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1 Introduction

This document aims to provide an introductory overview to the method of multiple scales (MMS) [1–3], including
its motivation (2), a worked example for a system with an explicit small parameter (3) and worked examples
of systems without an explicit small parameter (4).

2 Secular behaviour as a motivation for MMS

We wish to consider how to generate uniformly valid perturbative solutions to differential equations. We first
analyse the damped harmonic oscillator

d2y

dt2
+ 2ε

dy

dt
+ y = 0 (1)

for which we would like to find a perturbative solution with respect to ε. We can write the solution y = y (t; ε, pj),
where pj represents the set of parameters in the system other than ε1. For clarity, we write the time derivative
as

dy

dt
=

∂y

∂t

∣∣∣∣
ε,pj

. (2)

For the damped oscillator the parameters pj correspond to the two initial conditions y (0) and y′ (0), where the
prime notation has been used as a shorthand for 2.

We begin by considering an expansion of y in ε while holding t and pj constant, such that

y (t; ε, pj) =
∞∑
n=0

1

n!
εn

∂ny

∂εn

∣∣∣∣
t,pj

(t; ε = 0, pj)

= y0 + εy1 + ε2y2 + . . .

(3)

where we have defined the shorthand

yn =
1

n!

∂ny

∂εn

∣∣∣∣
t,pj

(t; ε = 0, pj) . (4)

Inserting the form of 3 into equation 1, we have

∂2

∂t2

∣∣∣∣
ε,pj

(y0 + εy1 + . . . ) + 2ε
∂

∂t

∣∣∣∣
ε,pj

(y0 + εy1 + . . . ) + (y0 + εy1 + . . . ) = 0. (5)

The partial derivatives with respect to t commute with those with respect to ε in the definition of the yn, and
so gathering powers of ε,[

∂2y0
∂t2

∣∣∣∣
ε,pj

+ y0

]
+ ε

[
∂2y1
∂t2

∣∣∣∣
ε,pj

+ y1 + 2
∂y0
∂t

∣∣∣∣
ε,pj

]
+ ε2

[
∂2y2
∂t2

∣∣∣∣
ε,pj

+ y2 + 2
∂y1
∂t

∣∣∣∣
ε,pj

]
+ · · · = 0. (6)

For this to be true for non-zero ε each square bracket must itself be zero. The first bracket is solved by

y0 (t; pj) = A0 cos t+B0 sin t (7)

1The use of a semicolon represents a separation between coordinates and parameters, however this is largely aesthetic.
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for integration constants A0 and B0. The approximate solution of y at this order is therefore y (t; ε, pj) =
A0 cos t + B0 sin t + O (ε), where the integration constants are related to the initial conditions via y (0) =
A0 +O (ε) , y′ (0) = B0 +O (ε) to give

y (t; ε, pj) = y (0) cos t+ y′ (0) sin t+O (ε) . (8)

Taking this to next order, the second bracket of 6 becomes

∂2y1
∂t2

∣∣∣∣
ε,pj

+ y1 = 2A0 sin t− 2B0 cos t (9)

which has the solution
y1 (t; pj) = −A0t cos t−B0t sin t+A1 cos t+B1 sin t. (10)

Combining this with the zeroth order and relating the integration constants to the initial conditions (appendix
A.1.1) the solution to first order is

y (t; ε, pj) =
[
y (0) cos t+ y′ (0) sin t

]
+ ε

[
−y (0) t cos t− y′ (0) t sin t+ y (0) sin t

]
+O

(
ε2
)
. (11)

We note however that the t cos t and t sin t terms grow linearly with t, and thus for times t ∼ 1/ε these terms
will become comparable with the lowest order terms, and the validity of our expansion breaks down. This
property is known as secularity, and in this case has arisen due to the terms on the RHS of equation 9 being
proportional to the homogeneous solution for y1 and thus driving an ‘artificial’ resonance in the solution. We
can compare our result with the exact solution to 1,

y (t; ε, pj) = e−εt

(
y (0) cos

(√
1− ε2t

)
+

[
y′ (0) + εy (0)√

1− ε2

]
sin
(√

1− ε2t
))

(12)

which we see is bounded for all t. Our expansion of the form in equation 3 has failed, and is shown graphically
in figure 1. To remedy this we must try a different method, for which we turn to the method of multiple scales.

Figure 1: Attempts at finding a perturbative solution to the damped harmonic oscillator for ε = 0.1, y (0) = 1
and y′ (0) = 0. Both approximations (equations 8 and 11) provide a reasonable result for εt ≪ 1, however fail
at later times. Note the secular growth of the first order solution.
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3 The method of multiple scales

3.1 Principles of the method

The method of multiple scales assumes that a function can be written in the form

y (t; ε, pj) = y
(
t, εt, ε2t, . . . ; ε, pj

)
. (13)

Note, this is still the same function, this is just an assumption on how one can ‘group’ the variable dependence.
As an example, consider expanding the functions of ε inside the trigonometric functions of equation 12. We see
these can be grouped together,

y (t; ε, pj) = e−εt

(
y (0) cos

(
t− 1

2
ε2t− 1

8
ε4t+ . . .

)
+

[
y′ (0) + εy (0)√

1− ε2

]
sin

(
t− 1

2
ε2t− 1

8
ε4t+ . . .

))
. (14)

The method of multiple scales is based on generating and solving equations that treat these groupings as
independent from one another, in such a way that eliminates secular terms, before then bringing them together
to reconstruct a continuous, non-secular solution. To understand how to apply this method, we first for clarity
relabel the groupings as t = T0, εt = T1, ε

2t = T2, . . . . The total differential of a function y = y (t; ε, pj) can be
written

dy =
∂y

∂T0

∣∣∣∣
T1,T2,...,ε,pj

dT0 +
∂y

∂T1

∣∣∣∣
T0,T2,...,ε,pj

dT1 + · · ·+ ∂y

∂ε

∣∣∣∣
T0,T1,T2,...,pj

dε+
∂y

∂pj

∣∣∣∣
T0,T1,T2,...,ε

dpj . (15)

We note that

dy =
∂y

∂t

∣∣∣∣
ε,pj

dt+
∂y

∂ε

∣∣∣∣
t,pj

dε+
∂y

∂pj

∣∣∣∣
t,ε

dpj (16)

is still true, the difference just results from what is being held constant in our partial derivatives. Now evaluating
the derivative with respect to t at constant ε and pj in equation 15, we have via the chain rule

∂y

∂t

∣∣∣∣
ε,pj

=
∂T0

∂t

∣∣∣∣
ε,pj

∂y

∂T0

∣∣∣∣
T1,T2,...,ε,pj

+
∂T1

∂t

∣∣∣∣
ε,pj

∂y

∂T1

∣∣∣∣
T0,T2,...,ε,pj

+
∂T2

∂t

∣∣∣∣
ε,pj

∂y

∂T2

∣∣∣∣
T0,T1,...,ε,pj

+ . . .

