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PART I 
 

MAGNETIC NUCLEAR FUSION: 
 WHERE WE ARE AND WHAT IS THE NEXT STEP 
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Outline 
 
 

• Introduction to fusion and magnetic fusion 
 

• Plasma heating with fast ions 
 

• NBI and ICRH 
 

• The step from ion heating to electron heating 
 

• Burning plasma as exothermal medium 
 

• Summary 
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NUCLEAR FUSION OF HYDROGEN ISOTOPES D&T 
 

• Nuclear fusion reaction D+T = He + n +17.6 MeV of hydrogen isotopes 
deuterium (D) and tritium (T) is the “easiest” to access: 
 

 
• Fusion power production: use alpha-particles (20% of fusion energy) for self-

sustained heating of the plasma; use neutrons (80% of energy) for breeding 
new tritium and generating steam/ power. 
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ENVIRONMENTAL ADVANTAGES OF FUSION 
 

• Deuterium is naturally abundant (0.015% of all water), Tritium must be 
obtained from lithium, 6Li + n = T + 4He. Raw materials are water & lithium. 
 

• To generate 1GW for 1 year (equivalent to a large industrial city):  
 
COAL: 2.5 Mtonnes – produces 6 Mtonnes CO2; 
FISSION: 150 tonnes U – produces several tonnes of fission waste; 
FUSION: 1 tonne Li + 5 Mlitres water. 

 

• Fusion gives no “greenhouse” gasses. 
 

• Fusion reactor structure will become activated but will decay to a safe level 
in < 100 years. Tritium is radioactive: half-life is 13 years. 

 

• No plutonium or long-lived (thousands of years) active waste from fuel cycle.  
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METHODS OF FUSION PLASMA CONFINEMENT 
 

Gravity (Sun and stars) – works well but dimensions are too large; 
 
Inertial (H-bomb, lasers or beams) – needs pressure 1012 atm for very short 
times 10-11 s. Did it work? 
 
Largest H-bomb tested delivered energy of 2.4x1017 Joules = 58.6 Mt of TNT =   
10 times the combined power of all the conventional explosives used in 
World War II, (https://military-history.fandom.com/wiki/Tsar_Bomba) 
 
97% of the explosion power was provided by fusion, almost no waste 
 
It was very cheap, ~ 60 cents per 1 kT of TNT in the prices of 1950th (E. Fermi) 
 
Magnetic –(tokamak, stellarators, mirror etc.) – needs few atms x few 
seconds, plasma is confined by magnetic field B. Work is in progress.  

 
 

 

https://military-history.fandom.com/wiki/Tsar_Bomba
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MAGNETIC FUSION: TOKAMAK JET (JOINT EUROPEAN TORUS) 
 

 
 

V ≈ 100 m3; R=3 m; a=1 m; Bmax = 4 T; Imax = 7 MA; PFUS ≈ 16 MW  
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ACHIEVING SELF-SUSTAINED MAGNETIC FUSION 
 

• Three key parameters for deuterium-tritium (D-T) fusion to occur in plasma: 
 

Ti ≈ 7-20 keV to overcome Coulomb force between D and T; 
Long enough energy confinement time τE = Plasma energy/ Heat loss; 
Fuel density nD and nT must be high enough; 

 

• The “ignition” Wesson triple-product criterion for self-sustaining fusion:  
 

n T τE > 5 x 1021 m-3 keV s (≈ 10 atm s) (*) 
 

Parabolic n, T profiles and peak values were used for (*) [1].  
For easier understanding what (*) means for magnetic fusion machines, we 
multiply and divide (*) by B2 and represent the ignition criterion in the form:  

 

β τE B2 > 4 T2 s, where β = Pplasma /Pmagnetic = 4μ0 (nT)/B2  

 
[1] J. Wesson, Tokamaks, Oxford Uni. Press, 4th Edition, p.11 (2011). 
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THREE WAYS OF ACHIEVING IGNITION IN MAGNETIC FUSION 
 

β τE B2 > 4 T2 s 
• First way: Increasing τE  

 
This implies a larger size fusion reactor. From the balance of plasma energy 
W=n·T·V for a steady-state ignited plasma with volume V and alpha-heating 
Pα = 0.2 PFUSION, we obtain: 

dW/dt = - W/ τE + Pα = 0  

 

→ Pα = W/ τE = n T (V/ τE) 

 
For generating 1 GW power at typical values B= 5T, β = 5%, we need plasma 
volume V≈ 1000 m3

 for ignition; 
 
Present day large volume machine JET had V ≈ 100 m3 → all experiments 
were done with sub-critical volumes; 
 
Next step burning plasma project ITER will have V ≈ 800 m3. 
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THREE WAYS OF ACHIEVING IGNITION IN MAGNETIC FUSION 
 

β τE B2 > 4 T2 s 
• Second way: Increasing B 

 
Technologically challenging to obtain B > 5 T.  
The engineering constraints on the coil structural integrity become severe as 
the magnetic pressure generated is B2 /2μ0 ≈ 1 kg/cm2 for B =0.5 T, but it 
becomes ≈ 400 kg/cm2 for B =10 T. 
 
