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Abstract

Understanding magnetic-field generation in turbulent plasma is essential for explain-
ing the presence of dynamically significant magnetic fields in astrophysical environ-
ments such as the intracluster medium. Seemingly plausible theoretical frameworks
attributing the origin and sustainment of these fields to amplification by the so-called
fluctuation dynamo are somewhat hampered by conceptual uncertainties concerning
the validity of the models in which these frameworks are formulated. A recent ex-
periment on the OMEGA laser facility attempted to overcome some of these uncer-
tainties by demonstrating the feasibility of magnetic-field amplification by stochastic
motions up to dynamical strengths in actual turbulent plasma. In order to realise
the scientific goals of this experiment, accurate measurements of stochastic mag-
netic fields arising in turbulent laser-plasmas were required. This thesis reports on
the development of an analysis technique which meets this requirement by recover-
ing the magnetic-energy spectrum from proton imaging data, as well as the mean
magnetic-energy density and characteristic structure sizes. The general applicability
and reliability of the technique is considered in depth. On application to data derived
from the OMEGA experiment, the magnetic-energy density is found to increase over
five hundred times in the experiment from its initial value; in addition, estimates of
the maximum magnetic field strength indicate that the field is likely to be dynami-
cally significant. The experiment therefore constitutes the first demonstration in the
laboratory of the fluctuation dynamo. The results of a second experiment on the
OMEGA laser facility – in which a remodelled variant of the previously employed
experimental platform is used to provide a time-resolved characterisation of a plasma
dynamo’s evolution, measuring temperatures, densities, flow velocities and magnetic
fields – are also described. It is shown that the initial growth of the dynamo-generated
fields occurs exponentially at a rate which significantly exceeds the turnover rate of
the driving-scale stochastic motions in the plasma. Both experiments validate the
claim that the fluctuation dynamo is indeed capable of amplifying magnetic fields
significantly.
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An adapted form of this work has been published in the Journal of Plasma Physics.

Chapter 3 applies the techniques derived in Chapter 2 to the proton-imaging data
from the OMEGA experiment. The analysis of both experimental and simulated
proton-imaging data was carried out by the author; the creation of the simulated
proton images was done by P. Tzeferacos. The author was a co-author on a paper
(first author P. Tzeferacos) published in Nature Communications, which discussed
the complete set of experiment results from the OMEGA experiment; the material
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Chapter 1

The fluctuation dynamo

1.1 Introduction to fluctuation dynamo theory

1.1.1 Astrophysical context

The near universality of magnetic fields across many astrophysical environments has

been well documented. For example, Faraday-rotation measurements show that in

the intra-cluster medium (ICM) there exist stochastic magnetic fields with strengths

which are typically ∼1-10 µG (Carilli and Taylor 2002). These field strengths are

sufficiently large to imply that magnetic fields must be dynamically significant, with

associated Lorentz forces acting on plasma bulk motions (Batchelor and Taylor 1950).

Understanding how these fields attained such magnitudes is therefore a question at

the heart of astrophysics (Kulsrud and Zweibel 2008).

There are many physical phenomena occuring in astrophysical contexts which are

capable of generating magnetic fields in plasma. One such example is the Biermann

battery mechanism, where mis-aligned electron temperature and density gradients

combine to generate fields in initially unmagnetised plasma (Biermann and Schlüter

1951); another is the Weibel instability, which occurs in collisionless plasmas with

temperature anisotropies (Weibel 1959, Huntington et al. 2015). However, most of

these plasma processes tend to predict field magnitudes in the ICM which are far

1



1.1 Introduction to fluctuation dynamo theory 2

smaller than those observed (Kulsrud et al. 1997). This necessitates some alternative

explanation for how fields are both amplified and maintained at such strength. Such

a mechanism is the fluctuation dynamo, under which stochastic motions of plasma

lead to rapid amplification of some small seed magnetic field (Subramanian et al.

2006, Ryu et al. 2008, Beresnyak 2012, Miniati and Beresnyak 2015).

1.1.2 Characterising stochastic flows and magnetic fields

Before discussing fluctuation dynamo theory, we begin with a brief overview of

stochastic flows and magnetic fields and how they are characterised. For our pur-

poses, a stochastic field is one which manifests essentially random behaviour and a

wide range of values over both time and space. The exact values attained by a given

stochastic field are very sensitive to the initial conditions of the underlying physical

system; thus, subtle changes to the initial conditions lead to completely different

instantiations of the field. Stochastic motions and magnetic fields are ubiquitous in

plasma physics and are generated by a wide range of different mechanisms, including

fluid instabilities and microinstabilities (Krall and Trivelpiece 1973, Davidson 1983).

It is often the case in plasma that the velocity field u(x, t) and magnetic field B(x, t)

at a given position x and time t have both mean and stochastic components (David-

son 2004):

u(x, t) = ū(x, t) + δu(x, t) , (1.1)

B(x, t) = B̄(x, t) + δB(x, t) , (1.2)

where ū and B̄ are the non-stochastic mean components of the velocity and magnetic

field respectively, and δu and δB are the stochastic, fluctuating components. The

mean and fluctuating fields are distinguished by introducing an averaging operator

〈·〉 with the property that 〈u〉 = ū, and 〈δu〉 = 0 (and similarly for the magnetic

field). This averaging operator can be interpreted as some type of ensemble average;

alternatively, if the characteristic scale ` on which the fluctuating fields vary is much



1.1 Introduction to fluctuation dynamo theory 3

smaller than the scale l̄ on which the mean fields vary, 〈·〉 can be defined as being

an average over some intermediate scale l which satisfies `� l� l̄.

When considering stochastic flows (for example), the precise details of motions at

a specific time or location typically provide little physical insight; instead, a statistical

characterisation of such flows is more helpful. This is principally because stochastic

flows often obey statistical symmetries, even if the exact velocity field of a stochastic

flow does not. A particularly important statistical quantity characterising stochastic

flows is the kinetic-energy spectrum, defined by

E(k) ≡ 4π3

V

∫
dΩ k2

〈
|δû(k)|2

〉
, (1.3)

where V ∼ l3 is the volume of averaging samples over which the spectrum is calcu-

lated, δû(k) is the three-dimensional Fourier transform of the fluctuating velocity

field, k is the wavevector, k = |k|, and the integral is over solid angles Ω in k space.

The kinetic-energy spectrum does not in general provide a complete description of

a stochastic velocity field (see Adler 1981, for a discussion of this point for general

stochastic fields). However, the kinetic-energy spectrum is a useful quantity to con-

sider for three reasons. Firstly, it can be used to deduce both the root-mean-square

(RMS) velocity field strength urms ≡ 〈δu2〉1/2 and velocity field correlation length `u

via relations

urms =

[
2

∫ ∞
0

dk E(k)

]1/2

, (1.4)

`u =
π

2

∫∞
0

dk k−1E(k)∫∞
0

dk E(k)
. (1.5)

Secondly, for the special case of isotropic, incompressible, non-helical Gaussian statis-

tics the kinetic-energy spectrum is sufficient to provide a complete statistical charac-

terisation of a stochastic velocity field (Adler 1981). Thirdly, even for non-Gaussian

stochastic velocity fields (as physical fields often are), in many situations the kinetic-

energy spectrum has a special significance. It describes energy distribution over
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wavenumber scales and so is often the focus of theoretical predictions (Gregori et al.

2015).

The equivalent quantity to the kinetic-energy spectrum for stochastic magnetic

fields is known as the magnetic-energy spectrum; it is defined by

EB(k) ≡ π

V

∫
dΩ k2

〈∣∣∣δB̂(k)
∣∣∣2〉 , (1.6)

where δB̂(k) is the three-dimensional Fourier transform of the fluctuating magnetic

field. Analogously to equations (1.4) and (1.5), relations between the magnetic-

energy spectrum and both the fluctuating RMS field strength Brms ≡ 〈δB2〉1/2 and

magnetic field correlation length `B can be written down:

Brms =

[
8π

∫ ∞
0

dk EB(k)

]1/2

, (1.7)

`B =
π

2

∫∞
0

dk k−1EB(k)∫∞
0

dk EB(k)
. (1.8)

1.1.3 Example: the kinetic-energy spectrum in incompress-

ible hydrodynamic turbulence of a Newtonian fluid

Arguably the most famous example of a theoretical prediction for the kinetic-energy

spectrum in a stochastic flow is Kolmogorov’s five-thirds law arising for hydrody-

namic, incompressible turbulence of a Newtonian fluid (Kolmogorov 1941a,b). Such

motion is governed by the Navier-Stokes equations (Batchelor 1953):

∂u

∂t
+ u · ∇u = −∇

(
p

ρ

)
+ ν∇2u , (1.9)

∇ · u = 0 , (1.10)

where p is the fluid pressure, ρ the (constant) fluid density, and ν the kinematic

viscosity. Turbulence emerges in such a fluid if the fluid Reynolds number Re ≡ UL/ν

(for typical flow length scale L and characteristic velocity U) is sufficiently large. A
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precise mathematical characterisation of turbulence remains a notorious unsolved

problem in classical physics.

Nevertheless, one phenomenological description of steady, homogeneous and isotropic

turbulence – that is, turbulence whose statistical properties are independent of time,

space and direction respectively – which has gained general acceptance is that of the

energy cascade (Davidson 2004). First introduced by Richardson (1926), the turbu-

lent velocity δu in a high-Reynolds number Newtonian fluid is described as consisting

of a complicated arrangement of ‘eddies’ spanning many different length scales (for

simplicity, we suppose that fluid has no mean flow: u = δu). The fluid Reynolds

number associated with the largest eddies, whose scale L and characteristic velocity

uL are determined by the nature of system’s external inputs, is by assumption large:

ReL = uLL/ν � 1. Therefore, the action of viscous dissipation on these eddies is

very weak. However, the eddies are also subject to inertial instabilities arising from

the shearing motions of other eddies of similar size, which lead to the ‘break-up’ of

the eddies into smaller eddies at the eddy turnover rate γL ∼ uL/L. The energy of the

largest eddies is passed down to smaller-scale ones (hence the name ‘energy cascade’)

at a rate γC which much be comparable to the eddy turnover rate; thus, the external

energy flux Π per unit mass satisfies Π ∼ u2
LγC ∼ u3

L/L. The break-up process

also applies in turn to the smaller eddies, creating even smaller eddies. The cascade

eventually ceases when eddies become sufficiently small that their viscous dissipation

rate γν becomes comparable to their turnover rate γ` ∼ u`/`: γν ∼ ν/`2
ν ∼ u`ν/`ν ,

where `ν is the so-called viscous dissipation scale, and u`ν is the characteristic ve-

locity of eddies at this scale. The energy cascade is represented pictorially in Figure

1.1. Since viscous dissipation is weak at all but the smallest scales, we conclude that

the rate ε ≡ 2ν|∇u|2 ∼ γνu
2
`ν

at which energy is dissipated at the viscous dissipation
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Figure 1.1: The energy-cascade model of hydrodynamic turbulence. Diagram
illustrating the turbulent energy cascade towards small scales: the largest eddies are sub-
ject to inertial instabilities and break up into smaller eddies. This process repeats until
eddies are sufficiently small for them to be subject to viscous dissipation. Reproduced
from Davidson (2004).

scale must balance the external energy flux Π: this gives (Batchelor 1953)

`ν ∼ L (ReL)−3/4 � L , (1.11)

u`ν ∼ uL (ReL)−1/4 � uL , (1.12)

γ`ν ∼ γL (ReL)1/2 � γL . (1.13)

Building on this conception of turbulence, Kolmogorov (1941a) provides a theory

of the statistics of the velocity field u` at scales ` intermediate between the scale

of the largest eddies L and the viscous dissipation scale `ν by postulating that for

` � L, eddies would only be affected by larger scales through a globally averaged

energy flux, which is itself equal to the globally averaged dissipation ε̄ = 2ν〈|∇u|2〉.