=
∂y

∂T0

∣∣∣∣
T1,T2,...,ε,pj

+ ε
∂y

∂T1

∣∣∣∣
T0,T2,...,ε,pj

+ ε2
∂y

∂T2

∣∣∣∣
T0,T1,...,ε,pj

+ . . .

=
∞∑
n=0

εn
∂y

∂Tn

∣∣∣∣
Tm ̸=n,ε,pj

(17)

and so the time derivative has been turned into something that looks like a Taylor expansion. Our ability to
do this relies on the fact that we are no longer dealing with the original coordinate t, as we have transformed
the dependence of y into an infinite-dimensional function in the abstract domains Tn. We will see however that
after solving in these abstract domains, the solution can be ‘synthesised’ back into the original coordinate t.

Now considering the expansion of y, our previous form (equation 3) no longer commutes with derivatives
with respect to Tn. To enable an expansion of y that commutes with our derivatives, we Taylor expand y in ε
while keeping the various Tn and pj constant,

y (t; ε, pj) = y (T0, T1, . . . ; ε = 0, pj) + ε
∂y

∂ε

∣∣∣∣
T0,T1,...,pj

(T0, T1, . . . ; 0, pj) +
1

2!
ε2

∂2y

∂ε2

∣∣∣∣
T0,T1,...,pj

(T0, T1, . . . ; 0, pj) + . . .

= ŷ0 (T0, T1, . . . ; pj) + εŷ1 (T0, T1, . . . ; pj) + ε2ŷ2 (T0, T1, . . . ; pj) + . . .

=

∞∑
n=0

εnŷn

(18)
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where the definition of ŷn is

ŷn =
1

n!

∂ny

∂εn

∣∣∣∣
T0,T1,T2,...,pj

(T0, T1, T2, . . . ; ε = 0, pj) . (19)

Note the difference between this form and equation 3. Inserting 18 into 17, the partial derivatives with respect
to Tn and ε now commute, and we get

∂y

∂t

∣∣∣∣
ε,pj

=

[
∂ŷ0
∂T0

∣∣∣∣
T1,T2,...,ε,pj

]
+ ε

[
∂ŷ1
∂T0

∣∣∣∣
T1,T2,...,ε,pj

+
∂ŷ0
∂T1

∣∣∣∣
T0,T2,...,ε,pj

]

+ ε2

[
∂ŷ2
∂T0

∣∣∣∣
T1,T2,...,ε,pj

+
∂ŷ1
∂T1

∣∣∣∣
T0,T2,...,ε,pj

+
∂ŷ0
∂T2

∣∣∣∣
T0,T1,...,ε,pj

]
+O

(
ε3
)

=
∞∑
n=0

εn
n∑

j=0

∂ŷn−j

∂Tj

∣∣∣∣
Tk ̸=j ,ε,pj

(20)

with the second derivative written as

∂2y

∂t2

∣∣∣∣
ε,pj

=

[
∂2ŷ0
∂T 2

0

∣∣∣∣
T1,T2,...,ε,pj

]
+ ε

[
∂2ŷ1
∂T 2

0

∣∣∣∣
T1,T2,...,ε,pj

+ 2
∂2ŷ0

∂T0∂T1

∣∣∣∣
T2,...,ε,pj

]

+ ε2

[
∂2ŷ2
∂T 2

0

∣∣∣∣
T1,T2,...,ε,pj

+ 2
∂2ŷ1

∂T0∂T1

∣∣∣∣
T2,...,ε,pj

+
∂2ŷ0
∂T 2

1

∣∣∣∣
T0,T2,...,ε,pj

+ 2
∂2ŷ0

∂T0∂T2

∣∣∣∣
T1,T3,...,ε,pj

]
+O

(
ε3
)

=
∞∑
n=0

εn
n∑

j=0

n−j∑
k=0

∂2ŷn−j−k

∂Tj∂Tk

∣∣∣∣
Tm ̸={j,k},ε,pj

.

(21)

3.2 Worked example of the damped harmonic oscillator

We now apply these considerations to equation 1. To reduce clutter we cease writing explicitly what is being
held constant in our partial derivatives, however it should be unambiguous in the following. Applying our MMS
expansion and gathering powers of ε, we obtain[

∂2ŷ0
∂T 2

0

+ ŷ0

]
+ ε

[
∂2ŷ1
∂T 2

0

+ 2
∂2ŷ0

∂T0∂T1
+ ŷ1 + 2

∂ŷ0
∂T0

]
+ ε2

[
∂2ŷ2
∂T 2

0

+ 2
∂2ŷ1

∂T0∂T1
+

∂2ŷ0
∂T 2

1

+ 2
∂2ŷ0

∂T0∂T2
+ y2 + 2

∂ŷ1
∂T0

+ 2
∂ŷ0
∂T1

]
+ · · · = 0.

(22)

Setting each square bracket to zero as before, the first equation is solved by

ŷ0 = A0 (T1, T2, . . . ) cosT0 +B0 (T1, T2, . . . ) sinT0 (23)

which has a similar form to equation 7 however we now note that as this is the result of a partial differential
equation with respect to T0, the ‘constants of integration’ A0 and B0 are now functions of integration, having
dependence on Tn, n > 0.

We consider truncating our expansion here and recovering a solution in the original coordinate t. Using 18,
at this order we have

y (t; ε, pj) = A0 (T1, . . . ) cosT0 +B0 (T1, . . . ) sinT0 +O (ε) . (24)

The initial conditions refer to evaluating the function at t = 0 for constant ε and pj , not when holding the Tn

constant. Thus t = 0 corresponds to T0 = T1 = T2 = · · · = 0, and so y (0) = A0 (0, . . . ) + O (ε) and, using
20 to evaluate the time derivative, y′ (0) = B0 (0, . . . ) +O (ε). We do not yet know the Tn, n > 0 dependence
of A0 and B0, and so we can Taylor expand these functions in equation 24 around T1 = T2 = · · · = 0, giving
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A0 (T1, . . . ) = A0 (0, . . . ) + O (T1), B0 (T1, . . . ) = B0 (0, . . . ) + O (T1). The integration functions therefore
become constants with an error of size T1. Writing T0 = t and T1 = εt by definition, our solution becomes
y (t; ε, pj) = A0 (0, . . . ) cos t+B0 (0, . . . ) sin t+O (ε, εt), which after substituting in the initial conditions gives

y (t; ε, pj) = y (0) cos t+ y′ (0) sin t+O (ε, εt) (25)

which is simple harmonic motion, as expected. The solution at this order has the same form as equation 8,
however we now have two errors associated with the solution. The first indicates that the solution has retained
only the zeroth order part of the expansion of y, and the second indicates how far into the domain the solution
is valid. We can see therefore that equation 25 is valid only for ε ≪ 1 and εt ≪ 1.