Present-day: Alcator C-MOD (US) with magnetic fields up to 8.1 T [2].  
They achieved a world record for plasma pressure in magnetic confinement 
reaching 2.05 atmospheres.  
 
Several next step machines were considered along this avenue, e.g., 
IGNITOR (Italy) and FIRE (US). 
 
[2] M. Greenwald et al., Physics of Plasmas 21, 110501 (2014). 
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THREE WAYS OF ACHIEVING IGNITION IN MAGNETIC FUSION 
 

β τE B2 > 4 T2 s 
• Third way: Increasing β 

 
β is limited by MHD instabilities at a level of few % in tokamaks with 
conventional aspect ratio, e.g. a/R ≈ 0.3. In contrast to increasing τE or B, the 
increase in β is not a technological problem. 
 
Spherical tokamaks with a/R  ≈ 1, START [3] and then – NSTX, achieved 

volume averaged < β> ≥ 30% !  

 
Present day: MAST-Upgrade (UK) and NSTX-Upgrade (US). 
Next step project: STEP (UK). 
 
The use of high-temperature superconductors may increase B in STs 
significantly thus combining the two avenues of B and β increase in STs.  
 
[3] M. Gryaznevich et al., Phys. Rev. Lett. 80 (1998) 3972  
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HEATING THE PLASMA WITH FAST IONS: 

WHERE WE ARE NOW 
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OHMIC HEATING 
 

• Tokamaks are heated initially by the plasma current 
Ohmic power = IP V = [IP]2 R 
Plasma resistivity R ~ [Te]

-3/2 
 

• As the plasma gets hotter: 
- its resistivity gets smaller – the ohmic power falls 

- the energy losses increase - τE
 gets smaller  

-
 

• Additional heating techniques are needed to obtain 7-20 keV temperature 
thermal ions. Heating plasma up to this temperature range with a low density 
population of fast ions from auxiliary heating systems is one of the most 
attractive ways 
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CLASSICAL SCHEME OF PLASMA HEATING BY FAST IONS-1  

• Fast ion (EHot >> Te, Ti) population is used of low density, nHot << ne 
 

• Energy content may be comparable to thermal plasma, βH = nHot EHot ~ βtherm 
 

• The fast ions transfer their energy to thermal ions and electrons by Coulomb 

collisions. If the energy of the fast ions is less than a critical value 

3/2

2 /8.14 







= 

i

ieiiefcrit AnZnTAE , 

power flows mainly to thermal ions rather than to electrons. Here, fA , iA  are 

atomic masses of fast and thermal ions, iZ  is atomic number of thermal ions.  

• For hydrogen beam and plasma we have Ecrit=15Te 
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CLASSICAL SCHEME OF PLASMA HEATING BY FAST IONS-2 

• The amount of energy going from ions with initial energy E  into plasma ions is 

given by Stix formula 
/

3/ 20 1

critE E
crit

i

E dy
G

E y
=

+ , and ( )/i critG E E  is illustrated below 
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FAST PARTICLES IN JET DT DISCHARGE WITH 16 MW FUSION 
 

 

 E, keV Ecrit/Te E/Ecrit  for Te=14 keV Gi/Ge= 
Gi/(1-Gi) 

Fusion 
alpha-particles 

3.52·103 33 7.62 0.3 

Deuterium  
NBI 

140 16.5 0.61 5.67 

Tritium 
NBI 

160 25 0.46 9 

ICRH-
accelerated 
hydrogen 

≈500 8.25 4.33 0.54 

 

Main types of energetic ions in JET D-T plasma (D:T=50:50, JET pulse #42976). 
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AUXILIARY HEATING ON JET: NEUTRAL BEAM INJECTION - 1 
 

• Positive ions from ion source accelerate by grids to energy of up to ≈150 keV 
 

• Then they pass through the neutraliser and become neutral high energy atoms 
 

• The neutral beam penetrates the tokamak plasma then. The penetration of the 
beam depends on the NBI energy, mass and on the plasma density  

 

• Within plasma neutrals are ionized by collisions with thermal ions & electrons 
 

• These NBI-produced fast ions are trapped by the tokamak magnetic fields 
 

• NBI systems on JET, JT-60U, TFTR, DIII-D have E ≤ Ecrit
  so they heat IONS 

 

• NBI systems on MAST & NSTX, (and future Negative NBI of ≈1 MeV on ITER) 
have E > Ecrit

  so they heat ELECTRONS 
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NEUTRAL BEAM INJECTION - 2 
 

Advantages 
 

• Efficient heating of ions 

• High power capability (40 MW on TFTR, 32 MW on JET) 

• Drives plasma rotation (stabilising lock modes) 

• Fuelling! 