He therefore concludes that in the so-called universal equilibration range, the velocity

field u` would attain a universal form which on dimensional grounds must be

u` = (ε̄`)1/3 F

(
`ε̄1/4

ν3/4

)
, (1.14)

where F is a function common to all hydrodynamic turbulent flows. This line of

thinking can be extended further by supposing the length scale ` is much greater than

the viscous dissipation microscale `ν : that is, L � ` � `ν . In this interval (called



1.1 Introduction to fluctuation dynamo theory 7

the inertial range), the turbulent velocity of eddies at this scale cannot depend on

the kinematic viscosity ν either, since viscous forces are effectively not acting on the

flow. But the only dependence on ν in (1.14) is via the argument of F , which implies

that it must be a constant for such `. It follows that for L� `� `ν ,

u` ∼ (ε̄`)1/3 . (1.15)

This result can be related to the kinetic-energy spectrum (1.3) by noting that

energy per unit mass associated with an eddy of size ` is approximately given by

u2
` ∼

∫ ∞
1/`

dk E(k) , (1.16)

where there is no contribution from eddies of size greater than ` to the integral since

the associated velocities are essentially constant over length scales ∼ ` (Batchelor

1953). Applying dimensional analysis to this relation yields Kolmogorov’s spectrum

for L−1 � k � `−1
ν :

E(k) ∼ ε̄2/3k−5/3 . (1.17)

An indicative plot of the whole spectrum, with inertial and universal equilibrium

ranges highlighted, is given in Figure 1.2. We note that for a kinetic-energy spectrum

Figure 1.2: The kinetic-energy spectrum for hydrodynamic turbulence. A log-
log plot of the characteristic shape of kinetic-energy spectrum E(k) against wavenumber k
for isotropic hydrodynamic turbulence. The locations in wavenumber space of the inertial
subrange and the universal equilibration range are indicated. Reproduced from Davidson
(2004).
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of this shape, the integral relating the correlation scale `u defined in equation (1.1.2)

to the kinetic-energy spectrum is dominated by wavenumbers k satisfying k ∼ 1/L

and thus `u ∼ L.

Since Kolmogorov’s theory was first put forward, there have been some important

objections raised against his theory - not least Landau’s objection that dissipation

in a turbulent fluid is intermittent spatially (Landau and Lifshitz 1959). This has

the consequence that the flux of energy between scales depends on the locally av-

eraged dissipation rate rather than the globally averaged rate; it can subsequently

be shown that this observation is incompatible with Kolmogorov’s universality as-

sumption. Nevertheless, in practice, intermittency only results in small corrections

to Kolmogorov’s theory: in experiments, significant evidence has been found for the

existence of both the inertial and universal equilibrium ranges (see Figure 1.3)

1.1.4 Fluctuation dynamo theory in resistive magnetohydro-

dynamics (resistive MHD)

Having introduced the important concepts of the kinetic- and magnetic-energy spec-

tra for stochastic flows and magnetic fields, we are now well placed to review theories

of the fluctuation dynamo. The fluctuation dynamo is best understood in the context

of resistive magnetohydrodynamics (resistive MHD), where plasmas are described as

magnetised fluids with bulk velocity u (Cowling 1962, Tobias et al. 2013). Then, the

magnetic field B satisfies the induction equation

∂B

∂t
= ∇× (u×B) + η∇2B , (1.18)

for the plasma resistivity η. The relative importance of the inductive and diffu-

sive terms on the right hand side of (1.18) at some characteristic length scale L is
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Figure 1.3: Experimental evidence for the Kolmogorov model of hydrodynamic
turbulence. Plot of energy spectrum against wavenumber, normalised by the Kolmogorov
scales, obtained from a range of experiments incorporating turbulent jets, wakes, boundary
layers and grid turbulence. Presented in Davidson (2004); here, `ν 7→ η.

determined by the magnitude of the magnetic Reynolds number Rm, defined by

Rm` ≡
UL

η
, (1.19)

where U is the characteristic velocity of the magnetised fluid. If Rm � 1, field

non-unformities are smoothed out diffusively. If on the other hand Rm � 1, then

the inductive term dominates and field lines move with the flow. As a result, field

lines can be stretched, potentially leading to amplification.

The so-called kinematic MHD dynamo problem – that is, dynamos where the

magnetic field is initially dynamically insignificant – has been studied comprehen-

sively (see Schekochihin et al. 2002a, and references therein). Such studies have
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demonstrated that it is certainly not the case that all flows result in dynamo action:

it can be proven analytically, for example, that two-dimensional flows or flows with

spherical symmetry cannot sustain long-term dynamo action (Cowling 1933, Backus

and Chandrasekhar 1956, Cowling 1957). It can also be shown that flows must have

sufficiently large Rm for diffusive magnetic-field decay to be prevented (Childress and

Gilbert 1995). Nevertheless, various MHD flows have been found to be capable of

supporting dynamo action: for example, the Roberts (Roberts and Bullard 1972) or

Ponomarenko dynamos (Ponomarenko 1973). Furthermore, it has also been proven

that ‘fast’ dynamos – that is, dynamos which amplify fields at the rate U/L in the

limit Rm → ∞ — are only possible if the flow is chaotic (Vishik 1989, Galloway

and Proctor 1992). This suggests that stochastic flows (including turbulent ones)

are by definition prime candidates for effective dynamo action – a suggestion verified

both analytically (Kazantsev 1968) and in numerical simulations (the first of which

chronologically being Meneguzzi et al. 1981).

How stochastic motions interact with a magnetic field to produce net growth in

field energy in the kinematic dynamo regime is most simply described heuristically

via scaling arguments (Schekochihin et al. 2007). In Kolmogorov turbulence in the

inertial range, it was argued in Section 1.1.2 that the velocity u` at scale ` satisfies

scaling (1.15): u` ∝ `1/3. This implies that the rate γ` at which field lines are

stretched by motions with characteristic scale ` – which is equal to the eddy turnover

rate γ` – satisfies γ` ∝ `−2/3. Thus, field-line stretching happens most rapidly at small

scales and at a much faster rate than the turnover rate urms/L of the largest-scale

motions. Dominant field growth occurs first at the so-called resistive scale `η, which

is defined as the length-scale at which ` ∼ η/u`.

The scalings of the resistive scale and the magnetic-field growth rate depends on

the magnetic Prandtl number of the flow, defined by

Pr ≡ ν

η
=

Rm

Re
. (1.20)
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In the Pr� 1 regime, the resistive scale is much smaller than the viscous dissipation

scale: lη/lν ∼ Pr−1/2 � 1 (Schekochihin et al. 2004c). This is deep inside the viscous

range; motions at such scale are still random, but spatially smooth (see Figure

1.4, left-hand panels). The dominant growth rate γ is simply the turnover rate of

Figure 1.4: Numerical simulations of the fluctuation dynamo: high versus low
magnetic Prandtl number. Cross-sections of the absolute values of the velocity (top)
and the (growing) magnetic field (bottom) for two numerical MHD simulations of the fluc-
tuation dynamo (resolution 5123). Lighter/darker regions correspond to stronger/weaker
fields respectively. The left column has Re = Rm = 440, and so Pr = 1, while the right
column has Rm = 430, Re = 6200 (Pr = 0.0694). Adapted from Schekochihin et al. (2007).

eddies at the viscous dissipation scale, which can be shown to be γ ∼ Re1/2urms/L.

The smooth nature of motions allows for analytical calculations of the magnetic-

energy spectrum to be carried out in this limit: for l−1
ν � k � l−1

η , the Kazantsev

spectrum EB(k) ∝ k3/2 is obtained (Kazantsev 1968, Kulsrud and Anderson 1992).

The peak of the predicted spectrum is at the resistive scale. Numerical simulations
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of the kinematic dynamo in the Pr � 1 regime have demonstrated the feasibility

of dynamo action due to stochastic motions, provided that Rm is larger than a

critical value Rmc ≈ 50; they have also verified the various theoretical predictions

concerning scales, growth rates and spectra (Schekochihin et al. 2004c, Haugen et al.

2004). Simulations of the Pr & 1 regime (which are typically easier to implement

numerically) have also been performed and the results are similar to those of the

Pr� 1 regime (Kida et al. 1991, Kleva and Drake 1995, Miller et al. 1996, Cho and

Vishniac 2000, Haugen et al. 2003).

In the Pr � 1 regime (but with Rm � 1), the resistive scale lη/lν ∼ Pr−3/4

is inside the turbulent inertial range (Moffatt 1961). Dominant stretching motions

are therefore not smooth, but chaotic (see Figure 1.4, right-hand panels). Unlike

the Pr � 1 regime, there does not exist a simple physical argument illustrating

the existence (or not) of dynamo action in this case, for the simple reason that

it is not clear a priori whether turbulent stretching of the field overcomes turbu-

lent diffusion (Schekochihin et al. 2007). Analytical treatments of the regime are

more challenging to perform, usually requiring invocation of some turbulent closure

hypothesis (Kleeorin and Rogachevskii 1994, Kleeorin et al. 1996). Nonetheless, sim-

ulations have indicated that dynamo action is still possible in the Pr � 1 regime

– but only if the more restrictive magnetic Reynolds number threshold Rmc ≈ 200

is surpassed (Schekochihin et al. 2004a, 2005b). The magnetic-energy spectrum in

this regime is found to have quite a different shape to that for the Pr & 1 regime:

as Pr decreases for fixed Rm, the peak of the magnetic-energy spectrum moves

from the resistive scale to larger scales and the spectral slope around the resistive

scale becomes negative (see Figure 1.5, left-hand panel). For wavenumbers satisfy-

ing L−1 � k � l−1
η , there is some similarity to the power law EB(k) ∝ k−1, which

also emerges from considerations of turbulent induction of small-scale magnetic fields

from a large-scale field (Ruzmaikin and Shukurov 1982, Kleeorin and Rogachevskii

1994, Kleeorin et al. 1996). For k � l−1
η , the spectrum becomes much steeper,

matching the Golitsyn spectrum: EB(k) ∝ k−11/3 (Golitsyn 1960, Moffatt 1961).
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Figure 1.5: Key numerical results from MHD simulations of the fluctuation
dynamo. Left: evolution of the magnetic-energy spectrum for decreasing Pr. Right: value
of magnetic Reynolds number Rm against the RMS fluctuating magnetic-field strength
(squared) B2

rms = 〈δB2〉 at saturation. For Rm < Rmc, the simulations include a uniform
mean field, with initial (normalised) magnetic field strength B̄ = 10−3. For Rm > Rmc,
runs with no mean field are assumed. The reference slope corresponds to predicted value
of B2

rms arising in the limit Rm � 1. Adapted from Schekochihin et al. (2007); in their
paper, EB(k) 7→M(k), Pr 7→ Pm and B̄ 7→ B0.

The Golitsyn spectrum is also obtained when Rm . 1.

For arbitrary Pr, amplification persists until field strengths come to approximate

equipartition with the fluid kinetic energy if Rm > Rmc (Schekochihin et al. 2004c,

Haugen et al. 2004) At this point, magnetic forces back-react on the flow via Lorentz

forces; in MHD, the fluid momentum equation now includes a term dependent on

the magnetic field (Tobias et al. 2013):

∂u

∂t
+ u · ∇u = −∇

(
p

ρ

)
+

(∇×B)×B

4πρ
+ ν∇2u . (1.21)

Simulations indicate that the magnetic field acts in such a way as to saturate growth

at the resistive scale; then follows a period of slower field energy growth at in-

creasingly large scales (resulting in a broad magnetic energy spectrum) until global

(though non-uniform) energy equipartition is achieved (Schekochihin et al. 2004b).

The precise saturated value of the magnetic field depends on how the system is
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physically driven, as well as Pr and Rm (Schekochihin et al. 2004c, Haugen et al.

2004); however, it is typically found that the magnetic energy is only a finite frac-

tion of the kinetic energy. This is because the magnetic field is observed to be

more intermittent than the velocity field. The resulting system is nonlinear even in

incompressible MHD, rendering analytic characterisations of saturation extremely

challenging. Nonetheless, there do exist a number of calculations supporting these

numerical observations (Boldyrev 2001, Schekochihin et al. 2002b,c, Subramanian

2003, Cattaneo and Tobias 2009). If Rmc > Rm� 1, amplification of the magnetic

field can still occur via stochastic tangling of the field; however, the saturated field

strength depends on Rm and can be far below dynamical significance (see Figure

1.5, right panel). Thus, a key signature of genuine dynamo action is amplification

to dynamical values.