3.2.1 First order

We now take this to next order. Using equation 23, the second bracket in equation 22 becomes

∂2ŷ1
∂T 2

0

+ ŷ1 = −2
∂2ŷ0

∂T0∂T1
− 2

∂ŷ0
∂T0

= 2

(
∂A0

∂T1
+A0

)
sinT0 − 2

(
∂B0

∂T1
+B0

)
cosT0

(26)

which has the solution

ŷ1 = −
(
∂A0

∂T1
+A0

)
T0 cosT0 −

(
∂B0

∂T1
+B0

)
T0 sinT0 +A1 cosT0 +B1 sinT0 (27)

where A1 = A1 (T1, . . . ) and B1 = B1 (T1, . . . ). We note the appearance of secular terms, those that grow
linearly with T0. We find that these can be eliminated by enforcing

∂A0

∂T1
+A0 = 0 =⇒ A0 = C0 (T2, . . . ) e

−T1 ,
∂B0

∂T1
+B0 = 0 =⇒ B0 = D0 (T2, . . . ) e

−T1 (28)

and so
ŷ0 = e−T1 (C0 cosT0 +D0 sinT0) , ŷ1 = A1 cosT0 +B1 sinT0 (29)

where we have the T0 and T1 dependence of ŷ0 and the T0 dependence of ŷ1. Our solution for y is now

y (t; ε, pj) = e−T1 (C0 cosT0 +D0 sinT0) + ε [A1 cosT0 +B1 sinT0] +O
(
ε2
)
. (30)

Taylor expanding the unknown Tn dependencies in the functions of integration and relating them to the initial
conditions (appendix A.2.1), the solution becomes

y (t; ε, pj) = e−εt
(
y (0) cos t+ y′ (0) sin t

)
+ εy (0) sin t+O

(
ε2, ε2t

)
. (31)

This is in agreement with the expansion of the exact solution, equation 12, now valid for ε2 ≪ 1 and ε2t ≪ 1,
as shown in figure 2.

3.2.2 Second order

We now continue this process to second order. Equating the third bracket in 22 to zero, we have

∂2ŷ2
∂T 2

0

+ y2 = −2
∂2ŷ1

∂T0∂T1
− ∂2ŷ0

∂T 2
1

− 2
∂2ŷ0

∂T0∂T2
− 2

∂ŷ1
∂T0

− 2
∂ŷ0
∂T1

=

[
C0e

−T1 − 2
∂D0

∂T2
e−T1 − 2B1 − 2

∂B1

∂T1

]
cosT0 +

[
D0e

−T1 + 2
∂C0

∂T2
e−T1 + 2A1 + 2

∂A1

∂T1

]
sinT0

(32)
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Figure 2: Verification of the first order solution (equation 31) to the damped harmonic oscillator using MMS
(dashed green). Our approximation is no longer secular, and can be seen to agree with the exact solution for
longer times than that of the lowest order (blue). A finite error persists at later times as the solution reaches
the limits of its domain of validity.

which has the solution

ŷ2 =

[
1

2
C0e

−T1 − ∂D0

∂T2
e−T1 −B1 −

∂B1

∂T1

]
T0 sinT0 −

[
1

2
D0e

−T1 +
∂C0

∂T2
e−T1 +A1 +

∂A1

∂T1

]
T0 cosT0

+A2 cosT0 +B2 sinT0.

(33)

where A2 = A2 (T1, . . . ) and B2 = B2 (T1, . . . ). The elimination of secular terms implies the two square brackets
in 33 are zero, thus

∂A1

∂T1
+A1 = −

(
1

2
D0 +

∂C0

∂T2

)
e−T1 =⇒ A1 = −

(
1

2
D0 +

∂C0

∂T2

)
T1e

−T1 + C1 (T2, . . . ) e
−T1 (34)

∂B1

∂T1
+B1 =

(
1

2
C0 −

∂D0

∂T2

)
e−T1 =⇒ B1 =

(
1

2
C0 −

∂D0

∂T2

)
T1e

−T1 +D1 (T2, . . . ) e
−T1 . (35)

We now see we have secular terms in T1, which are eliminated via

1

2
D0 +

∂C0

∂T2
= 0,

1

2
C0 −

∂D0

∂T2
= 0. (36)

These are solved by

C0 = E0 cos

(
1

2
T2

)
− F0 sin

(
1

2
T2

)
, D0 = E0 sin

(
1

2
T2

)
+ F0 cos

(
1

2
T2

)
(37)

where E0 = E0 (T3, . . . ) , F0 = F0 (T3, . . . ). Bringing this together, we have

ŷ0 = e−T1

(
E0 cos

(
T0 −

1

2
T2

)
+ F0 sin

(
T0 −

1

2
T2

))
(38)

ŷ1 = e−T1 (C1 cosT0 +D1 sinT0) , ŷ2 = A2 cosT0 +B2 sinT0. (39)
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Our expression for y at this order is therefore

y (t; ε, pj) = e−T1

(
E0 cos

(
T0 −

1

2
T2

)
+ F0 sin

(
T0 −

1

2
T2

))
+ ε

[
e−T1 (C1 cosT0 +D1 sinT0)

]
+ ε2 [A2 cosT0 +B2 sinT0] +O

(
ε3
) (40)

which, expanding the unknown Tn dependencies and substituting the initial conditions (appendix A.2.2), be-
comes

y (t; ε, pj) = e−εt

(
y (0) cos

(
t− 1

2
ε2t

)
+ y′ (0) sin

(
t− 1

2
ε2t

))
+ εe−εty (0) sin t+ ε2

1

2
y′ (0) sin t+O

(
ε3, ε3t

) (41)

which is in agreement with our expansion of the exact solution, valid for ε3 ≪ 1 and ε3t ≪ 1. This second
order solution is plotted in figure 3.

Figure 3: Verification of the second order solution (equation 41) to the damped harmonic oscillator using
MMS (dashed red), which can be seen to essentially overlap with the exact solution throughout the domain
considered.

4 The method of multiple scales for systems without an explicit small
parameter

4.1 The simple pendulum

Having seen how MMS can be applied to cases in which an expansion parameter is explicit within the equation,
we now consider its ability to deal with equations without one. As an example, we consider trying to solve the
motion of a pendulum of length l under a constant force of gravity of field strength g,

d2θ

dt2
+ ω2

0 sin (θ) = 0 (42)

where ω2
0 = g/l and θ = θ (t; pj), for which we know pj must be ω0 and the two initial conditions, θ (0) and

θ′ (0). To proceed, let us posit the existence of a parameter ε in which to expand. This appears as if we are
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creating a parameter from nothing, however as shall be seen, this amounts to ‘splitting up’ the parameters pj
into an expansion parameter ε and an as-yet undefined set of alternate parameters qj , before then recombining
to the original parameters pj during the synthesis of the solution. Writing θ = θ (T0, T1, . . . ; ε, qj), we perform
an MMS expansion on 42 using 17 and 18. The sin θ term becomes

sin θ = sin
(
θ̂0 + εθ̂1 + ε2θ̂2 + . . .

