 〈h〉R = h, we can write:

δf + φF0 = 〈δf〉R + 〈φ〉R F0

Therefore:
〈δf〉r = 〈〈δf〉R〉r + F0 〈(〈φ〉R − φ)〉r

In Fourier space, the sum over species in Poisson’s equation looks like:∑
s

qs

∫
J0 〈δf〉R d

3v + φ
n0,s

(2π)
3/2

∫
e−

1
2v

2

(J0 − 1) d3v

Rearranging and applying an integral identity for I0:

φ =

∑
s

∫
d3vJ0 〈δf〉R,s∑

s

q2sn0,s

Ts

[
1− e−k2⊥ρ2sI0 (k2

⊥ρ
2
s)
]

Appendix C: Algorithm for Calculating the Fields

We summarize here how the fields are found given 〈δf〉:

1. For each species:

• For each µi:

(a) Use bilinear interpolation to find 〈δf〉 on a grid in R-space.

(b) In the processes of depositing the particles onto the grid, perform
the Monte Carlo integration over the velocity space variable E

(c) Fourier transform in X and Y

(d) Multiply by J0 (stored in memory) and normalize

17

• Integrate discretely over µ (mid-point rule)

2. Sum over species to find φ

3. Fourier transform over Z

4. Calculate 〈E〉R = −ikJ0φ

5. Inverse Fourier transform in 3D

6. Reinterpolate so that the field is known at each particles’ position.

Appendix D: Algorithm for the Collision Opera-
tor

The algorithm to calculate the collision operator is reminiscent of the fields,
except we are working on a 5D grid.

1. Calculate φ for the particles’ current positions and weights.

2. Deposit particles onto a 5D phase-space grid

• Use bilinear interpolation in X, Y , and Z

• Use nearest-neighbor interpolation for v and ξ

3. Convert from g to h using φ found on spatial grid

4. Fourier transform on X and Y

5. Invert saved tridiagonal matrix to apply L operator

6. Use the same matrix and output from Step 5 to apply the UL terms with
the Sherman-Morrison formulism

7. Invert saved tridiagonal matrix to apply D operator

8. Use the same matrix and output from Step 7 to apply the UD and UE
terms with the Sherman-Morrison formulism

9. Inverse Fourier transform

10. Convert from h back to g

11. Reinterpolate g to each particle’s position using weighting scheme that
nullifies effect as ν → 0

18

Appendix E: Normalization and Generation of
the Monte Carlo Probability Distribution

We have defined p(E) = A e−E√
E−µB . Since

Emax∫
µB

p(E)dE = 1 necessarily, we find

the normalization constant:

1

A
= e−µBErf

(√
Emax − µB

)
Furthermore, in order to obtain this distribution from a standard [0,1] uni-

form random distribution, we need to invert the cumulative distribution:

y = P (x) = A

x∫
µB

dEe−E√
E − µB

To obtain:

x = µB +
(

Erf−1
[
yErf

(√
Emax − µB

)])2

Appendix F: Quasirandom Sequence Monte Carlo
Improvement

It was discovered that we can get better than the typical 1√
N

error dependence

from Monte Carlo by uniformly filling the integration domain with particles
distributed according to a quasirandom sequence rather than pseudorandom
or truly random placement. This avoids errors that result from a spurious
distribution that would occur by chance.

While the implementation appears to be imperfect, the decrease in error is
worth note.

19

