PART IV FUSION PERFORMANCE ACHIEVED IN JET DEUTERIUM AND DEUTERIM-TRITIUM PLASMAS

S.E. SHARAPOV

CULHAM CAMPUS, UKAEA

OUTLINE

- Introduction: what does the difference between D-D and D-T fusion mean?
- Joint European Torus (JET) Reference D pulse before DTE1 campaign (1997)
- High fusion power DT discharges in H-mode and ITB scenarios (1997)
- JET Reference deuterium results before DTE2 campaign (2020)
- DT discharges in baseline H-mode and in hybrid scenarios
- Summary

JET RECORDS IN D AND DT PLASMAS

• JET tokamak was designed and built to "operate in conditions where α-particles are produced and confined" in DT plasmas

The JET Project, Scientific and Technical Developments in 1976, CEC, Brussels (1977) p.35.

1983 First plasma in JET;

1991 First experiments with tritium (PTE);

1997 High performance deuterium-tritium experiments (DTE1). JET achieves world record fusion power of 16.1 MW;

2009 JET installs a new beryllium/tungsten plasma facing wall to test this configuration for ITER;

2019 – 2020 Preparations for new D-T experiments designed to sustain high fusion performance for longer periods; 2021-2022 High performance D-T experiments (DTE2&DTE3). JET achieves world record fusion energy 59 MJ.

TOKAMAK JET (JOINT EUROPEAN TORUS)

Volume ≈ 100 m³; B_{max} = 4 T; I_{max} = 7 MA; P_{FUS} ≈ 16 MW

SELF-SUSTAINED MAGNETIC FUSION

• The "ignition" Wesson triple-product criterion for self-sustaining fusion:

n T $\tau_{\rm E} > 5 \text{ x } 10^{21} \text{ m}^{-3} \text{ keV s}$ ($\approx 10 \text{ atm s}$) (*)

Parabolic n, T profiles and peak values were used for (*) [1]. For easier understanding what (*) means for *magnetic* fusion machines, we multiply and divide (*) by B² and represent the ignition criterion in the form:

 $\beta \tau_E B^2 > 4 T^2 s$, where $\beta = P_{\text{plasma}} / P_{\text{magnetic}} = 4\mu_0 (nT) / B^2$

[1] J. Wesson, Tokamaks, Oxford Uni. Press, 4th Edition, p.11 (2011).

How did best JET discharges with deuterium-tritium plasmas compare to the triple-product criterion?

Note: Tritium was used on two machines only, TFTR and JET!

Figure 1. Cross-sections for fusion reactions D-D, $D-^{3}He$, and D-T as functions of the deuteron projectile energy.

D + D →³He (0.82 MeV) + n(2.45 MeV) D + D →T (1.01 MeV) + p(3.02 MeV) D + T →⁴He (3.52 MeV) + n(14.1 MeV)

Fusion performance (as measured in neutron yield) in D versus DT plasmas on JET

Assume we reproduced a DT discharge with mix D:T=50:50 and plasma/ machine parameters exactly like in a reference D discharge. How the neutron rates compare for the DD reference (blue) and DT (red) pulses?

Comparing DD and DT thermonuclear fusion rates

How to extrapolate DD neutron yield $R_{NT}(DD)$ to DT neutron yield $R_{NT}(DT)$ in discharges with a similar plasma and machine parameters?

For *dominant thermonuclear fusion* yields, the comparison discharges, e.g. #40308 (DD) and #42676 (DT) gave the ratio

 $R_{NT}(DT)/R_{NT}(DD) \approx 90.$

The number ≈100 could be obtained by comparing the D-D and D-T crosssections and by taking into account:

Single collision in D plasma involves two D ions,

Only 50% of all D-D fusion reactions generate DD neutrons.

High performance JET deuterium-tritium experiments. DTE1 campaign with Carbon wall (1997).

Two main scenarios developed for achieving highest fusion performance:

- Hot-ion H-mode with Edge Transport Barrier (ETB) near the separatrix;
- Advanced Tokamak Scenario with Internal Transport Barrier (ITB).