)
=
[
sin θ̂0

]
+ ε

[
θ̂1 cos θ̂0

]
+ ε2

[
θ̂2 cos θ̂0 −

1

2!
θ̂21 sin θ̂0

]
+ ε3

[
θ̂3 cos θ̂0 − θ̂1θ̂2 sin θ̂0 −

1

3!
θ̂31 cos θ̂0

]
+O

(
ε4
)
.

(43)

Gathering powers of ε and equating each bracket to zero in the expansion of 42, we generate the set of equations

∂2θ̂0
∂T 2

0

+ ω2
0 sin θ̂0 = 0 (44)

∂2θ̂1
∂T 2

0

+ 2
∂2θ̂0

∂T0∂T1
+ ω2

0 θ̂1 cos θ̂0 = 0 (45)

∂2θ̂2
∂T 2

0

+ 2
∂2θ̂1

∂T0∂T1
+ 2

∂2θ̂0
∂T0∂T2

+
∂2θ̂0
∂T 2

1

+ ω2
0

(
θ̂2 cos θ̂0 −

1

2
θ̂21 sin θ̂0

)
= 0 (46)

∂2θ̂3
∂T 2

0

+2
∂2θ̂2

∂T0∂T1
+2

∂2θ̂1
∂T0∂T2

+
∂2θ̂1
∂T 2

1

+2
∂2θ̂0

∂T0∂T3
+2

∂2θ̂0
∂T1∂T2

+ω2
0

(
θ̂3 cos θ̂0 − θ̂1θ̂2 sin θ̂0 −

1

6
θ̂31 cos θ̂0

)
= 0 (47)

and so on. Contrary to the case in which the expansion parameter appears explicitly in the equation, we see
here that the lowest order equation, 44, is no simpler to generally solve than equation 42. We note however that
the parameter ε we have posited does not yet have an explicit definition. Within this freedom, we may choose
the function θ̂0, provided that it satisfies 44, and this in turn implicitly defines the parameter ε. The definition
becomes ‘the parameter for which, when evaluated to be zero for the function θ (T0, T1, . . . ; ε, pj), reduces it to

θ̂0’. This choosing of θ̂0 essentially amounts to finding an ‘equilibrium’ of the original system. This choice is
not unique, for example one may choose θ̂0 = 0 or θ̂0 = π, where each choice results in a different definition
of the small parameter. Here we will choose θ̂0 = 0. We also note that once this choice is made, there is no
further freedom, and so no ability to choose anything else as we continue.

4.1.1 Zeroth order

As stated, we choose to proceed with θ̂0 = 0. This trivially satisfies 44.

4.1.2 First order

Equation 45 becomes
∂2θ̂1
∂T 2

0

+ ω2
0 θ̂1 = 0 (48)

which has the solution
θ̂1 = A1 (T1, . . . ) cos (ω0T0 + ϕ1 (T1, . . . )) . (49)

The solution for θ is therefore
θ (t; ε, qj) = εA1 cos (ω0T0 + ϕ1) +O

(
ε2
)

(50)

with derivative
∂θ

∂t

∣∣∣∣
pj

= −ω0εA1 sin (ω0T0 + ϕ1) +O
(
ε2
)
. (51)

The initial conditions are

θ (0) = εA1 (0, . . . ) cos (ϕ1 (0, . . . )) +O
(
ε2
)
, θ′ (0) = −ω0εA1 (0, . . . ) sin (ϕ1 (0, . . . )) +O

(
ε2
)
. (52)
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Expanding the Tn dependence of A1 and ϕ1 in equation 50 and substituting the initial conditions using
cos (x+ y) = cosx cos y − sinx sin y, we have

θ (t; ε, qj) = εA1 (0, . . . ) cos (ω0T0 + ϕ1 (0, . . . )) +O
(
ε2, ε2t

)
= εA1 (0, . . . ) cos (ω0T0) cos (ϕ1 (0, . . . ))− εA1 (0, . . . ) sin (ω0T0) sin (ϕ1 (0, . . . )) +O

(
ε2, ε2t

)
= θ (0) cos (ω0T0) +

θ′ (0)

ω0
sin (ω0T0) +O

(
ε2, ε2t

) (53)

such that our solution at this order is

θ (t; pj) = θ (0) cos (ω0t) +
θ′ (0)

ω0
sin (ω0t) +O

(
ε2, ε2t

)
. (54)

We see that ε does not appear in the solution except in the error terms, due to its combination with the
expanded functions of integration being related to the initial conditions (52). The meaning of this error is
currently somewhat hard to interpret, due to ε not having a numerical value. By taking this to higher order
we will see more clearly what this error represents.

4.1.3 Second order

Turning to the second order equation, 46, we have

∂2θ̂2
∂T 2

0

+ ω2
0 θ̂2 = −2

∂2θ̂1
∂T0∂T1

= 2ω0
∂A1

∂T1
sin (ω0T0 + ϕ1) + 2ω0A1

∂ϕ1

∂T1
cos (ω0T0 + ϕ1)

(55)

which has the solution

θ̂2 = −∂A1

∂T1
T0 cos (ω0T0 + ϕ1) +A1

∂ϕ1

∂T1
T0 sin (ω0T0 + ϕ1) +A2 (T1, . . . ) cos (ω0T0 + ϕ2 (T1, . . . )) (56)

where to eliminate secular terms we require

∂A1

∂T1
=

∂ϕ1

∂T1
= 0. (57)

The solution to this order is therefore

θ (t; ε, qj) = εA1 cos (ω0T0 + ϕ1) + ε2A2 cos (ω0T0 + ϕ2) +O
(
ε3
)
. (58)

Expanding the unknown Tn dependencies and substituting the initial conditions (appendix A.3.1), it becomes

θ (t; pj) = θ (0) cos (ω0t) +
θ′ (0)

ω0
sin (ω0t) +O

(
ε3, ε3t

)
(59)

which is of the same form as equation 54, however we see that it is valid now for ε3 ≪ 1 and ε3t ≪ 1.

4.1.4 Third order

Taking this procedure to third order, equation 47 reads

∂2θ̂3
∂T 2

0

+ ω2
0 θ̂3 =

1

6
ω2
0 θ̂

3
1 − 2

∂2θ̂1
∂T0∂T2

− 2
∂2θ̂2

∂T0∂T1

=

(
2ω0A1

∂ϕ1

∂T2
+

1

8
ω2
0A

3
1

)
cos (ω0T0 + ϕ1) + 2ω0

∂A1

∂T2
sin (ω0T0 + ϕ1)

+
1

24
ω2
0A

3
1 cos (3 (ω0T0 + ϕ1)) + 2ω0A2

∂ϕ2

∂T1
cos (ω0T0 + ϕ2) + 2ω0

∂A2

∂T1
sin (ω0T0 + ϕ2)

(60)
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where we have used the identity cos3 x = (3 cosx+ cos 3x) /4. This has the solution