1.1.5 Current theoretical debates in fluctuation dynamo the-

ory

It is clear that within the framework of MHD, magnetic-field amplification via the

fluctuation dynamo can account for fields with dynamical strengths. Furthermore,

the magnetic Reynolds number of the ICM is thought to be exceptionally large and

thus well above Rmc: Rm ∼ 1029 (Gregori et al. 2015). However, there remain

serious theoretical questions concerning the viability of MHD dynamo theory as a

satisfactory explanation for the origin of magnetic fields in the ICM. One such is-

sue is the applicability of conventional MHD to actual astrophysical plasmas, which

are typically only weakly collisional and composed of electrons and ions whose Lar-

mor radii are many orders of magnitude smaller than their respective mean-free-

paths (Schekochihin and Cowley 2006). This can alter the relevant plasma dynamics

radically (Helander and Sigmar 2005, Schekochihin et al. 2005a, Kunz et al. 2014).

For example, it is known that dynamo cannot be possible in plasma where the

magnetic moment of particles is conserved, a corollary of which is that dynamo
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action is impossible in certain models sometimes invoked to describe weakly colli-

sional plasma: kinetic magnetohydrodynamics, or the Chew-Goldberger-Low fluid

equations (Helander et al. 2016).

That being said, there are still good reasons for believing that the fluctuation dy-

namo is a viable explanation for the presence of strong fields in the ICM – not least

astrophysical observations showing that it is indeed turbulent (see, for example, Inog-

amov and Sunyaev 2003, Hitomi Collaboration 2016). There is also recent numerical

evidence to indicate that the dynamo process can occur in both unmagnetised colli-

sionless plasmas, albeit at a somewhat increased magnetic Reynolds number (Rincon

et al. 2016), as well as magnetised collisionless plasma (St-Onge and Kunz 2018).

However, a powerful way of supporting the theory would be direct evidence of the

process in an actual plasma.

1.2 Experimental investigations of the fluctuation

dynamo

1.2.1 Previous experiments

Dynamo processes have been investigated in the laboratory in various ways, including

liquid metal experiments (Gailitis et al. 2000, 2001, Monchaux et al. 2007) and laser-

plasma experiments (Meinecke et al. 2014, 2015). However, a bona fide fluctuation

dynamo resulting in equipartition of magnetic and kinetic energy has not yet been

replicated in the laboratory due to the difficulty of achieving the high magnetic

Reynolds numbers required for the process to be possible. The aforementioned liquid

metal experiments – which are inspired by known dynamo flows such as the Roberts

or Pondarenko dynamos – typically have Rm . 100, while previous attempts at a

plasma dynamo at a laser facility reached Rm ∼ 1. Nevertheless, the latter approach

has the advantage of scaling well with increasing laser energy, which results in both

higher flow velocities and decreased resistivity (Gregori et al. 2015).
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1.2.2 Experiment on the OMEGA laser facility: overview

A recent laser-plasma experiment demonstrated compelling evidence for the feasibil-

ity of the fluctuation dynamo in a turbulent plasma for the first time (Tzeferacos et al.

2018). The experiments were performed at the OMEGA laser facility at the Labora-

tory for Laser Energetics of the University of Rochester (Boehly et al. 1997) using a

platform whose design was motivated by a previous laser-plasma experiment investi-

gating turbulent amplification of magnetic fields on a smaller laser facility (Meinecke

et al. 2015). In the experiment, ten long-pulse laser beams are applied to the backs

of two opposing chlorine-doped plastic foils, creating supersonic plasma jets from

their fronts. These jets then pass through asymmetric grids, before colliding at the

target’s centre. On collision, the jets coalesce, forming an ‘interaction region’ of

plasma (demarcated by two shocks) whose density and temperature are significantly

greater than that of either jet. The inhomogeneity and asymmetry of the initial

plasma-jet density and flow profiles gives rise to significant shearing motion in the

interaction region; this facilitates Kelvin-Helmholtz instabilities on a range of length

scales (Hughes 1991), and thus significant stochasticity emerges in the velocity profile

as the interaction region develops. In contrast to the initial jet motion, stochastic

motions in the interaction region are subsonic, because of their reduced characteristic

flow speeds and the interaction-region plasma’s higher temperature. Further details

on the experimental setup are given in Figure 1.6.

To aid the interpretation and design of the experiment (including the details of the

targets and the grids), extensive two-dimensional and three-dimensional radiation-

MHD simulations of the experimental set-up were carried out (see Figure 1.7) using

the FLASH code (Fryxell et al. 2000, Dubey et al. 2013). The FLASH code is a paral-

lel, adaptive-mesh-refinement (AMR), finite-volume Eulerian code with high-energy-

density capabilities, including a three-temperature MHD solver (Lee 2013), non-ideal

MHD effects such as magnetic resistivity (Tzeferacos et al. 2015), the Biermann bat-

tery (Fatenejad et al. 2013, Graziani et al. 2015), implicit thermal conduction and
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Figure 1.6: Laser, target and diagnostic configuration. The main target – see photo
in sub-panel (a) – consists of two CH foils doped with 6% chlorine in atomic number – sub-
panel (b) – that are separated by 8 mm. Each foil is illuminated by ten 500 J, 1 ns pulse
length, frequency tripled (351 nm wavelength) laser beams with 800 µm spot diameter.
The beams are stacked in time to achieve the two pulse profiles shown in sub-panel (c). An
additional set of 17 beams, all fired simultaneously, are used to implode a proton backligher
capsule (see Section 1.4 for more details). The two grids are placed 4 mm apart, with a
300 µm hole width and 300 µm hole spacing. Grid A has the central hole aligned on the
center axis connecting the two foils, while grid B has the hole pattern shifted so that the
central axis crosses the middle point between two holes. Thomson scattering uses a 30 J,
1 ns, frequency doubled (wavelength λ = 526.5 nm) laser beam to probe the plasma on
the axis of the flow, 400 µm from the center and in a 50 µm focal spot, towards grid B.
The scattered light is collected with 63o scattering angle and the geometry is such that the
scattering wavenumber k = kscatter − kprobe, where |kscatter| ≈ |kprobe| = 2π/λ, is parallel
to the axis of the flow. Reproduced from Tzeferacos et al. (2018).

radiation transport in the multi-group diffusion approximation, tabulated equations

of state and material opacities and laser beams modelled with geometric-optics ray-

tracing and inverse-Bremsstrahlung energy deposition. A detailed description of the

numerical simulations carried out in conjunction with the experiment are described

in Tzeferacos et al. (2017).
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Figure 1.7: FLASH simulations of OMEGA experiment. Rendering of the electron
density from three-dimensional FLASH simulations at t = 35 ns. The three-dimensional
simulation of the experiment was performed on the Mira supercomputer at the Argonne
National Laboratory (USA).

1.2.3 Experiment on the OMEGA laser facility: plasma char-

acterisation

A set of diagnostics was fielded to measure the properties of the flow, its turbulence

and the magnetic field generated by it (see Figures 1.8 and 1.9). Here, we provide a

summary of the key results: full details of the experiment are give in the main text

and Supplementary Information of Tzeferacos et al. (2018).

Self-emitted soft X-rays (< 2 keV) enhanced by the presence of a small amount of

chlorine in the plasma were used to characterise the interaction of the colliding flow

and assess properties of the resulting plasma inhomogeneities. X-ray images taken

35 ns after the drive-beam pulse’s initiation (which is after the two laser-produced

jets collide) indicated a broad non-uniform spatial distribution of emission over a

region more than 1 mm across (see Figure 1.8a). In order to characterise the state

of the turbulent plasma produced by the collision, power spectra of the X-ray inten-

sity fluctuations were extracted from the experimental data using a two-dimensional

fast Fourier transform (see Figure 1.8b). Under the assumption of isotropic statis-

tics, fluctuations in the detected X-ray intensity can be directly related to density

fluctuations (Churazov et al. 2012). The power spectrum of the density fluctuations

extracted from the X-ray data was consistent with the peak of the spectrum being at
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Figure 1.8: Characterisation of the plasma turbulence. a) X-ray pinhole image
of the colliding flows 35 ns after the laser drive, using the 5 ns pulse profile. The image
was recorded onto a framing camera with ∼1 ns gate width and filtered with 0.5 µm C2H4

and 0.15 µm Al. The pinhole diameter is 50 µm. b) The open blue circles give the power
spectrum of the X-ray emission from the collision region, defined by the rectangular region
shown in panel a). The power spectrum has been filtered to remove edge effects and image
defects. The error bars on the spectrum are calculated by dividing the rectangular region
horizontally into three equally sized regions, and calculating the spectrum of each region;
the standard error of the spectrum of the whole region is then determined assuming the
three regions represent independent samples of the density fluctuations. More details
of this procedure are given in Supplementary Method 2 of Tzeferacos et al. (2018). The
shaded region at high wavenumbers is dominated by noise. The spectrum of the density
fluctuations, as obtained from FLASH simulations in the turbulent region, is shown with
red squares. Adapted from Tzeferacos et al. (2018)

wavenumber k ≈ 10 mm−1, with a Kolmogorov power law (k−5/3 scaling) for larger

wavenumbers. Experimental data from other diagnostics (see below) indicated that

the plasma motions were indeed mainly subsonic (Mach number . 1 at the outer

scale); as a result, density fluctuations injected at large scales behave as a passive

scalar and the spectra of the density and velocity fluctuations should be the same

(Zhuravleva et al. 2014). Given the uncertainty on the spectral measurement (de-

picted in Figure 1.8b), and the relatively narrow range of wavenumbers over which

sub-driving scale fluctuations are resolved, the uncertainty on the spectral power law

index in the inertial range of the turbulence is likely ∼30%, which prohibits a firm

conclusion (from the X-ray emission data alone) as to whether the stochastic mo-

tion in the interaction region can be characterised precisely as developed, subsonic,

hydrodynamic turbulence. That being said, the uncertainty is sufficiently small to
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guarantee three things: first, that the wavelength associated with the peak of the

spectrum is approximately the grid periodicity (L ≈ 600µm); second, that the ma-

jority of turbulent kinetic energy is concentrated near this (driving) scale; third, that

plasma is certainly manifesting stochastic motions on a range of scales. These con-

clusions are also confirmed by FLASH simulations (Tzeferacos et al. 2017), which

predicted subsonic motions of the plasma following the flow collision. Furthermore,

the power spectrum of density fluctuations calculated directly from FLASH showed

the same Kolmogorov power law scaling as the data (Figures 1.8b).

The Thomson scattering diagnostic (see Figure 1.6) allowed for the simultane-

ous measurement of three different velocities associated with the flow (Evans and

Katzenstein 1969). First, the bulk plasma-flow velocity – composed of a mean flow

velocity ū and outer-scale turbulent velocity uL – was obtained from the measure-

ments of shifts (in frequency) of the scattered light resulting from the bulk plasma

moving towards grid B. Second, the separation of the ion-acoustic waves is an accu-

rate measure of the sound speed and thus of the electron temperature, Te. Third, the

FLASH prediction of equal ion and electron temperatures allowed for the inference

from the broadening of the ion-acoustic features of the turbulent velocity u` on the

scale ` = lTS ∼ 50 µm (the Thomson scattering focal spot) (Inogamov and Sunyaev

2003, Meinecke et al. 2015).

Based on these measurements, it was found that, before collision, the two plasma

flows move towards each other with axial mean velocity ū . 200 km/s in the labora-

tory rest-frame and have electron temperature Te ≈ 220 eV. After the collision, the

axial flow slows down to 20-40 km/s, with motions being converted into transverse

components. The electron temperature increases considerably, reaching Te ≈ 450

eV (Figure 1.9). The measured time-averaged (RMS) turbulent velocity at scale

` ∼ lTS is u` ∼ 55 km/s. If u` has Kolmogorov scaling [c.f equation (1.15)], the

turbulent velocity at the outer scale must therefore be uL ∼ u`(L/`)
1/3 ≈ 100 km/s.