Reference *deuterium* discharge in H-mode before DTE1 (#40305)

Time traces of DD neutron rate R_{NT} , NBI and ICRH power waveforms, D_{α} , and current I(t). $P_{NBI}=19$ MW, $P_{ICRH}=3$ MW, $R_{NT}=5.2\times10^{16}$, $B_{T}=3.46$ T,

 I_P =(3.8 \rightarrow 3.3) MA for delaying the first ELM.

Plasma profiles in D reference discharge (hot ion H-mode #40305)

 T_i (blue) and T_e (red) profiles at t=53.3 sec. $T_i(0)=25 \text{ keV} > T_e(0)=10 \text{ keV}$ was obtained

Density n_e(R) in #40554.

Record DD fusion power discharge with ITB (#40554)

Time traces of R_{NT} , NBI and ICRH power waveforms, D_{α} , and current I(t). $R_{NT}=5.6x10^{16}$, $P_{NBI}=19$ MW, $P_{ICRH}=5$ MW, $B_{T}=3.46$ T, $I_{P}(max)=3.2$ MA.

Record DD fusion power discharge with ITB (#40554)

 T_i (blue) and T_e (red) profiles at t=47 sec. $T_i(0)$ =35 keV was achieved providing strong increase in DD cross-section

Density n_e(R) in #40554.

The record DD power in ITB pulse #40554 achieved in L-mode!

L-mode at t=47 sec when record R_{DD} was achieved! Power threshold for L-H transition significantly changes during current ramp-up.

Expectations just before DTE1

Good solid and reproducible ELM-free hot ion H-mode is the most reliable candidate for obtaining record fusion power

A fair chance exists that ITB scenario may actually perform better than H-mode

Crucial question in both H-mode and ITB scenarios was L-H transition

Three highest fusion power *DT discharges in H-mode*

 R_{NT} , I(t), and D_{α} in DT discharges with 3.4 T (#42676 and #42677) and in record 16.1 MW DT discharge with 3.6 T (#42976) [4] [4] M. Keilhacker et al., Nucl. Fusion 39 (1999) 209

DT fusion power scaling P_{fus} ~B⁴ validated in H-mode with ETB

• The fusion power produced by DT plasma scales as

$$P_{fusion} \cong n_i^2 \langle \sigma v \rangle V$$

where n_i is the ion density, V is the plasma volume, and $\langle \sigma v \rangle$ is the fusion rate averaged over the velocity distribution of ions. In the temperature range of 10-20 keV, $\langle \sigma v \rangle$ scales roughly as T_i^2 . The product $n_i T_i$ scales as $\beta_i B^2$ so

$$P_{fusion} \propto \beta_i^2 B^4 V$$

The comparison discharges #42676 (Maximum $R_{NT} = 4.6 \times 10^{18} \text{ s}^{-1}$, $B_{vac} = 3.46 \text{ T}$) and #42976 (Maximum $R_{NT} = 5.7 \times 10^{18} \text{ s}^{-1}$, $B_{vac} = 3.66 \text{ T}$) confirm the scaling

with accuracy $\approx 4\%$.

High fusion power DT discharges in H-mode scenario (1997)

- An excellent P_{fus}~B⁴ dependence as expected;
- No isotope scaling on confinement;
- Lower power threshold for L-H transition in DT plasma;

JET Record Fusion Power DT Pulse #42976 (t=13.3 s), Hot Ion H-mode

Quantity	Value	Unit/ Comment	
Вт	3.6	Т	
IP	4.0	MA	
PIN=PNBI+PICRH-PSH	24.1	MW	
n _e (0)	4.5	10 ¹⁹ m ⁻³	
(n _D + n _T)/n _e	0.8		
n _T /(n _D +n _T)	0.6	From NPA	
T _i (0)	27	keV	
T _e (0)	14	keV	
Z _{eff}	2.1		
W _{dia}	17	MJ	
dW _{dia} /dt	5	MW	
τε	1.0	S	
[n _D (0)+n _T (0)]Τ _i (0) τ _E	9.3 ± 10%	10 ²⁰ m ⁻³ keV s	
βB ² τ _E	0.03x3.6 ² x1.0=0.39	T ² s	
Neutron Rate	5.7 ± 10%	10 ¹⁸ s ⁻¹	
Fusion Power	16.1 ± 10%	MW	
Fusion Energy	13.8 ± 10%	MJ	

High fusion power DT discharge in ITB scenario (#42746) [5]

[5] C. Gormezano et al., Phys. Rev. Lett. 80 (1998) 5544.