θ̂3 =− ∂A1

∂T2
T0 cos (ω0T0 + ϕ1)−

1

192
A3

1 cos (3 (ω0T0 + ϕ1)) +

(
1

16
ω0A

2
1 +

∂ϕ1

∂T2

)
A1T0 sin (ω0T0 + ϕ1)

+A2
∂ϕ2

∂T1
T0 sin (ω0T0 + ϕ2)−

∂A2

∂T1
T0 cos (ω0T0 + ϕ2) +A3 (T1, . . . ) cos (ω0T0 + ϕ3 (T1, . . . ))

(61)

where the elimination of secular terms requires

∂A1

∂T2
=

∂ϕ2

∂T1
=

∂A2

∂T1
= 0 (62)

1

16
ω0A

2
1 +

∂ϕ1

∂T2
= 0 =⇒ ϕ1 = − 1

16
ω0A

2
1T2 + C1 (T3, . . . ) . (63)

We therefore have

θ (t; ε, qj) = εA1 cos

(
ω0T0 −

1

16
ω0A

2
1T2 + C1

)
+ ε2A2 cos (ω0T0 + ϕ2)

+ ε3
[
A3 cos (ω0T0 + ϕ3)−

1

192
A3

1 cos

(
3

(
ω0T0 −

1

16
ω0A

2
1T2 + C1

))]
+O

(
ε4
)
.

(64)

Expanding the unknown Tn dependencies and substituting the initial conditions (appendix A.3.2) we get our
third order solution

θ (t; pj) = θ (0) cos

([
1− 1

16

(
θ (0)2 +

(
θ′ (0)

ω0

)2
)]

ω0t

)
+

θ′ (0)

ω0
sin

([
1− 1

16

(
θ (0)2 +

(
θ′ (0)

ω0

)2
)]

ω0t

)

− 1

192

[
θ (0)3 − 3θ (0)

(
θ′ (0)

ω0

)2
]
(cos (3ω0t)− cos (ω0t))

+
1

192

[(
θ′ (0)

ω0

)3

− 3θ (0)2
(
θ′ (0)

ω0

)]
(sin (3ω0t)− 3 sin (ω0t))

+
1

16

(
θ′ (0)

ω0

)[
θ (0)2 +

(
θ′ (0)

ω0

)2
]
sin (ω0t) +O

(
ε4, ε4t

)
(65)

for which we see there is a correction to the lowest order frequency dependent on the initial condition. We
can now also more easily see the meaning of our error terms. The O

(
ε3
)
corrections can be seen to be terms

cubic in the initial conditions. In this way, the ε error dependence is dealing with two degrees of freedom at
once, θ (0) and θ′ (0), and both are required to be small for our approximation to be valid. Our solutions to
the pendulum are shown in figure 4.

4.2 The Lotka-Volterra system

A second example of a system without an explicit small parameter we consider is the Lotka-Volterra system,
which is a pair of coupled nonlinear first order differential equations. Through normalisation (appendix A.3.3),
the system can be written

dx

dt
= x− xy,

dy

dt
= −ω2

0y + xy (66)

to which we apply MMS. Again, there is no explicit small parameter, and so we expand in ε which as of yet
lacks an explicit definition. We get[

∂x̂0
∂T0

]
+ ε

[
∂x̂1
∂T0

+
∂x̂0
∂T1

]
+ · · · = [x̂0 − x̂0ŷ0] + ε [x̂1 − x̂0ŷ1 − x̂1ŷ0] + . . . (67)[

∂ŷ0
∂T0

]
+ ε

[
∂ŷ1
∂T0

+
∂ŷ0
∂T1

]
+ · · · =

[
−ω2

0 ŷ0 + x̂0ŷ0
]
+ ε

[
−ω2

0 ŷ1 + x̂0ŷ1 + x̂1ŷ0
]
+ . . . . (68)

These two sets of equations must be dealt with simultaneously.

10



Figure 4: Verification of approximate solutions to the simple pendulum for ω0 = 1, θ (0) = 1, θ′ (0) = 0 using
MMS. At early times, the second order solution (equation 59, blue) of simple harmonic motion agrees with the
numerical result (black), however can be seen to drift out of phase as time increases. The third order solution
(equation 65, dashed red) which accounts for this change in phase can be seen to match the numerical result
for far longer.

4.2.1 Zeroth order

At zeroth order, we have
∂x̂0
∂T0

= x̂0 − x̂0ŷ0 (69)

∂ŷ0
∂T0

= −ω2
0 ŷ0 + x̂0ŷ0 (70)

where we are free to choose our lowest order solution within the lack of definition of ε. We choose to proceed
with x̂0 = ω2

0, ŷ0 = 1.

4.2.2 First order

At first order, using our zeroth order choices we have

∂x̂1
∂T0

+
∂x̂0
∂T1

= x̂1 − x̂0ŷ1 − x̂1ŷ0 =⇒ ∂x̂1
∂T0

= −ω2
0 ŷ1 (71)

∂ŷ1
∂T0

+
∂ŷ0
∂T1

= −ω2
0 ŷ1 + x̂0ŷ1 + x̂1ŷ0 =⇒ ∂ŷ1

∂T0
= x̂1 (72)

and so
∂2x̂1
∂T 2

0

+ ω2
0x̂1 = 0 =⇒ x̂1 = A1 cos (ω0T0 + ϕ1) =⇒ ŷ1 =

1

ω0
A1 sin (ω0T0 + ϕ1) (73)

where A1 = A1 (T1, . . . ) and ϕ1 = ϕ1 (T1, . . . ). Synthesising the solution (appendix A.3.4), at this order we get

x (t; pj) = ω2
0 +

(
x (0)− ω2

0

)
cos (ω0t)− ω0 (y (0)− 1) sin (ω0t) +O

(
ε2, ε2t

)
(74)

y (t; pj) = 1 +
1

ω0

(
x (0)− ω2

0

)
sin (ω0t) + (y (0)− 1) cos (ω0t) +O

(
ε2, ε2t

)
(75)
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where we note again that the combinations of ε with the expanded functions of integration characterise the
proximity of the initial condition to the equilibrium

x (0)− ω2
0 = εA1 (0, . . . ) cos (ϕ1 (0, . . . )) +O

(
ε2
)

(76)

ω0 (y (0)− 1) = εA1 (0, . . . ) sin (ϕ1 (0, . . . )) +O
(
ε2
)

(77)

which must both be small for our approximate solution to be valid.

A Additional derivation details

A.1 Section 2

A.1.1 Damped oscillator initial conditions at first order

Our solution for y is

y (t; ε, pj) = [A0 cos t+B0 sin t] + ε [−A0t cos t−B0t sin t+A1 cos t+B1 sin t] +O
(
ε2
)

(78)

which has the derivative

∂y

∂t

∣∣∣∣
ε,pj

= [−A0 sin t+B0 cos t] + ε [−A0 cos t+A0t sin t−B0 sin t−B0t cos t−A1 sin t+B1 cos t] +O
(
ε2
)
.