Electron density estimates can be obtained from the measured total intensity of the

Thomson scattered radiation, to give a value ne ≈ 1020 cm−3, which is also consis-
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Figure 1.9: Thomson scattering measurements. Electron temperatures and flow
velocities are obtained by fitting the experimental data with the frequency dependent
Thomson scattering cross section (Evans and Katzenstein 1969). In the fitting procedure
an electron density of . 1020 cm−3 is assumed (as determined by an absolute calibration
of the Thomson-scattered laser light and corroborated by FLASH simulations). At these
electron densities, the frequency distribution of the scattered light does not depend on
the electron density, which only provides an overall normalisation factor. a) Thomson
scattering data (red solid line) at 32.9 ns obtained from a target driven with the 5 ns
pulse profile. The blue dashed line corresponds to a plasma in thermodynamic equilibrium
(assuming equal electron and ion temperatures). The central peak is due to stray light at
the probe laser wavelength (and it is used to determine the instrumental resolution of the
spectrometer). The blue solid line corresponds to the case in which additional broadening
due to turbulence is included in the fitting procedure. The inset in the top panel shows the
time-streaked image of the Thomson scattered light. The resolution of the streak camera is
∼ 50 ps and the Thomson scattering signal is fitted every 100 ps. b) Flow velocity towards
grid B (full blue circles), turbulent velocity (full green squares), and electron temperature
(full red diamonds) as measured by Thomson scattering for the case of a target driven with
5 ns laser profile. FLASH simulation results for the electron temperature and flow velocity
in the probe volume are also reported in dashed lines. The error bars are estimated from
the χ2 fit of the data. Adapted from Tzeferacos et al. (2018)

tent with values predicted by FLASH simulations (Tzeferacos et al. 2017). A plasma

with these parameters can be well described as being collisional, and in the resistive

magneto-hydrodynamic (MHD) regime. For an MHD-type plasma, the characteris-

tic fluid and magnetic Reynolds numbers attained in the experiment were estimated:

ReL ≈ uLL/ν ∼ 1200 (ν is the viscosity) and RmL ≈ 600, using L ≈ 600 µm,

the characteristic driving scale determined by the average separation between grid

openings. The experiment thus achieved conditions where RmL is comfortably larger

than the expected critical magnetic Reynolds number required for the low-magnetic

Prandtl number fluctuation dynamo (Schekochihin et al. 2007).
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1.2.4 Experiment on the OMEGA laser facility: magnetic

field evolution in FLASH simulations

The feasibility of dynamo action in the set-up is most simply illustrated by the

FLASH simulation, in which the evolution of the magnetic field in a 500 µm control

volume following the plasma jet and the interaction region can be tracked directly

(see Figure 1.10a). The simulated time history of the RMS and maximum magnetic

field strengths in this control volume is given in Figure 1.10b. In the FLASH simu-

lation, the initial magnetic field present in the control volume – which is generated

near the foil via the Biermann battery mechanism (Stamper et al. 1971) – decays

as the jet propagates towards the centre of the target. This is due to the plasma’s

finite resistivity and also dilution of the magnetic field as the jet expands. The field

strength just before collision is found to be ∼ 4 kG. Subsequent to collision, the

magnetic field strength increases rapidly, before saturating around 5 ns subsequent

to collision. RMS and peak field strengths are of the order of ∼ 60 kG and ∼ 300 kG

respectively. Thus in the FLASH simulations, the magnetic field is amplified signifi-

cantly. That growth is indeed due to motion of the plasma can be demonstrated by

switching off the Biermann battery (the only other possible source of fields in the

simulation) in the interaction region (shown in Figure 1.10a), for times ≥ 23 ns (cor-

responding to times after the jet collision). The resulting time histories (dashed lines

in Figure 1.10b) do not show significant difference from those carried out including

the Biermann battery at all times – solid lines in Figure 1.10b. This applies to both

peak and RMS values of the magnetic field in the interaction region.

Examining the structure of the magnetic field in more detail, the magnetic-energy

spectrum of the field in the control volume at a particular time can be calculated

directly and compared to the kinetic energy spectrum (Figure 1.10c). The former

is consistent with a k−1 power-law dependence for wavenumbers & 30 mm−1 (cor-

responding to structures with wavelengths . 200µm). This spectral slope, which

is considerably shallower than the Kolmogorov-like spectrum found for the kinetic
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Figure 1.10: Magnetic-field generation in FLASH simulations. a) Rendering
of the FLASH magnetic field strength 40 ns after drive-beam pulse initiation for the 5
ns pulse profile. The control volume is denoted in black and the region in which the
Biermann battery is subsequently turned off is outlined by white boundaries. b) Evolution
of maximum field strength, Bmax, and the RMS field, Brms, in the control volume indicated
by a square box in panel a). The plot includes both the results of the full simulation (solid
lines) and a simulation where the Biermann battery was switched off (dashed coloured
lines) after jet collision (i.e. for times to the right of the vertical gray dashed line). c) Blue
diamonds: power spectrum of the kinetic energy from FLASH simulations. Red squares:
power spectrum of magnetic energy from FLASH simulations. Adapted from Tzeferacos
et al. (2018)

energy, is similar to the spectra of tangled fields near and above the dynamo thresh-

old discussed in Section 1.1.4 for the Pm � 1 regime; it corresponds to significant

magnetic energy at both smaller and larger scales.
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1.2.5 Experiment on the OMEGA laser facility: Faraday-

rotation measurements

To assess whether the fluctuation dynamo was indeed operating in the experiment,

magnetic field measurements were performed using two techniques. The first of

these was a Faraday-rotation set-up in which the rotation of the polarisation angle

of Thomson scattered light provided an electron-density-weighted measure of the

variation of the longitudinal component of the magnetic field integrated along the

beam path (Segre 1999). The measured rotation angle for the time interval corre-

sponding to the Thomson scattering measurements presented in Figure 1.9 is shown

in Figure 1.11; it is found to fluctuate over a few degrees. A full description of the

Faraday-rotation diagnostic as implemented in this experiment is provided by Rigby

et al. (2018).

Figure 1.11: Faraday-rotation measurements. Estimated Faraday-rotation data
from the Thomson scattering data. This was done by separating the scattered light into
two orthogonal polarisations (see Supplementary Method 3 of Tzeferacos et al. (2018)).
The blue line corresponds to the same conditions as for Figure 1.9b. The green line was
obtained from an experiment involving a single-flow, single-grid experiment only, when
the magnetic field was significantly smaller. The errors are determined by the standard
deviation of the data within the shot. Adapted from Tzeferacos et al. (2018)

We can relate this measurement to the magnetic field by noting that when the

Faraday-rotation angle ∆ϑ is small, it is given (in Gaussian units) by (Ensslin and
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Vogt 2003)

∆ϑ =
λ2e3

2πm2
ec

4

∫ 2lpath

0

ne(s)B‖(s) ds , (1.22)

where λ is the probe laser beam’s wavelength, e the elementary charge, me the

electron mass, s the distance along the path, and B‖ the component of the magnetic

field parallel to the beam path. Twice the Thomson-scattering beam path-length

lpath is used for the total path length of the integral, because the geometry of the

interaction region was such that the Thomson scattering volume lies on the opposing

side to that from which the probe beam originates. The incident laser’s wavelength

is λ = 5.27× 10−5 cm, implying that

∫ 2lpath

0

ne(s)B‖(s) ds = 2.4× 1023∆ϑG cm−2. (1.23)

If the mean magnetic field is small or zero, the mean of the Faraday-rotation measure

should vanish and so measured values of it correspond to the standard deviation of

the line-of-sight integral in equation (1.23). This can be estimated by a random-

walk argument: assuming that the magnetic structures with largest amplitudes have

characteristic scale ˜̀
B, the typical deviation is equal to the deviation acquired across

one correlated structure multiplied by the square root of the number of such struc-

tures encountered (as an aside, we note that ˜̀
B and the correlation scale `B defined

formally by equation (1.8) are technically distinct quantities, but they are usually

the same order of magnitude). Equation (1.23) then implies

√
ln ˜̀

B neBrms ∼ 1.7× 1023∆ϑ G cm−2, (1.24)

where ln is the interaction-region width. This estimate can be re-arranged to give

Brms ≈ 120 (∆ϑ/3◦)(ne/1020 cm−3)−1(ln ˜̀
B/0.2 mm2)−1/2 kG. A reasonable estimate

for ˜̀
B is the grid aperture: ˜̀

B ∼ 300 µm.

However, this particular measurement of the magnetic field has several issues

when employed in isolation. First of these is the dependence of the Faraday-rotation
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measure on both the magnetic field and the plasma density. Since the plasma is in

a turbulent state, assuming a uniform density along the path is questionable. This

objection is particularly prescient if there exist correlations between the fluctuat-

ing density and the stochastic magnetic field: for example, a positive correlation

between density and magnetic field would result in the field strength being system-

atically overestimated. The second issue is the lack of spatial information provided

by the measurement. This prevents any inferences from the measurement about the

structure of the magnetic field; in order to characterise typical field strengths, some

value for the typical field scale must be assumed. The time-resolved nature of the

measurement, which for previous laser-plasma experiments investigating turbulent

amplification of magnetic fields has been used to infer spatial information about the

field via the Taylor hypothesis (Meinecke et al. 2014), is of little use in this situ-

ation, because the stochastic nature of the motions in which the magnetic field is

embedded means that there is not a well defined relationship applicable for a single

measurement between the frequency dependence of the magnetic field evolution and

its spatial structure. A corollary of both these issues is that the Faraday rotation

measurement of the magnetic field for this experiment is only semi-quantitative at

best in the absence of further interpretation by simulations. This state of affairs is

unsatisfactory, because the key scientific goal of the experiment is only achieved if a

robust measurement of the characteristic magnetic field strength can be obtained.

To overcome these issues, a second magnetic-field diagnostic was employed: pro-

ton imaging.

1.3 A (brief) review of proton imaging

Before discussing the proton-imaging data arising from the OMEGA experiment,

we first provide a brief review of proton imaging. Proton imaging (also known as

proton radiography) is an important electromagnetic-field diagnostic used in laser-

plasma experiments, with applications spanning laboratory astrophysics and inertial
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Figure 1.12: Set-up of proton-imaging diagnostic, with identified theoretical
parameters. A particular magnetic field configuration is imaged by propagating an ap-
proximately planar proton beam through the structure. Spatially varying magnetic forces
cause non-uniform deflection of protons, resulting in a particular proton-flux image. Here
ri is the distance from the proton source to the magnetic field configuration, a the proton
source size, l⊥ the perpendicular length scale of the configuration, lz the parallel scale, rs
the distance from the configuration to the detector, x⊥0 a perpendicular coordinate sys-
tem for the imaging beam prior to interaction with the magnetic field, x⊥ a perpendicular

coordinate system after the interaction, and x
(s)
⊥ the image coordinate system.

fusion (Mackinnon et al. 2004, 2006, Li et al. 2006b). The diagnostic is implemented

by passing an approximately uniform beam of imaging protons through a plasma

onto a spatially resolved detector. Proton beams are typically generated in practice

using one of two methods: the first is production of protons via the target normal

sheath acceleration (TNSA) process using a high-intensity laser (Wilks et al. 2001,

Borghesi et al. 2006). The second is the laser implosion of a capsule containing

D2 and D3He gas that leads to creation of fusion protons (Séguin et al. 2004, Li

et al. 2006b, Manuel et al. 2012). While inside the plasma, the imaging protons

experience Lorentz forces arising from electromagnetic fields, which result in a non-

uniform image-flux distribution. An idealised picture of a typical imaging set-up is

shown in Figure 1.12.
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When implemented successfully, proton imaging can help characterise electro-

magnetic structures, the measurement of which is crucial for understanding a wide

range of plasma dynamics. However, as a two-dimensional diagnostic, a conven-

tional proton-imaging set-up is unable to describe completely a full three-dimensional

electromagnetic field configuration, instead yielding the two-dimensional image-flux

distribution. Additionally, it is well known that the morphology and strength of

image-flux structures do not correspond directly to the equivalent properties of the

electromagnetic field (see Kugland et al. 2012). For proton imaging to provide useful

measurements of electromagnetic fields, an interpretation of a proton-flux image in

terms of the field creating it is therefore required.

Typically there are two ways in which the interpretation of proton-flux images is

carried out. The first consists of simulating some artificial field, either by a bespoke

electromagnetic-field generation method (see Levy et al. 2015), or with a more gen-

eral plasma-simulation tool and then introducing a pre-defined proton beam: this

is then propagated via a numerical scheme from source to detector. The resulting

proton-flux image is compared to experimentally obtained images; similarities be-

tween the two are interpreted as evidence for the artificial field being similar to the

experimental field (Borghesi et al. 2002, Huntington et al. 2015). Such a technique

can be enhanced further by running optimisation schemes on proton ray-tracing

codes applied to parametrised test fields to find the best possible fit between an

electromagnetic-field structure and its associated proton-flux image (see Romagnani

et al. 2005). This forward-propagation technique has been successfully used to de-

scribe electromagnetic fields produced in a range of laser-plasma experiments (for

example, see Borghesi et al. 2007, Romagnani et al. 2008, Sarri et al. 2012).