• Some current drive 
 

Disadvantages 
 

• Need MeV energy beams for penetrating in a reactor of ITER size → Negative 
ion source for NBI is needed 

• Heating not well localised 

• Large aperture 
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AUXILIARY HEATING: ION CYCLOTRON RESONANCE HEATING 
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ION CYCLOTRON RESONANCE HEATING - 2 
 

Advantages 
 

• Localised heating  

• Hydrogen minority ICRH creates H minority with E> Ecrit
  - it heats 

ELECTRONS 

• However, heating of IONS is also possible (e.g. 3He minority in DT plasma) 

• Some current drive 
 

Disadvantages 
 

• Antenna inside the vessel  

• Low power capability 

• Plasma coupling may be a problem in, e.g. H-mode with ELMs affecting 
plasma edge 

 
 



 

                                         S.E.Sharapov, Schekochihin Seminar, Oxford University, 28 January 2025   
     
 

 

 
 

 
 
 
 
 
 

HEATING THE PLASMA WITH FUSION ALPHA-PARTICLES 
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ALPHA PARTICLE HEATING AND BURNING PLASMAS 
 

• Alphas born at 3.5 MeV have E >> Ecrit → they heat ELECTRONS 
 

• The step from present-day experiments on Large machines (JET, JT-60U, 
TFTR, DIII-D) to future burning plasma experiments (ITER, STEP, DEMO etc.) 
means a transition from  
 

                                NBI →ion heating → FUSION 
 
                                                   To 
 
             α’s + NNBI +ECRH → electron heating → ion heating →FUSION 
 

• The additional electron intermediatory may be a difficult one. Say, we know 
how fast ions interact with ITG. However, we may have a larger problem of 
whether/ how they will interact with ETG (or some other electron turbulence), 
even before ITG becomes important.   
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Example: Electron Heating in Shaped Plasmas. Important for ITER as α-particles 
will heat mostly electrons 
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RESISTIVE INTERCHANGE DEPENDS ON  
PLASMA CROSS-SECTION 

 

 
Which scenario will be relevant for ITER? 
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ALPHA-PARTICLE HEATING OF DEUTERIUM-TRITIUM PLASMA: 
 

• Burning plasmas: auxiliary heating used for some control, but plasma self-
heating by fusion alphas dominates → plasma becomes exothermic medium  

 

• The leading-order alpha-particle heating effects may be identified in 
accordance with Q=PFUS/PIN, 

 

Q ≈ 1 – at the threshold (JET had Q  0.6 in record fusion power plasma in 1997) 
Q ≈ 5 – alpha-particle effects on heating, turbulence, and on Alfvén instabilities 
Q ≈ 10 (ITER target) – nonlinear coupling between alphas, MHD stability, 
bootstrap current, turbulent transport, interaction plasma-boundary 
Q ≥ 20 – burn control and transient ignition phenomena 

Q → - ignition (the fusion DT plasma becomes entirely self-heated through the 
fusion-born α-particles). 
 
The transport properties of α-particles are of crucial importance for plasma 
heating profile, the plasma dilution due to the ‘helium ash’ accumulation, and the 
power loading upon the first wall.  
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SUMMARY 
 

• Fusion of D&T isotopes is a very attractive, but difficult (!!!) option for energy 
production on our planet 
 

• Three main avenues derived for the ignition in magnetic fusion: i) the large plasma 
volume avenue, ii) the high B avenue, and iii) the high β avenue  
 

• Depending on the energy, fast ions deliver most of their energy to electrons or ions of 
thermal plasma. 
 

• Auxiliary heating systems with fast ions on JET: i) neutral beam injection (NBI) that 
herats IONS, and ion cyclotron resonance heating (ICRH) that heats ELERCTRONS in 
H-minority scenario, or IONS in the He3 minority case.  
 

• Alpha-particles heat electrons. Negative NBI with energy 1 MeV as well as ECRH will 
heat electrons too, so the next-step burning plasmas will have dominant electron 
heating and could significantly differ from present-day experiments.  

 

• Many other issues will arise in burning plasma that becomes exothermic medium. 
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