(79)
Relating these to the initial conditions, we have

y (0) = A0 + εA1 +O
(
ε2
)
, y′ (0) = B0 + ε [B1 −A0] +O

(
ε2
)
. (80)

We then rearrange such that A0 = y (0)− εA1 +O
(
ε2
)
and B0 = y′ (0)− ε [B1 − y (0)] +O

(
ε2
)
. Substituting

these into 78, we get

y (t; ε, pj) =
[
y (0) cos t+ y′ (0) sin t

]
+ ε

[
−y (0) t cos t− y′ (0) t sin t+ y (0) sin t

]
+O

(
ε2
)

(81)

which is equation 11.

A.2 Section 3

A.2.1 First order MMS damped harmonic oscillator

Our solution at this order is

y (t; ε, pj) = e−T1 (C0 cosT0 +D0 sinT0) + ε [A1 cosT0 +B1 sinT0] +O
(
ε2
)

(82)

with time derivative (using equation 20)

∂y

∂t

∣∣∣∣
ε,pj

= e−T1 (−C0 sinT0 +D0 cosT0) + ε
[
−e−T1 (C0 cosT0 +D0 sinT0)−A1 sinT0 +B1 cosT0

]
+O

(
ε2
)
.

(83)
Imposing initial conditions, we obtain

y (0) = C0 (0, . . . ) + εA1 (0, . . . ) +O
(
ε2
)

(84)

y′ (0) = D0 (0, . . . ) + ε [B1 (0, . . . )− C0 (0, . . . )] +O
(
ε2
)
. (85)

We then expand C0 and D0 around T2 = T3 = · · · = 0 as well as A1 and B1 around T1 = T2 = · · · = 0 in
equation 82,

y (t; ε, pj) = e−T1 (C0 (0, . . . ) cosT0 +D0 (0, . . . ) sinT0) + ε [A1 (0, . . . ) cosT0 +B1 (0, . . . ) sinT0] +O
(
ε2, ε2t

)
.

(86)
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Multiplying equation 84 by e−T1 cosT0 we find

e−T1y (0) cosT0 = e−T1C0 (0, . . . ) cosT0 + εe−T1A1 (0, . . . ) cosT0 +O
(
ε2
)

= e−T1C0 (0, . . . ) cosT0 + εA1 (0, . . . ) cosT0 +O
(
ε2, ε2t

) (87)

where we have used e−T1 = 1 +O (εt). Multiplying equation 85 by e−T1 sinT0,

e−T1y′ (0) sinT0 = e−T1D0 (0, . . . ) sinT0 + εe−T1 [B1 (0, . . . )− C0 (0, . . . )] sinT0 +O
(
ε2
)

= e−T1D0 (0, . . . ) sinT0 + ε [B1 (0, . . . )− C0 (0, . . . )] sinT0 +O
(
ε2, ε2t

)
= e−T1D0 (0, . . . ) sinT0 + ε [B1 (0, . . . )− y (0)] sinT0 +O

(
ε2, ε2t

)
.

(88)

Equation 86 therefore becomes

y (t; ε, pj) = e−T1
(
y (0) cosT0 + y′ (0) sinT0

)
+ ε [y (0) sinT0] +O

(
ε2, ε2t

)
(89)

which upon writing T0 = t, T1 = εt is equation 31.

A.2.2 Second order MMS damped harmonic oscillator

Our solution to this order is

y (t; ε, pj) = e−T1

(
E0 cos

(
T0 −

1

2
T2

)
+ F0 sin

(
T0 −

1

2
T2

))
+ ε

[
e−T1 (C1 cosT0 +D1 sinT0)

]
+ ε2 [A2 cosT0 +B2 sinT0] +O

(
ε3
) (90)

with time derivative

∂y

∂t

∣∣∣∣
ε,pj

=e−T1

(
−E0 sin

(
T0 −

1

2
T2

)
+ F0 cos

(
T0 −

1

2
T2

))
+ ε

[
−e−T1

(
E0 cos

(
T0 −

1

2
T2

)
+ F0 sin

(
T0 −

1

2
T2

))
+ e−T1 (−C1 sinT0 +D1 cosT0)

]
+ ε2

[
e−T1

1

2

(
E0 sin

(
T0 −

1

2
T2

)
− F0 cos

(
T0 −

1

2
T2

))
− e−T1 (C1 cosT0 +D1 sinT0)−A2 sinT0 +B2 cosT0

]
+O

(
ε3
)
.

(91)

The initial conditions are

y (0) = E0 (0, . . . ) + εC1 (0, . . . ) + ε2A2 (0, . . . ) +O
(
ε3
)

(92)

y′ (0) = F0 (0, . . . )+ε [−E0 (0, . . . ) +D1 (0, . . . )]+ε2
[
−1

2
F0 (0, . . . )− C1 (0, . . . ) +B2 (0, . . . )

]
+O

(
ε3
)
. (93)

We expand E0, F0, C1, D1, A2 and B2 in all of their Tn arguments in equation 90,

y (t; ε, pj) = e−T1

(
E0 (0, . . . ) cos

(
T0 −

1

2
T2

)
+ F0 (0, . . . ) sin

(
T0 −

1

2
T2

))
+ ε

[
e−T1 (C1 (0, . . . ) cosT0 +D1 (0, . . . ) sinT0)

]
+ ε2 [A2 (0, . . . ) cosT0 +B2 (0, . . . ) sinT0]

+O
(
ε3, ε3t

)
.

(94)
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Multiplying 92 by e−T1 cos
(
T0 − 1

2T2

)
,

y (0) e−T1 cos

(
T0 −

1

2
T2

)
= E0 (0, . . . ) e

−T1 cos

(
T0 −

1

2
T2

)
+ εC1 (0, . . . ) e

−T1 cos

(
T0 −

1

2
T2

)
+ ε2A2 (0, . . . ) e

−T1 cos

(
T0 −

1

2
T2

)
+O

(
ε3
)

= E0 (0, . . . ) e
−T1 cos

(
T0 −

1

2
T2

)
+ εC1 (0, . . . ) e

−T1 cosT0

+ ε2A2 (0, . . . ) cosT0 +O
(
ε3, ε3t

)
(95)

and 93 by e−T1 sin
(
T0 − 1

2T2

)
,

y′ (0) e−T1 sin

(
T0 −

1

2
T2

)
= F0 (0, . . . ) e

−T1 sin

(
T0 −

1

2
T2

)
+ ε [−E0 (0, . . . ) +D1 (0, . . . )] e

−T1 sin

(
T0 −

1

2
T2

)
+ ε2

[
−1

2
F0 (0, . . . )− C1 (0, . . . ) +B2 (0, . . . )

]
e−T1 sin

(
T0 −

1

2
T2

)
+O

(
ε3
)

= F0 (0, . . . ) e
−T1 sin

(
T0 −

1

2
T2

)
+ ε [−E0 (0, . . . ) +D1 (0, . . . )] e

−T1 sinT0

+ ε2
[
−1

2
F0 (0, . . . )− C1 (0, . . . ) +B2 (0, . . . )

]
sinT0 +O

(
ε3, ε3t

)
(96)

where we use y′ (0) = F0 (0, . . . ) +O (ε) and

−εe−T1y (0) sinT0 = −εe−T1E0 (0, . . . ) sinT0 − ε2e−T1C1 (0, . . . ) sinT0 +O
(
ε3
)

= −εe−T1E0 (0, . . . ) sinT0 − ε2C1 (0, . . . ) sinT0 +O
(
ε3, ε3t

) (97)

such that we re-arrange equation 96 to get

y′ (0) e−T1 sin

(
T0 −

1

2
T2

)
+ εe−T1y (0) sinT0 + ε2

1

2
y′ (0) sinT0 = F0 (0, . . . ) e

−T1 sin

(
T0 −

1

2
T2

)
+ ε [D1 (0, . . . )] e

−T1 sinT0 + ε2 [B2 (0, . . . )] sinT0 +O
(
ε3, ε3t

)
.