An alternative approach is to perform a general analysis of the evolution of the

proton beam analytically and so derive an analytical expression for the image-flux

distribution in terms of the fields creating it (Kugland et al. 2012). The tractability of

the relevant arguments is a result of the protons’ large speed and low density relative

to macroscopic plasma properties: this enables a range of physical processes to be
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neglected, leaving forces due to electromagnetic fields already present in the plasma

solely responsible for alterations to the proton beam’s dynamics (see Appendix B). In

addition, a number of assumptions – such as that of a uniform mono-energetic beam

from a point source, paraxiality, small proton deflection angles and point projection –

allow for further simplifications. Typically, the image-flux distribution can be related

to path-integrated fields (Graziani et al. 2017).

Analytic theory for regular electromagnetic structures is relatively well under-

stood. Kugland et al. (2012) carried out analyses of various structures based on

real-space conservation of proton flux and documented a wide range of features typ-

ically observed in proton-flux images. In particular, using simplifying assumptions

(stated precisely in Section 2.4.1) they give an analytic relation – first derived, in fact,

by Romagnani (2005) – between path-integrated fields experienced by an imaging

beam and the resulting image-flux distribution (p. 5, equation (6) of Kugland et al.

2012), which from now on we will refer to as the Romagnani-Kugland (RK) image-

flux relation. Kugland et al. (2012) then discussed the existence of a dimensionless

parameter – the contrast parameter, µ – which effectively characterises image-flux

phenomena (for magnetic fields, µ is defined precisely in Section 2.2.3). Physically, µ

is a measure of the relative magnitude of proton displacements resulting from electro-

magnetic forces and the size of electromagnetic structures. For small constrasts, the

image flux is related linearly to the path-integrated fields, with the consequence that

the latter can in theory be directly reconstructed from proton-flux images (Graziani

et al. 2017). However, as µ increases this relationship becomes highly nonlinear;

beyond some critical value of µ some regions of proton flux overlap themselves, and

intense structures (caustics) appear due to focusing of the proton beam (Kugland

et al. 2012).

Both methods have strengths and weaknesses. Forward-propagation techniques

require fewer assumptions than analytic theory and, in the case of a simple proton-

flux image, finding the electromagnetic fields generating that image is usually tractable.

However, if analytic theory is valid, it is useful for determining precisely what field
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statistics are retained in a proton-flux image. It can also lead to practical methods

for extracting those statistics directly from an image.

1.4 Proton-imaging data from the OMEGA ex-

periment

For the OMEGA experiment, the proton-imaging diagnostic was implemented by

imploding a D3He capsule (Li et al. 2006b), located 1 cm away from the centre of

the target (ri = 1 cm). The capsule (diameter 420 µm) was composed of 2 µm of

SiO2 and filled with 18 atm D3He gas (6 atm D2 and 12 atm 3He); it was imploded

using seventeen 500 J beams, each with a 1 ns pulse length and 1.82 mm defocus.

This results in the generation of ∼ 108 − 109 3.0 MeV and 14.7 MeV fusion pro-

tons, from DD and D3He fusion reactions respectively. The fusion reactions occur

approximately 0.5 ns after the implosion is initiated, and the burst is released over

0.15 ns. Experimental measurements of the proton energy spectra emerging from

such capsule implosions have previously demonstrated both energy broadening and

an upshift in the mean energy (Manuel et al. 2012); this is believed to be due to

strong time-varying electric fields arising during the capsule implosion. As a result,

the mean energies WDD and WD3He of the DD and D3He fusion protons are found to

be WDD = 3.3 MeV and WD3He = 15.0 MeV respectively, with energy uncertainties

∼ 9% and ∼ 4%.

The fusion protons rapidly travel outward from the centre of the backlighter; a

finite fraction of those pass through the turbulent plasma generated by the col-

liding jets. The characteristic speeds of the DD and D3He protons are VDD =

2.51 × 109 cm/s and VD3He = 5.31 × 109 cm/s respectively; thus, we deduce that

the transit time τsource,DD of the DD protons from the capsule to the experiment is

τsource,DD = ri/VDD ≈ 400 ps, while the transit time τsource,D3He of the D3He protons

is τsource,D3He ≈ 190 ps. Both these times are considerable shorter than the turnover
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time of the largest-scale plasma motions in the experiment (τL = L/uL ≈ 6 ns);

since the distance from the proton source to the target centre in the experiment

is greater than the scale of the plasma (lz . 0.1 cm) parallel to the proton beam’s

direction, both proton species experience (to a good approximation) the same static

electromagnetic fields.

Subsequent to traversing the interaction-region plasma, the fusion protons reach

a detector (positioned 27 cm away from the target centre – rs = 27 cm) composed of

10 cm× 10 cm interleaved metal sheets and solid-state nuclear track detector, CR-39

[chemical formula C12H18O7; see Séguin et al. (2003)]. The specific design of the

detector is as follows: 7.5 µm of tantalum, then 1.5 mm of CR-39, then 150 µm

of aluminium, and finally another 1.5 mm of CR-39. The design is such that 3.3

MeV protons are stopped in the first layer of CR-39 and 15.0 MeV protons in the

second; the tantalum filter minimises damage to the CR-39 resulting from X-rays.

Highly charged ions deposit the majority of their energy close to where they are

stopped completely, leaving small tracks of broken molecular bonds. The positions

of these tracks is determined by etching the CR-39 for two to three hours in a 6N

solution of sodium hydroxide, yielding tracks with diameters∼ 10µm. An automated

microscope system records the location of tracks, before removing image defects and

counting the number of protons in preset bin sizes: the output are proton (fluence)

images. The robust design of the detector is such that protons reaching the detector

are recorded with close to 100% efficiency.

A selection of 15.0 MeV and 3.3 MeV proton images obtained during the OMEGA

experiment both during collision and subsequent to it are shown in Figure 1.13.

Figure 1.13a and 1.13b, recorded at times corresponding to jet-collision with the 10

ns pulse profile, do not present significant variations in proton flux δΨ compared

to the mean flux Ψ0; this result is consistent with the absence of strong magnetic

fields. However, at later times with the same pulse shape, significant flux structures

emerge in the images. These structures are even more intense at the same time for

the shortened 5 ns pulse profile.
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Figure 1.13: Proton images from the OMEGA experiment. a) Normalised number
of 15.0 MeV protons detected on the second CR-39 plate in the detector pack, for a
D3He capsule implosion 29 ns after drive-beam pulse initiation. The normalisation is such
that unity corresponds to the mean number Ψ0 of protons per pixel on the detector; for
this experimental shot, Ψ0 = 32. The drive-beam pulse length used in this experiment
was 10 ns. Due to the 0.5 ns second creation-delay and 0.2 ns transit time of the 15.0
MeV protons from capsule to target centre, the effective time of imaging is 29.7 ns. b)
Normalised number of 3.3 MeV protons detected on the first CR-39 plate in the detector
pack (Ψ0 = 101) for the same experiment shot. The 0.4 ns transit time of the 3.3 MeV
protons from the capsule to the experiment means that the effective time of imaging is
29.9 ns (0.2 ns later than the 15.0 MeV protons). c) Same as a), but for a D3He capsule
implosion 34 ns after drive-beam pulse initiation. In this shot, Ψ0 = 16. d) Same as b), but
for a D3He capsule implosion 34 ns after drive-beam pulse initiation (same experimental
shot as c); Ψ0 = 76). e) Same as c), but with a 5 ns drive-beam pulse length (Ψ0 = 78).
f) Same as d), but with a 5 ns drive-beam pulse length (same experimental shot as e);
Ψ0 = 118).
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In general laser-plasma experiments, such structure in proton images could be

due to either electric or magnetic fields, whose simultaneous presence complicates

systematic analysis. However, it can be argued in the OMEGA experiment that

forces on the proton beam due to magnetic fields tend to dominate those due to

electric fields. Such an argument goes as follows: in resistive MHD (including the

Biermann battery term), the electric field is a known function of other plasma state

variables (Gregori et al. 2015):

E = −u×B

c
− ∇pe
ene

+
4πη

c2
j , (1.25)

where pe is the electron pressure, ne the electron density, and j ≈ c∇×B/4π is the

current. Thus, we can then estimate the relative magnitude of forces due to electric

and magnetic fields on a given imaging proton using its equation of motion:

mp
dV

dt
= e

[
E +

V ×B

c

]
, (1.26)

where V is the proton velocity (and V the proton speed), and mp the proton mass.

It follows that

|u×B|/c
|V ×B|/c

∼ U

V
, (1.27)

|∇pe/ene|
|V ×B|/c

∼ β1/2di
L

U

V
, (1.28)

|η∇×B/c|
|V ×B|/c

∼ Rm−1U

V
, (1.29)

where U is again the characteristic fluid velocity, β the plasma beta, L the charac-

teristic scale of the electric field fluctuation, and di the ion plasma skin depth, which

is given by (Huba 1994)

di ≡ 3.1× 10−3

[
Z

3.5

]−1/2 [
M

6.5

]1/2 [
ne(cm−3)

1020cm−3

]−1/2

cm−3 . (1.30)
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Since in the OMEGA experiment U . 2×107 cm/s, L ≈ 0.06 cm, Rm ≈ 600, and the

electron number density ne ∼ 1020cm−3, we conclude that for the 3.3 MeV protons

(V ≈ 2.5× 109 cm/s) the electric force terms are all small compared to the magnetic

forces provided β � 6×106. In terms of characteristic field strengths, this condition

is satisfied provided B � 0.6 kG. The bound is even stronger for the faster, 15.0

MeV protons.

There are then two reasons to believe this upper bound on β is indeed satisfied in

the OMEGA experiment. First, the semi-quantitative field-strength estimate derived

from the Faraday-rotation diagnostic implies that the value of B attained subsequent

to the development of turbulence is of the order of one hundred kilogauss. Second,

the FLASH simulations of the experiment involve stochastic magnetic fields of magni-

tudes Brms ∼ 4−500 kG; and although we shall see presently that the magnetic-field

structure arising in the simulations should be regarded with significant skepticism,

it seems unlikely that the FLASH code is producing fields larger than the physical

ones by an order of magnitude or more. Even if these two arguments were to be seen

inadequate, magnetic fields which do not satisfy the condition can in fact be shown

to be very close to or below the threshold Bres & 0.5 kG required for detecting those

fields, given the geometry of the experiment and the nature of the proton source (see

Section 3.3.1 for the derivation of the threshold). We conclude that all structures in

these images are likely due to magnetic rather than electric fields (in Chapter 3, we

will provide additional experimental evidence supporting this conclusion).

In spite of ruling out electric fields, systematic analysis of proton images derived

from stochastic magnetic fields such as those shown in Figure 1.13 still presents a

number of challenges. The complicated, seemingly random positioning of multiple

structures in the proton images prohibits the attempted application of parameterised

models for simple magnetic structures. One alternative forward-propagation tech-

nique involves simulating the proton-imaging set-up in the FLASH simulations and

generating artificial proton images associated with the FLASH magnetic field at a

particular time. The results of such a numerical calculation are shown in Figure
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Figure 1.14: Comparison of experimental and FLASH-simulated proton images
for the OMEGA experiment. a) Normalised number of 15.0 MeV protons detected
on the second CR-39 plate in the detector pack, for a proton image corresponding to 34.7
ns after initiation of the 5 ns drive-beam pulse (c.f. Figure 1.13e). The normalisation
is again such that unity corresponds to the mean number Ψ0 of protons per pixel on
the detector; for this experimental shot, Ψ0 = 78. b) Normalised number of simulated
15.0 MeV protons detected on the (artificial) detector for a proton beam implemented
for the FLASH-predicted magnetic fields at the equivalent simulation time to that in the
experiment. The imaging parameters are chosen to be identical to those of the experiment.