High fusion power DT discharges in ITB scenario

- No P_{fus}~B⁴ dependence. It was more like P_{fus}~B due to the ITB volume dependence (in P_{fusion} ∝ β_i²B⁴V(P_{in}, B,...));
- The lower threshold for L-H transition was good, but created a problem for ITB scenario. In particular no technique of obtaining long ELM-free period was found;
- Insufficient T-fuelling with high-energy (160 keV) tritium NBI provided D:T = 71:29 only.

JET High Fusion Power DT Pulse #42746 (t=6.82 s), ITB + H-mode Scenario

Quantity	Value	Unit/ Comment	
Вт	3.45	Т	
IP	3.2	MA	
PIN=PNBI+PICRH+POH-PSH-PCX	16.9	MW	
n _e (0)	3.8	10 ¹⁹ m ⁻³	
(n _D + n _T)/n _e	0.8		
n _τ (0)/(n _D (0)+n _τ (0))	0.29	From TRANSP	
T _i (0)	32	keV	
T _e (0)	13	keV	
Z _{eff}			
W _{dia}	11	MJ	
dW _{dia} /dt	9	MW	
τε	0.8	S	
[n _D (0)+n _T (0)]Τ _i (0) τ _E	11 ± 15%	10 ²⁰ m ⁻³ keV s	
βB ² τ _E	0.02x3.45 ² x0.8=0.19	T ² s	
Neutron Rate	2.8 ± 10%	10 ¹⁸ s ⁻¹	
Fusion Power	8.0 ± 10%	MW	
Fusion Energy		MJ	

Extreme ion temperature and pressure gradients achieved in JET High Fusion Power DT Pulse #42940 (t=6.25 s) [5]

FIG. 4. Radial ion temperature profiles from charge exchange spectroscopy for pulse 42940 ($B_T = 3.8$ T, I_p up to 3.4 MA). An ITB is triggered 0.3 s after the start of the high power phase.

Ion temperature gradient achieved 150 keV/ m while ion pressure gradient achieved 10⁶ Pa/ m !

JET High Fusion Power DT Pulse #42940 (t=6.25 s), Internal Transport Barrier (ITB) Scenario

Quantity	Value	Unit/ Comment	
Вт	3.8	Т	
IP	3.3	MA	
PIN=PNBI+PICRH+POH-PSH-PCX	19.9	MW	
n _e (0)	4.4	10 ¹⁹ m ⁻³	
(n _D + n _T)/n _e	0.8		
n _τ (0)/(n _D (0)+n _τ (0))	0.34	From TRANSP	
T _i (0)	38	keV	
T _e (0)	12.6	keV	
Z _{eff}			
W _{dia}	10	MJ	
dW _{dia} /dt	8.4	MW	
τε	0.8	S	
[n _D (0)+n _T (0)]Τ _i (0) τ _E	10 ± 15%	10 ²⁰ m ⁻³ keV s	
βB ² τ _E	0.01x3.8 ² x0.8=0.12	T ² s	
Neutron Rate	2.6 ± 10%	10 ¹⁸ s ⁻¹	
Fusion Power	7.3 ± 10%	MW	
Fusion Energy		MJ	

D-T in Magnetic Confinement Fusion before 2021

DT experiments were carried out in

```
1991 (PTE - JET)
```

1994-96 (TFTR – Princeton USA)

```
1997 (DTE1 on JET)
```

demonstrating v. clearly:

D-T Fusion production (14MeV neutrons)

plasma physics effects linked to use of D-T mixture (*isotope* effects)

Although some α-particles effects were observed on TFTR (MHD) , JET DTE1 results were more ambiguous

F.Rimini, TOFE, 13/06/2022.