(98)

Substituting 95 and 98 into equation 94 gives

y (t; ε, pj) = e−T1

(
y (0) cos

(
T0 −

1

2
T2

)
+ y′ (0) sin

(
T0 −

1

2
T2

))
+ εe−T1y (0) sinT0 + ε2

1

2
y′ (0) sinT0 +O

(
ε3, ε3t

) (99)

which, writing Tn = εnt, is equation 41.

A.3 Section 4

A.3.1 Second order pendulum solution

The solution to this order is

θ (t; ε, qj) = εA1 cos (ω0T0 + ϕ1) + ε2A2 cos (ω0T0 + ϕ2) +O
(
ε3
)
. (100)

with derivative
∂θ

∂t
= −ω0εA1 sin (ω0T0 + ϕ1)− ω0ε

2A2 sin (ω0T0 + ϕ2) +O
(
ε3
)

(101)
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such that
θ (0) = εA1 (0, . . . ) cos (ϕ1 (0, . . . )) + ε2A2 (0, . . . ) cos (ϕ2 (0, . . . )) +O

(
ε3
)

(102)

θ′ (0) = −ω0εA1 (0, . . . ) sin (ϕ1 (0, . . . ))− ω0ε
2A2 (0, . . . ) sin (ϕ2 (0, . . . )) +O

(
ε3
)
. (103)

Expanding 100 and substituting the initial conditions, we get

θ (t; ε, qj) = εA1 (0, . . . ) cos (ω0T0 + ϕ1 (0, . . . )) + ε2A2 (0, . . . ) cos (ω0T0 + ϕ2 (0, . . . )) +O
(
ε3, ε3t

)
= εA1 (0, . . . ) cos (ω0T0) cos (ϕ1 (0, . . . ))− εA1 (0, . . . ) sin (ω0T0) sin (ϕ1 (0, . . . ))

+ ε2A2 (0, . . . ) cos (ω0T0) cos (ϕ2 (0, . . . ))− ε2A2 (0, . . . ) sin (ω0T0) sin (ϕ2 (0, . . . )) +O
(
ε3, ε3t

)
= θ (0) cos (ω0T0) +

θ′ (0)

ω0
sin (ω0T0) +O

(
ε3, ε3t

)
(104)

which upon writing T0 = t is equation 59.

A.3.2 Third order pendulum solution

Our solution at this order is

θ (t; ε, qj) = εA1 cos

(
ω0T0 −

1

16
ω0A

2
1T2 + C1

)
+ ε2A2 cos (ω0T0 + ϕ2)

+ ε3
[
A3 cos (ω0T0 + ϕ3)−

1

192
A3

1 cos

(
3

(
ω0T0 −

1

16
ω0A

2
1T2 + C1

))]
+O

(
ε4
) (105)

with derivative

∂θ

∂t

∣∣∣∣
pj

= − ω0εA1 sin

(
ω0T0 −

1

16
ω0A

2
1T2 + C1

)
− ω0ε

2A2 sin (ω0T0 + ϕ2)

+ ε3
[
− ω0A3 sin (ω0T0 + ϕ3) +

3ω0

192
A3

1 sin

(
3

(
ω0T0 −

1

16
ω0A

2
1T2 + C1

))
+

1

16
ω0A

3
1 sin

(
ω0T0 −

1

16
ω0A

2
1T2 + C1

)]
+O

(
ε4
)

(106)

and initial conditions

θ (0) = εA1 (0, . . . ) cos (C1 (0, . . . )) + ε2A2 (0, . . . ) cos (ϕ2 (0, . . . ))

+ ε3
[
A3 (0, . . . ) cos (ϕ3 (0, . . . ))−

1

192
A3

1 (0, . . . ) cos (3C1 (0, . . . ))

]
+O

(
ε4
) (107)

θ′ (0)

ω0
= − εA1 (0, . . . ) sin (C1 (0, . . . ))− ε2A2 (0, . . . ) sin (ϕ2 (0, . . . ))

+ ε3
[
−A3 (0, . . . ) sin (ϕ3 (0, . . . )) +

3

192
A3

1 (0, . . . ) sin (3C1 (0, . . . )) +
1

16
A3

1 (0, . . . ) sin (C1 (0, . . . ))

]
+O

(
ε4
)
.

(108)
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Expanding the unknown Tn dependence in equation 105 as well as the T2 dependence of θ̂3 and using cos (x+ y) =
cosx cos y − sinx sin y,

θ (t; ε, qj) = εA1 (0, . . . ) cos (C1 (0, . . . )) cos

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
− εA1 (0, . . . ) sin (C1 (0, . . . )) sin

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
+ ε2A2 (0, . . . ) cos (ω0T0) cos (ϕ2 (0, . . . ))− ε2A2 (0, . . . ) sin (ω0T0) sin (ϕ2 (0, . . . ))

+ ε3A3 (0, . . . ) cos (ω0T0) cos (ϕ3 (0, . . . ))− ε3A3 (0, . . . ) sin (ω0T0) sin (ϕ3 (0, . . . ))

− 1

192
ε3A3

1 (0, . . . ) cos (3ω0T0) cos (3C1 (0, . . . )) +
1

192
ε3A3

1 (0, . . . ) sin (3ω0T0) sin (3C1 (0, . . . ))

+O
(
ε4, ε4t

)
.