1.14. It is unfortunately clear that the qualitative structure present in the FLASH-

simulated proton images is quite distinct from that in the experimental data: the

characteristic scale of flux variation is smaller in the FLASH simulation and magnetic

structures evident in the FLASH simulation which extend beyond the edge of the

interaction region are absent in the experimental data. We are forced to conclude

that the magnetic-field morphology obtained in the FLASH simulations is unlikely to

be consistent with that obtained in the experiment. This failure emphasises a funda-

mental difficulty associated with the application of forward-propagation techniques

to proton images manifesting stochastic structure: in the event that numerical sim-

ulations do not adequately predict such structure, there is no self-evident systematic

approach for modifying the simulations to fit better the data. Furthermore, we note

that even if a simulation correctly reproduces in a statistical sense the stochastic

structure of magnetic fields, the very nature of stochasticity implies that it is excep-

tionally unlikely that experimental images will be exactly the same as post-processed

ones generated from the simulations.



1.4 Proton-imaging data from the OMEGA experiment 36

It transpires that the analytic approach is more useful when using proton imaging

to investigate stochastic magnetic field configurations. While dominant, magnetic

forces experienced by the protons lead to small deflection angles, meaning that the

approximations required for the use of analytic theory are often valid. This being the

case, we can take advantage of analytic theory not requiring much prior knowledge

of magnetic-field statistics (unlike forward-propagation techniques) without risking

inaccurate results due to poor assumptions. To enable systematic analysis of the

proton-imaging data obtained from the OMEGA experiment, we will therefore fo-

cus in the next chapter on constructing an analytic theory of proton imaging for

stochastic magnetic fields.



Chapter 2

Proton imaging of stochastic

magnetic fields

2.1 Introduction

A complete discussion of analytic theory of proton imaging for stochastic magnetic

fields does not appear to exist in the literature. However, a few authors have con-

sidered various aspects of the general problem. Graziani et al. (2017) developed a

linear, small-contrast-parameter-µ theory, applied it to multi-scale stochastic mag-

netic fields, and constructed a method for extracting the magnetic-energy spectrum

from the autocorrelation function of the image-flux distribution assuming statistical

isotropy and homogeneity of the field. There has also been extensive work modelling

the diffusive evolution of a beam of charged particles through stochastic magnetic

fields. Dolginov and Toptygin (1967) derived a governing equation for the ensemble-

averaged distribution function of non-interacting, unmagnetised test particles using

quasi-linear theory; this has been further developed by other authors (Hall and Stur-

rock 1967, Jokipii 1972). The result of such theories is typically a proton diffusion

tensor, the form of which depends on the properties of both the beam and the

field (Parker 1965).

In this chapter, we aim to determine the magnetic-energy spectrum from a proton

37
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image-flux distribution. If known, the magnetic-energy spectrum can in turn be used

to deduce both typical magnetic-field strengths and spatial-correlation scales using

equations (1.7) and (1.8) of Section 1.1.2. We address two areas not previously

investigated systematically: first, the circumstances under which the extraction of

the magnetic-energy spectrum is possible; second, how this extraction is done when

it is feasible. Our approach to answering these questions will be to use the RK image-

flux relation (introduced in Section 1.4) between the path-integrated magnetic field

and the image-flux distribution. We explain in Section 2.2.2 that the path-integrated

field is sufficient to characterise the magnetic-energy spectrum uniquely, provided

magnetic fluctuations are assumed isotropic and homogeneous. Consequently, if it

can be shown that the path-integrated field is extractable from a proton-flux image

(or not), then the same is true for extracting the magnetic-energy spectrum for

isotropic, stochastic magnetic fields.

Bearing this last statement in mind, we study the properties of the RK image-

flux relation for the case of stochastic magnetic fields. Much as with regular electro-

magnetic structures, the types of image-flux features which manifest for stochastic

magnetic fields are determined by µ. More specifically, we outline four regimes of

distinctive image-flux phenomena in terms of µ. Of particular note in this context

is the identification and characterisation of the large-µ (diffusive) regime, which in

the context of proton imaging has not previously been discussed in much depth. For

each regime, we investigate the possibility of the path-integrated magnetic field being

reconstructed from an image-flux distribution, and if this reconstruction is possible,

we provide a methodology for its practical implementation.

The text of the chapter is organised in the following manner. In Section 2.2, we

discuss generally the interpretation of proton images resulting from stochastic mag-

netic fields. More specifically, in Section 2.2.1 we revise the description of stochastic

magnetic fields given in Section 1.1.2 into a form appropriate for subsequent analysis.

Section 2.2.2 introduces the RK image-flux relation mathematically, along with its

correspondence to the magnetic-energy spectrum. By investigating the properties of
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the RK image-flux relation, Section 2.2.3 presents a general categorisation of image-

flux features arising due to stochastic magnetic fields in terms of µ. In Section 2.3, we

describe four distinct contrast regimes arising at different values of µ: linear (Section

2.3.1), nonlinear injective (Section 2.3.2), caustic (Section 2.3.3), and diffusive (Sec-

tion 2.3.4). This description is combined with a numerical example illustrating key

characteristics of each regime. We also describe possible methods for extracting the

path-integrated field (and hence the magnetic-energy spectrum), as well as tests for

identifying the likely contrast regime in which a given proton-flux image was formed.

In Section 2.3.5, we illustrate the success (or failure) or the proposed methods for

reconstructing the path-integrated field and magnetic-energy spectrum on the same

numerical example used to characterise the contrast regimes.

In Section 2.4, we explore various technical issues and complications to the theory

presented in Sections 2.2 and 2.3. Section 2.4.1 outlines the assumptions required

for the RK image-flux relation to be valid. In Section 2.4.2, we discuss two theo-

retical complications to the contrast-regime classification of imaging set-ups applied

to stochastic magnetic fields that are significant for multi-scale, or inhomogeneous,

anisotropic stochastic fields. Both complications provide examples of situations in

which the methods proposed for extracting the magnetic-energy spectrum from a

proton-flux image are restricted. Finally, Section 2.4.3 describes three other limita-

tions placed by current experimental capabilities on one’s ability to determine the

magnetic-energy spectrum using proton imaging.

Throughout this chapter, parameters and coordinate systems are defined as il-

lustrated in Figure 1.12 of Chapter 1. We have in general deferred lengthy proofs

of equations to either thesis appendices, or appendices of the published paper Bott

et al. (2017). For reasons of brevity, we only include the most important appendices

in the main text. Descriptions of all the numerical algorithms used in this chapter

are presented in Appendix I.
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2.2 Interpretation of proton-flux images generated

by stochastic magnetic fields

2.2.1 Statistical characterisation of stochastic magnetic fields

revisited

This chapter is concerned with recovering statistical properties of stochastic magnetic

fields using a proton-imaging diagnostic – so we begin with a brief outline of the

type of magnetic fields we will be considering. Recalling Section 1.1.2, we consider

magnetic fields of the form

B(x) = B̄(x) + δB(x) , (2.1)

where B̄ is the non-stochastic mean field varying on the global scale of the plasma,

constrained to be inside a cuboid region, dimensions l⊥ × l⊥ × lz (see Figure 1.12),

and δB is the fluctuating field with correlation length `B � lz, l⊥ (`B is defined

precisely in Appendix C.2). The mean and fluctuating fields are again distinguished

by introducing a spatial averaging operator 〈·〉 with the property that
〈
B̄
〉

= B̄, and

〈δB〉 = 0. In this case, the averaging operator is an average over intermediate scale

l such that `B � l � lz, l⊥. We restrict our focus to static fields only because with

respect to the fast motion of the protons the evolution of magnetic fields is assumed

slow (see Section 2.4.1 for a discussion of the validity of this assumption).

Throughout the rest of this chapter, we explore the question of whether a proton-

imaging diagnostic can be used to extract the magnetic-energy spectrum. For con-

venience, we reproduce its definition here:

EB(k) =
π

V

∫
dΩ k2

〈∣∣∣δB̂(k)
∣∣∣2〉 . (2.2)

We also reproduce the relations between the magnetic-energy spectrum, the charac-
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teristic magnetic field strength Brms, and the correlation length `B:

Brms =

[
8π

∫ ∞
0

dk EB(k)

]1/2

, (2.3)

`B =
π

2

∫∞
0

dk k−1EB(k)∫∞
0

dk EB(k)
. (2.4)

A discussion of the mathematical characterisation of stochastic magnetic fields by an

alternative mathematical object – the magnetic autocorrelation function – is given

in Appendix C. This is an equivalent quantity to the magnetic-energy spectrum.

It is sometimes useful to invoke it instead of the spectrum: the most physically

intuitive definition of the magnetic-field correlation length is in terms of magnetic

autocorrelation function, and for the derivations of spectral relations (2.11) and

(2.35) presented in Appendices D and F respectively, the magnetic autocorrelation

function enables a clearer characterisation of the accuracy of approximations made

than does the magnetic-energy spectrum.

2.2.2 The plasma-image mapping

In the Introduction, we discussed the importance of the RK image-flux relation

between the path-integrated magnetic field and image-flux distribution when seeking

to determine the magnetic-energy spectrum; here we outline the form of this relation

and its correspondence to the energy spectrum. The RK image-flux relation was

originally derived from particle conservation in real space (Romagnani 2005, Kugland

et al. 2012). In Appendix D of Bott et al. (2017), an alternative derivation from first

principles using kinetic theory is presented.

Physically, magnetic forces experienced by the imaging protons lead to global re-

structuring of the imaging beam. For arbitrary magnetic-field configurations and

imaging-beam parameters, characterising this restructuring is extremely compli-

cated, particularly for a stochastic magnetic field. This is made clear by stating

the general relationship between the proton beam distribution function and the final
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proton image [see Appendix D.1 of Bott et al. (2017)]. However, under some assump-

tions that are typically valid for proton-imaging set-ups, the complexity of such a

relation is greatly reduced. We assume that a number of dimensionless parameters

related to the dimensions of the imaging set-up (see Figure 1.12 of Chapter 1) are

small: namely the size of the proton source relative to its distance from the plasma

a/ri, the paraxial parameter

δα ≡ l⊥
ri
� 1 (2.5)

of the proton imaging set-up, the point-projection parameter

δβ ≡ lz
rs
� 1 , (2.6)

and the magnitude of angular deflections δθ away from the initial proton trajectories

[the magnitude of this for stochastic fields is shown subsequently in equation (2.13)].

We also assume rs & ri. A full discussion of the validity of these assumptions

and their significance in simplifying the general proton-imaging problem is given in

Section 2.4.1.

In the limit where the above asymptotic parameters are indeed small, the form

of the beam as a two-dimensional near-planar sheet [see Figure 1.12 and Appendix

D.3 of Bott et al. (2017)] is retained following interaction with the magnetic field.

Furthermore, internal re-distribution of proton flux within the sheet is entirely deter-

mined by velocity perturbations acquired inside the plasma. More specifically, it can

be shown [p. 5, equations (3), (4) of Kugland et al. (2012); see p. 85, equations (2.7)

of Romagnani (2005), and also Appendix D.4 of Bott et al. (2017)] that an imag-

ing proton with initial perpendicular position x⊥0 ends up with final perpendicular

position on the detector

x
(s)
⊥ (x⊥0) ≈ rs + ri

ri
x⊥0 +

rs
V

w(x⊥0) . (2.7)

Here V is the initial speed of the proton beam, assumed mono-energetic, and the
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perpendicular velocity deflection w(x⊥0) caused by magnetic forces of an imaging

proton with initial perpendicular position x⊥0 is

w(x⊥0) ≈ e

mpc
ẑ×

∫ lz

0

ds B(x(s)) , (2.8)

where e is the proton charge, mp the proton mass, and x(s) the proton trajectory.

We can view w(x⊥0) as a function of the initial perpendicular position. We will

call this function the perpendicular-deflection field for the remainder of this chapter.

By conservation of proton flux within the imaging beam, the image-flux distribution

Ψ
(
x

(s)
⊥

)
is then given by the RK image-flux relation (p. 5, equation (6) of Kugland

et al. 2012):

Ψ
(
x

(s)
⊥ (x⊥0)

)
=

∑
x

(s)
⊥ =x

(s)
⊥ (x⊥0)

Ψ0∣∣∣det∇⊥0

[
x

(s)
⊥ (x⊥0)

]∣∣∣ , (2.9)

where Ψ0 is the initial flux distribution (assumed uniform), ∇⊥0 ≡ ∂/∂x⊥0 is a gra-

dient operator with respect to the initial plasma coordinates, and the sum indicates

that the total flux at any particular position on the detector can in general have

contributions from protons with many different initial positions. A numerical illus-

tration of the validity of equations (2.8) and (2.9) can be found in Appendix D.9

of Bott et al. (2017).