ENERGETIC IONS IN JET VERSUS ALPHAS IN ITER

Machine	JET	JET	JET	JET	ITER
Type of fast ions	Hydrogen	He ³	He ⁴	Alpha	Alpha
Source	ICRH tail	ICRH tail	ICRH tail	Fusion	Fusion
Mechanism	minority	minority	3 rd harm. NBI	DT nuclear	DT nuclear
Vf(0)/VA(0)	≈2	≈1.5	≈1.3	1.6	1.9
τ _S (S)	1.0	0.9	0.4	1.0	0.8
<i>P</i> _f (0) (MW/m ³)	0.8	1.0	0.5	0.12	0.55
<i>n_f</i> (0) / <i>n_e</i> (0) (%)	1.0	1.5	1.5	0.44	0.85
βf (0) (%)	2	2	3	0.7	1.2
<β _f → (%)	0.25	0.3	0.3	0.12	0.3
max <i>Rβ'</i> f /(%)	≈5	≈5	5	3.5	3.8

Ratio of on-axis velocities $V_f(0)/V_A(0)$, slowing down time, τ_S , heating power per volume, $P_f(0)$, ratio of the fast ion density to electron density, $n_f(0) / n_e(0)$, on-axis fast ion beta, $\beta_f(0)$, volume-averaged fast ion beta, $\langle \beta_f \rangle$, and normalised radial gradient of fast ion beta, max| $R\beta'_f$ |, in JET vs. ITER projected parameters. S.E. Sharapov et al., FUSION SCIENCE AND TECHNOLOGY 53 (2008) 989

JET deuterium-tritium experiments during DTE2 campaign with ITER-like wall (2021).

Tritium gas injection and T-NBI upgraded for T & DTE2 with ILW

T gas injection: **5 Tritium Injection Modules (TIMs)**, in different areas of the vessel (only 1 module in DTE1)

T-NBI: T fed into **both Neutral Beam Injection Boxes** (only 1 NBI box in DTE1)

→ Capability for 100% high power Tritium experiments 69g Tritium on site for T and DTE2 (21g in DTE1)

C.Maggi, 48th EPS (2022).

Scenario development in D to prepare for D-T

Baseline

 Based on full I_P ITER scenario for Q=10 milestone

Hybrid

- Based on reduced
 I_P ITER scenario
- Improved confinement
- Sensitive to initial plasma phase

Neon seeded scenario

D experiments

 With neon to reduce divertor plates power load as needed in ITER

2 routes for demonstration of sustained high fusion power

Plasma edge more ITER relevant

J. Mailloux, 48th EPS (2022).

NBI power was increased significantly, up to 32 MW

- This allowed mitigate the high level of radiative power from plasma;
- The neutron rate from beam-plasma reactions became high.
- The hybrid scenario development pre-DTE2 did set up a new DD neutron rate record in # 97782 [C.Challis et al 48th EPS (2022)]

Pre-DTE2 record in DD neutrons versus DD results in 1997

Baseline scenario: reduced operational space in D-T

50/50 D/T results

- Good access to H-mode after reoptimisation to compensate for combined isotope effects
- Stopped by too high impurity radiation due to less effective W flushing by ELMs
 - higher density in D-T + higher impurity radiation → reduced operational space
 - Complex interplay between MHD modes, sawtooth instability, energetic particles & radiation
- More time needed to complete reoptimisation in D-T

Hybrid scenario: sustained performance

50/50 D/T results

- Successful sustained pulse after reoptimisation
- Fusion energy record for 50/50 D/T plasmas (42MJ)
- Analysis on-going to disentangle effects on edge and core, and identify isotopic and α effects

J. Mailloux, 48th EPS (2022).

DTE1 Fusion energy record surpassed

#99869 (2.3MA/3.45T) Hybrid with ~50/50 D/T NBI and plasma #99971 (2.5MA/3.86T) Hybrid with D-NBI in T-rich plasma

- Fusion energy record surpassed with hybrid scenarios
- Demonstrates compatibility of ILW with sustained high fusion performance

SUMMARY

- Three On JET, the ratio of thermonuclear neutron rates in DT discharges and in the reference D discharges was ≈90;
- Operation in H-mode of DT plasma delivered 16 MW of fusion power.
- The triple-product in best H-mode DT plasma was $\beta \tau_E B^2 \approx 0.4 T^2 s$
- Neutron rates in JET DT discharges in H-mode were found to have a good correspondence P_{fus}~B⁴ during DTE1;
- High fusion power DT discharges in ITB scenario were more promising in D but less successful in DT in DTE1;
- Neutron rates in JET DT discharges in ITB scenario were found to be P_{fus}~B;
- Operation with ITER-like wall at increased NBI power delivered 59 MJ of fusion energy.