(109)

Multiplying the first initial condition by cos
(
ω0T0 − 1

16ω0A
2
1 (0, . . . )T2

)
and expanding to O

(
ε4t
)
,

θ (0) cos

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
= εA1 (0, . . . ) cos (C1 (0, . . . )) cos

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
+ ε2A2 (0, . . . ) cos (ϕ2 (0, . . . )) cos (ω0T0)

+ ε3 [A3 (0, . . . ) cos (ϕ3 (0, . . . ))] cos (ω0T0)

− ε3
[

1

192
A3

1 (0, . . . ) cos (3C1 (0, . . . ))

]
cos (ω0T0)

+O
(
ε4, ε4t

)
(110)

and similarly for the second initial condition, multiplying by sin
(
ω0T0 − 1

16ω0A
2
1 (0, . . . )T2

)
,

θ′ (0)

ω0
sin

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
= − εA1 (0, . . . ) sin (C1 (0, . . . )) sin

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
− ε2A2 (0, . . . ) sin (ϕ2 (0, . . . )) sin (ω0T0)

− ε3 [A3 (0, . . . ) sin (ϕ3 (0, . . . ))] sin (ω0T0)

+ ε3
[

3

192
A3

1 (0, . . . ) sin (3C1 (0, . . . ))

]
sin (ω0T0)

+ ε3
[
1

16
A3

1 (0, . . . ) sin (C1 (0, . . . ))

]
sin (ω0T0)

+O
(
ε4, ε4t

)
.

(111)

Substituting these into 109, we get

θ (t; ε, qj) = θ (0) cos

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
+

θ′ (0)

ω0
sin

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
− 1

192
ε3A3

1 (0, . . . ) cos (3C1 (0, . . . )) (cos (3ω0T0)− cos (ω0T0))

+
1

192
ε3A3

1 (0, . . . ) sin (3C1 (0, . . . )) (sin (3ω0T0)− 3 sin (ω0T0))

− 1

16
ε3A3

1 (0, . . . ) sin (C1 (0, . . . )) sin (ω0T0)

+O
(
ε4, ε4t

)
.

(112)

The terms involving A1 (0, . . . ) and C1 (0, . . . ) are dealt with via the trigonometric identities

cos (3C1 (0, . . . )) = −3 cos (C1 (0, . . . )) + 4 cos3 (C1 (0, . . . )) (113)
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sin (3C1 (0, . . . )) = 3 sin (C1 (0, . . . ))− 4 sin3 (C1 (0, . . . )) (114)

and

θ (0) = εA1 (0, . . . ) cos (C1 (0, . . . )) +O
(
ε2
)

(115)

θ′ (0)

ω0
= − εA1 (0, . . . ) sin (C1 (0, . . . )) +O

(
ε2
)

(116)

such that

θ (0)2 +

(
θ′ (0)

ω0

)2

= ε2A2
1 (0, . . . ) +O

(
ε3
)

(117)

θ (0)3 = ε3A3
1 (0, . . . ) cos

3 (C1 (0, . . . )) +O
(
ε4
)

(118)(
θ′ (0)

ω0

)3

= − ε3A3
1 (0, . . . ) sin

3 (C1 (0, . . . )) +O
(
ε4
)
. (119)

The terms in 112 therefore become

ε3A3
1 (0, . . . ) cos (3C1 (0, . . . )) = −3ε3A3

1 (0, . . . ) cos (C1 (0, . . . )) + 4ε3A3
1 (0, . . . ) cos

3 (C1 (0, . . . ))

= −3θ (0)

[
θ (0)2 +

(
θ′ (0)

ω0

)2
]
+ 4θ (0)3 +O

(
ε4
)

= θ (0)3 − 3θ (0)

(
θ′ (0)

ω0

)2

+O
(
ε4
) (120)

ε3A3
1 (0, . . . ) sin (3C1 (0, . . . )) = 3ε3A3

1 (0, . . . ) sin (C1 (0, . . . ))− 4ε3A3
1 (0, . . . ) sin

3 (C1 (0, . . . ))

= −3

(
θ′ (0)

ω0

)[
θ (0)2 +

(
θ′ (0)

ω0

)2
]
+ 4

(
θ′ (0)

ω0

)3

+O
(
ε4
)

=

(
θ′ (0)

ω0

)3

− 3θ (0)2
(
θ′ (0)

ω0

)
+O

(
ε4
) (121)

ε3A3
1 (0, . . . ) sin (C1 (0, . . . )) = −

(
θ′ (0)

ω0

)[
θ (0)2 +

(
θ′ (0)

ω0

)2
]
+O

(
ε4
)
. (122)

such that we have

θ (t; ε, qj) = θ (0) cos

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
+

θ′ (0)

ω0
sin

(
ω0T0 −

1

16
ω0A

2
1 (0, . . . )T2

)
− 1

192

[
θ (0)3 − 3θ (0)

(
θ′ (0)

ω0

)2
]
(cos (3ω0T0)− cos (ω0T0))

+
1

192

[(
θ′ (0)

ω0

)3

− 3θ (0)2
(
θ′ (0)

ω0

)]
(sin (3ω0T0)− 3 sin (ω0T0))

+
1

16

(
θ′ (0)

ω0

)[
θ (0)2 +

(
θ′ (0)

ω0

)2
]
sin (ω0T0)

+O
(
ε4, ε4t

)
.

(123)

The final term to deal with is the A2
1 (0, . . . )T2 dependency in the trigonometric functions. This is done by

A2
1 (0, . . . )T2 = ε2A2

1 (0, . . . ) t

=

[
θ (0)2 +

(
θ′ (0)

ω0

)2
]
t+O

(
ε3t
)
.

(124)

When this is substituted, the error term combines with the ε dependence of the coefficients of the trigonometric
functions to always be O

(
ε4t
)
. Making this substitution and writing T0 = t, we get equation 65.
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A.3.3 Lotka-Volterra normalisation

The Lotka-Volterra equations are typically written in terms of four parameters,

dx

dt
= αx− βxy (125)

dy

dt
= −γy + δxy. (126)

Defining x̄ = δx/α, ȳ = βy/α, t̄ = αt and ω2
0 = γ/α, these become

dx̄

dt̄
= x̄− x̄ȳ (127)

dȳ

dt̄
= −ω2

0 ȳ + x̄ȳ. (128)

Dropping the bar notation gives 66.

A.3.4 Lotka-Volterra initial conditions at first order

Using 73, the solutions for x and y are

x (t; ε, qj) = ω2
0 + εA1 cos (ω0T0 + ϕ1) +O

(
ε2
)
, y (t; ε, qj) = 1 +

1

ω0
εA1 sin (ω0T0 + ϕ1) +O

(
ε2
)

(129)

with initial conditions
x (0)− ω2

0 = εA1 (0, . . . ) cos (ϕ1 (0, . . . )) +O
(
ε2
)

(130)

ω0 (y (0)− 1) = εA1 (0, . . . ) sin (ϕ1 (0, . . . )) +O
(
ε2
)
. (131)

Expanding the unknown Tn dependencies in 129, using cos(x + y) = cosx cos y − sinx sin y, sin (x+ y) =
sinx cos y + sin y cosx and substituting the initial conditions, we get

x (t; pj) = ω2
0 +

(
x (0)− ω2

0

)
cos (ω0t)− ω0 (y (0)− 1) sin (ω0t) +O

(
ε2, ε2t

)
(132)

y (t; pj) = 1 +
1

ω0

(
x (0)− ω2

0

)
sin (ω0t) + (y (0)− 1) cos (ω0t) +O

(
ε2, ε2t

)
(133)

which are equations 74 and 75.
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