The plasma-image mapping (2.7) can be related to the magnetic-energy spec-

trum (2.2) via the perpendicular-deflection field (2.8). This is entirely equivalent to

relating the path-integrated field to the magnetic-energy spectrum, because the for-

mer can be recovered from the perpendicular-deflection field directly by rearranging

(2.8): ∫ lz

0

ds B⊥(x(s)) = −mpc

e
ẑ×w(x⊥0) . (2.10)

If the stochastic magnetic field is assumed to be statistically isotropic and homo-

geneous (except for some global variation in RMS field strength magnitude), with

an additional assumption of zero mean-magnetic field (B̄ = 0, B = δB), it can
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then be shown (see Appendix D) that the deflection-field spectrum is related to the

magnetic-energy spectrum by

EB(k) =
m2
pc

2

4π2lze2
kEW (k) . (2.11)

Here the deflection-field spectrum EW (k) is defined by

EW (k⊥) ≡ 4π2

A

∫
dθ k⊥

〈
|ŵ(k⊥)|2

〉
, (2.12)

where A is the area of averaging samples over which the deflection-field spectrum

is calculated, ŵ(k⊥) is the two-dimensional Fourier transform of the perpendicular-

deflection field, k⊥ the perpendicular wavevector, and the integral is over the polar

angle θ. Spectral relation (2.11) implies that if we can determine the perpendicular-

deflection field from the image-flux distribution, then we can recover the magnetic-

energy spectrum. It is important to note that the derivation of this result relies on

the solenoidality of the magnetic field.

The deflection-field spectral relation (2.11) also allows for a simple calculation

of the typical deflection angle δθ in terms of the magnetic field and initial proton

speed. More specifically, integrating (2.11) over all wavenumbers (see Appendix D)

gives, in the small-deflections limit,

δθ ≡ wrms
V

=
eBrms

mpcV

√
lz`B , (2.13)

where wrms ≡ 〈w2〉1/2 is the RMS of the perpendicular-deflection field, and `B is

again the correlation length . We emphasize that both Brms and `B can be calculated

independently using (2.3) and (2.4) once the magnetic-energy spectrum has been

derived from (2.11).

As noted by previous authors (Kugland et al. 2012, Graziani et al. 2017), the

perpendicular-deflection field has the property of being irrotational, provided the

typical deflection angle δθ . `B/lz (this assumption is potentially more restrictive
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than the small-angle approximation δθ � 1 – as discussed in Section 2.4.1). Irro-

tationality of the perpendicular-deflection field follows from the solenoidality of the

magnetic field:

∇⊥0×w(x⊥0) = ẑ
e

mpc

∫ lz

0

dz′
(
∂x⊥(z′)

∂x⊥0

· ∇⊥
)
·B ≈ ẑ

e

mpc

∫ lz

0

dz′∇·B = 0 , (2.14)

where ∇ ≡ ∂/∂x denotes the gradient operator with respect to the beam-proton

position x(s). The approximation ∂x⊥(z′) /∂x⊥0 ≈ I holds if the proton trajectories

do not cross inside the plasma [for a more detailed discussion of this result, see

Appendix D.8 of Bott et al. (2017)]. As a consequence, the perpendicular-deflection

field can always be written as the gradient of the deflection-field potential, defined

by

ϕ(x⊥0) ≡
∫
C

dl ·w(x̃⊥0) , (2.15)

where C is any path from the origin to the perpendicular coordinate x⊥0 and dl

is an infinitesimal line element along this path. Under the same assumption, the

perpendicular-deflection field is given by the magnetic field integrated along the

unperturbed trajectories :

w(x⊥0) ≈ e

mpc
ẑ×

∫ lz

0

dz′ B

(
x⊥0

(
1 +

z′

ri

)
, z′
)
. (2.16)

We observe that introducing the vector potential A satisfying B = ∇ × A into

(2.16) recovers equations (78) of Kugland et al. (2012). As we discuss in Sections

2.3.1 and 2.3.2, the irrotationality property of the perpendicular-deflection field is

essential for attempts for reconstructing the path-integrated field from the image-flux

distribution.

2.2.3 The contrast parameter µ

Equation (2.9) is the desired RK image-flux relation between the image-flux distri-

bution and the path-integrated magnetic field, via plasma-image mapping (2.7); we
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now explore the properties of the RK image-flux relation. As is clear from the ap-

pearance of the Jacobian determinant of the plasma-image mapping in (2.9), the size

of Jacobian-matrix elements of the plasma-image mapping will be of significance for

characterising image-flux features. These elements have physical meaning, describing

the relative size of initial gradients in perpendicular velocities of protons compared

to gradients resulting from deflections due to magnetic forces. Mathematically, their

size is quantified by the constrast parameter µ, which we define for a proton imaging

set-up applied to a stochastic magnetic field with correlation length `B by

µ ≡ ds
M`B

=
rsδθ

`∗B
=
δθ

δα

rs
rs + ri

l⊥
`B

, (2.17)

where ds ≡ rsδθ is the typical perpendicular displacement of a proton from its

undeflected position on the detector,

M =
ri + rs
ri

(2.18)

the image magnification, and `∗B = M`B is the magnified correlation length. If

rs � ri, (2.17) reduces to the definition of µ given in previous literature (see equation

(11) of Kugland et al. 2012, Graziani et al. 2017): µ = riδθ/`B.

The universal dependence of image-flux features on µ – irrespective of the par-

ticular magnetic field structure – enables a systematic approach to the heuristic

interpretation of proton-flux images. Since µ is a function of field strength via the

typical proton deflection angle δθ, its identification for a particular image-flux distri-

bution is a useful way to estimate magnetic field strengths attained in experiments.

Substituting definitions (2.5) and (2.13) for δα and δθ respectively into (2.17) gives

µ =
rsri
rs + ri

eBrms

mpcV

√
lz
`B

. (2.19)

This shows that µ ∝ Brms/V , the same as the RMS proton deflection angle δθrms.

By substituting appropriate values of physical constants into (2.19) we can explicitly



2.3 Contrast regimes 47

write the field strength associated with a particular µ as

Brms(kG) ≈ 250

(
M
M− 1

)
µ

[
W (MeV)

3.3 MeV

]1/2 [
ri(cm)

1 cm

]−1 [
`B(cm)

lz(cm)

]1/2

kG , (2.20)

where W is the energy of the beam protons). When using (2.20) to make a quick

order-of-magnitude estimate, an educated guess for the correlation length could be

reasonably used (though the typical field strength and correlation length can be

determined independently if the magnetic-energy spectrum is known). We discuss

how to estimate µ from a proton image in Section 2.3. Comparing (2.13) and (2.19),

it is clear that δθrms and µ have different dependences on the correlation scale of

the field: δθrms ∝ `
1/2
B , while µ ∝ `

−1/2
B . Thus a field with smaller-scale structures

will give larger values for µ, despite the typical deflection angle being reduced [a

numerical example of this is given in Appendix G of Bott et al. (2017)].

Beyond qualitative estimates, whether the path-integrated field (and hence magnetic-

energy spectrum for isotropic stochastic magnetic fields) can be directly extracted

from experimental data – and if so, how this extraction is carried out – changes

depending on µ. This change is best elucidated for stochastic magnetic fields in

terms of four contrast regimes: linear (µ � 1), nonlinear injective (µ below some

critical value µc ∼ 1), caustic (µ ≥ µc) and diffusive (µ & rs/(rs + ri) δα, where

δα is again the paraxial parameter). Here, µc is defined to be the smallest value

of µ associated with the imaging of a particular stochastic magnetic field such that

the plasma-image mapping (2.7) is not injective (one-to-one). These four contrast

regimes are discussed in the next section.

2.3 Contrast regimes

We begin by providing a general characterisation of the linear (Section 2.3.1), non-

linear injective (Section 2.3.2), caustic (Section 2.3.3) and diffusive (Section 2.3.4)

regimes respectively.
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To help with this illustration we consider proton images associated with a partic-

ular stochastic magnetic-field configuration. These images are simulated numerically

using the technique presented in Appendix I.1. Multi-scale fields possessing a power-

law spectrum are of interest when studying the fluctuation dynamo (Schekochihin

et al. 2004c, Gregori et al. 2015) so, using methods described in Appendix I.2, we gen-

erate an artificial Gaussian stochastic field with a magnetic-energy spectrum EB(k)

of the form

EB(k) =
B2
rms

8π
(p− 1)

k−p

k−p+1
l − k−p+1

u

, k ∈ [kl, ku] , (2.21)

where kl and ku represent the lower and upper wavenumber cutoffs and p is the

spectral index. Calculations of key quantities for this spectrum, such as correlation

scale `B, are given in Appendix G.1. For this section, we set p = −11/3, correspond-

ing to a Golitsyn spectrum (Golitsyn 1960). We make this choice for two reasons.

Firstly, as mentioned in Section 1.1.4 the magnetic-energy spectrum is thought to

follow such a power law in a turbulent magnetised flow with a low Reynolds num-

ber (c.f. Section 1.1.4, and also Moffatt (1961), Schekochihin et al. (2007), Gregori

et al. (2015)). Secondly, a rapidly decaying power law of this form has the useful

property that both the dominant magnetic and image-flux structures have similar

spatial scales, avoiding certain complications important for more shallow power laws

(discussed in Section 2.4.2).

To imitate configurations realistic to actual experiments, we also introduce an

overall Gaussian envelope

B̃ = B exp
[
−4σ (x− lzẑ/2)2/l2z

]
, (2.22)

where σ is an adjustable constant. While this does introduce a range of local field

strengths, and hence effective contrasts regimes, due to the slowly varying inhomo-

geneity of the magnetic field RMS relative to the field-structure size, the central part
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Figure 2.1: Sample of Gaussian compact stochastic magnetic field configuration
for use in illustration of contrast regimes (Section 2.3). The field sample is taken
to have length scales li = lz = l⊥ = 0.1 cm, and is specified on a 2013 array (grid spacing
δx = li/201). The sample is generated using the methods described in Appendix I.2. The
magnetic-energy spectrum is set to be a Golitsyn power law of the form (2.21), with index
p = −11/3, spectral cutoffs kl = 6π/li, ku = 120π/li, Brms = 1 kG, and `B = 80µm. A
Gaussian envelope of the form (2.22) is applied, with σ = 3, giving Brms,0 ≈ 3 kG. In all
plots of two-dimensional vector fields, colour variations denote the value of the labelled
quantity, while the white lines with directional arrows are streamlines of the plotted vector
field. a) Slice of perpendicular magnetic field taken along central perpendicular plane in
configuration. b) Path-integrated perpendicular magnetic field experienced by 3.3 MeV
protons originating from a point source located at a distance ri = 1 cm from the magnetic
field configuration. This field was calculated numerically using test protons (see Appendix
I.3 for a description of this technique).

of the proton-flux image still manifests a single contrast regime. For the particular

Gaussian shape used, the effective RMS magnetic field strength Brms,0 experienced

by protons with trajectories close to the perpendicular origin can be analytically

related to the global RMS values (see Appendix I.2):

Brms,0 = Brms

[ π
8σ

erf
(√

2σ
)]−1/2

. (2.23)

Plots of such a synthetic field are shown in Figure 2.1. The contrast parameter µ,

defined by (2.17), is linear in the field strength, so the same field configuration can

be used to explore all possible regimes. For each regime, we calculate the normalised

image flux, shown in Figure 2.2, with fixed scales for the sake of comparison. We

also show the perturbed image-coordinate grid associated with the plasma-image

mapping (2.7). Throughout Sections 2.3.1, 2.3.2, 2.3.3 and 2.3.4, we will refer back
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to Figure 2.2 as a visual aid for typical features of proton images in each contrast

regime.

2.3.1 Linear regime of proton imaging - µ� 1

If µ is small, relating the magnetic field and the image flux becomes a much simpler

problem. This follows from the result [re-derived in Appendix E - see also (Romag-

nani 2005, Graziani et al. 2017)] that if µ � 1, the plasma-image mapping (2.7)

becomes, to leading order in µ,

x
(s)
⊥ =

rs + ri
ri

x⊥0 [1 +O(µ)] , (2.24)

while the RK image-flux relation (2.9) can be rewritten as

δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

=
rsri
rs + ri

4πe

mpc2V

∫ lz

0

jz

(
x⊥0

(
1 +

z′

ri

)
, z′
)

dz′ , (2.25)

where we remind the reader that j ≈ c∇ × B/4π is the (MHD) current, and

δΨ
(
x

(s)
⊥

)
≡ Ψ

(
x

(s)
⊥

)
− Ψ

(s)
0 is the image-flux deviation from the initial mean im-

age flux, which in turn is related to the initial flux Ψ0 by the image-magnification

factor M, viz., Ψ
(s)
0 = Ψ0/M2. It follows from (2.25) that proton-flux images in

the linear regime have a simple physical interpretation: they display the undeflected

path integrated z component jz of the MHD current (Romagnani 2005, Graziani

et al. 2017). The linear regime is therefore so called, because the magnitude of

image-flux deviations is linear in the magnetic field.

Linear-regime image-flux relation (2.25) has another consequence: estimating

the magnitude of the image-flux deviations compared to the mean image flux, we

see that δΨ ∼ µΨ
(s)
0 � Ψ

(s)
0 . The linear regime is therefore characterised by small

relative image-flux deviations, providing a useful observational tool for recognising

proton-flux images of stochastic magnetic fields in the linear regime. An example

of this phenomenon is shown in Figure 2.2a, a flux image of a Golitsyn field with
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Figure 2.2: Characterisation of proton-flux images of stochastic magnetic fields
by contrast regime. 3.3-MeV-proton flux images generated on an artificial detector at a
distance rs = 30 cm from magnetic field configuration described in Figure 2.1, for a range
of magnetic field strengths [and hence values of µ (2.17)]. The general arrangement of the
imaging is the same as shown in Figure 1.12. The proton point-source was located at a
distance ri = 1 cm on the opposing side of the configuration to the detector, and 3 × 107

protons were used per image. The procedure used to generate these images is described
in Appendix I.1. a) Normalised proton-flux image in the linear regime, with µ � 1
(Brms,0 ≈ 3 kG). b) Effective image-coordinate grid arising from magnetic perturbations
to initial Cartesian grid in the linear regime. c) Normalised proton-flux image in the
nonlinear injective regime, with µ < µc ∼ 1 (Brms,0 ≈ 30 kG). d) Image-coordinate grid
in the nonlinear injective regime. e) Normalised proton-flux image in the caustic regime,
with µ ≥ µc (Brms,0 ≈ 120 kG). f) Image-coordinate grid in the caustic regime. g)
Normalised proton-flux image in the diffusive regime, with µ & 1/δα (Brms,0 = 750 MG).
h) Image-coordinate system in a diffusive regime.
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parameters tuned to have small µ: relative image-flux deviations indeed appear faint.

The smallness of coordinate-grid perturbations relative to a Cartesian grid implied

by (2.24) is demonstrated in Figure 2.2b for a Golitsyn field with µ� 1.

More quantitatively, the RMS of relative image-flux variations is small in the

linear regime. Linear-regime image-flux relation (2.25) enables the following relation

between µ and the relative image-flux RMS to be derived analytically under the

assumption of homogeneous and isotropic magnetic field statistics (see Appendix F):

(
δΨ

Ψ0

)
rms

≡

〈(
δΨ

Ψ
(s)
0

)2〉1/2

=

√
π

2

rirs
rs + ri

eBrms

mcV

√
lz
lΨ

=

√
π

2

`B
lΨ
µ , (2.26)

where lΨ is the relative image-flux correlation length (defined in Appendix F). This

can be rearranged to give a formula for µ in terms of the RMS of relative image-flux

deviations:

µ = µ0

(
δΨ

Ψ0

)
rms

, (2.27)

where µ0 ≡
√

2lΨ/`Bπ depends on the particular stochastic field configuration, but

it can be shown analytically that for any isotropic, homogeneous stochastic magnetic

field, µ0 ≤ 2/π (Appendix F). The estimate (2.27) of µ combined with RMS magnetic

field strength estimate (2.20) leads to a simple formula for the RMS field strength

in terms of the RMS of the relative image-flux:

Brms(kG) ≈ 40

[
W (MeV)

3.3 MeV

]1/2 [
ri(cm)

1 cm

]−1

×
[
lz(mm)

1 mm

]−1/2 [
`B(mm)

0.08 mm

]1/2(
δΨ

Ψ0

)
rms

kG . (2.28)

As mentioned in the discussion accompanying (2.20), a reasonable approximate value

for the correlation length `B may be taken for the purpose of using this estimate of

the magnetic field strength. `B can be evaluated precisely using the quantitative

techniques described in the subsequent paragraphs. We note expression (2.28) only

applies for small µ; once µ approaches unity, the RMS of the relative image-flux
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begins to increase nonlinearly with µ (see Appendix F).

In the linear regime, the path-integrated field can always be reconstructed uniquely

from the image-flux distribution. This follows from the result (2.15) that the perpendicular-

deflection field can be written as the gradient of the deflection-field potential ϕ pro-

vided δθ . `B/lz:

w(x⊥0) ≈ ∇⊥0ϕ(x⊥0) . (2.29)

The assumption δθ . `B/lz is indeed valid in the linear regime, because δθ lz/`B ∼

µ δα (rs + ri) /rs � 1. It can then be shown (Appendix E) that the image-flux

deviation δΨ and the deflection-field potential ϕ are related by a Poisson equation

∇2
⊥0ϕ(x⊥0) = −Ξ(x⊥0) , (2.30)

where the source function Ξ(x⊥) is proportional to relative image-flux deviations:

Ξ(x⊥0) =MV

rs

δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

. (2.31)

If suitable boundary conditions are applied, for example

n̂ · ∇⊥0ϕ(x⊥0) = 0 , (2.32)

equation (2.30) is well posed with a unique solution for∇⊥0ϕ, and so is invertible (see

Kugland et al. 2012, section VB for a more detailed discussion of this). For example,

the standard two-dimensional (2D) solution to the Poisson equation (2.30) with

vanishing boundary conditions at infinity is

ϕ(x⊥0) =
1

2π

∫
d2x̃⊥ log

(
l⊥

|x⊥ − x̃⊥0|

)
Ξ(x̃⊥) . (2.33)

The use of l⊥ in this expression is arbitrary, since the integral of Ξ(x⊥) over the

image vanishes by conservation of particles. The perpendicular-deflection field is
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then given by (2.29); for the case of infinite boundary conditions, we find

w(x⊥0) = − 1

2π

∫
d2x̃⊥

x⊥0 − x̃⊥

|x⊥0 − x̃⊥|2
Ξ(x̃⊥) . (2.34)

The path-integrated magnetic field follows from (2.10). For finite regions, Poisson

equation (2.30) can in principle be inverted numerically. However, Graziani et al.

(2017) report that such an approach when applied to reconstructing path-integrated

fields from proton images quickly becomes unsuccessful for non-asymptotically small

µ. For this reason, we suggest using the field reconstruction algorithm described in

Section 2.3.2 to reconstruct the path-integrated field instead.

If the perpendicular-deflection field (and hence the path-integrated field) has been

reconstructed, the magnetic-energy spectrum can be predicted using spectral relation

(2.11). However, the simple form of the relation (2.26) between image flux and

magnetic field in the linear regime allows for the application of statistical methods

directly to proton-flux images to obtain properties of the fields creating that image.

In particular, for homogeneous and isotropic magnetic-field statistics satisfying `B �

lz (Appendix F, and Graziani et al. 2017), the 1D magnetic-energy spectrum (2.2)

is related to the 2D spectrum of image-flux deviations η̂(k) by

EB(k) =
1

2π

m2
pc

2V 2

e2r2
s lz

η̂

(
ri

rs + ri
k

)
. (2.35)

Here, η̂(k) is defined by

η̂(k⊥) ≡ 1

2πA

∫
dθ
M4

Ψ2
0

〈∣∣∣ ˆδΨ(k⊥)
∣∣∣2〉 , (2.36)

where ˆδΨ(k⊥) is the Fourier transform of the relative image-flux deviation.

To summarise, if a stochastic magnetic field with isotropic and locally homoge-

neous statistics is imaged in the linear regime, the path-integrated field and magnetic-

energy spectrum can be reconstructed. However, we caution that unless µ is very

small, distortions to results obtained using linear analysis manifest themselves, both
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in reconstructing perpendicular-deflection fields, and in the magnetic-energy spec-

trum using linear-regime flux spectral relation (2.35) (see Section 2.3.5 for an exam-

ple).

A detailed discussion of proton imaging of stochastic magnetic fields in the linear

regime – including an alternative field-reconstruction algorithm to cope with weakly

nonlinear effects – is presented in Graziani et al. (2017).

2.3.2 Nonlinear injective regime: µ < µc ∼ 1

In the nonlinear injective regime, µ is sufficiently large that beam-focusing effects as-

sociated with the nonlinear term resulting from magnetic deflections in plasma-image

mapping (2.7) have a non-trivial effect on the image-flux distribution. However, µ

is not so great as to lead to the proton beam intersecting itself, and hence loss of

injectivity of the plasma-image mapping, which first occurs at some critical µ = µc

[shown in Appendix L of Bott et al. (2017)]. The importance of nonlinearity for mod-

erate µ and preservation of injectivity for µ < µc are illustrated by the plasma-image

coordinate mapping for the test Golitsyn field shown in Figure 2.2d: the image-

coordinate grid is visually distorted, but coordinate curves do not cross each other.

The nonlinear injective regime can be distinguished from the linear regime simply

by the presence of image-flux structures whose deviation from the mean image flux

is similar in magnitude to the mean (see Figure 2.2c).

When injective, the plasma-image mapping tends to preserve the morphology of

the proton-flux image obtained for the same magnetic field, but with small µ – so

image-flux structures can still be qualitatively interpreted in terms of path-integrated

MHD current structure. However, structures with positive relative image-flux tend

to be narrow due to beam focusing, and those with negative relative image-flux

enlarged. This phenomenon is evident in the nonlinear injective proton-flux image

of the Golitsyn field, Figure 2.2c.

Nonlinear effects mean that a different approach for reconstructing path-integrated
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fields must be adopted to that expounded for the linear regime. One such approach

can be found by noting that since the plasma-image mapping (2.7) is injective, the

sum in RK image-flux relation (2.9) disappears, leaving

Ψ
(
x

(s)
⊥ (x⊥0)

)
=

Ψ0

det∇⊥0

[
x

(s)
⊥ (x⊥0)

] . (2.37)

Our goal is to solve (2.37) for x
(s)
⊥ (x⊥0) given an image-flux distribution Ψ

(
x

(s)
⊥ (x⊥0)

)
.

We proceed by noting that the plasma-image mapping (2.7) can be rewritten in terms

of a potential field φ(x⊥0):

x
(s)
⊥ ≈ ∇⊥0φ(x⊥0) ≈ ∇⊥0

[
rs + ri

2ri
x2
⊥0 +

rs
V
ϕ(x⊥0)

]
. (2.38)

The existence of φ(x⊥0) follows from that of the deflection-field potential, which is

defined in Section 2.3.1, equation (2.15). Equation (2.37) can then be restated as an

equation for φ(x⊥0):

Ψ(∇⊥0φ(x⊥0)) =
Ψ0

det∇⊥0∇⊥0φ(x⊥0)
. (2.39)

Equation (2.39) is an example of an Monge-Ampère equation, which appear in nu-

merous mathematical and physical contexts (Gangbo and McCann 1996). Despite its

nonlinearity, it can be shown (Brenier 1991) that there is a unique (up to a constant)

solution for φ with Neumann boundary conditions

n̂ · ∇⊥0φ(x⊥0) = n̂ · x⊥0 . (2.40)

One approach for establishing this result comes from the observation that the solution

of the Monge-Ampère equation also solves the L2 Monge-Kantorovich problem (Vil-

lani 2008). This correspondence is explained in Appendix H. This means that with an

appropriate field-reconstruction algorithm, ∇⊥0φ can be reconstructed from a given
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proton-flux image, which can then be used to calculate the perpendicular-deflection

field

w(x⊥0) =
V

rs
∇⊥0

(
φ− rs + ri

2ri
x2
⊥0

)
. (2.41)

The path-integrated magnetic field can then be calculated using (2.10). There exist a

number of possible algorithms for solving the Monge-Ampère equation (2.39) (Dean

and Glowinski 2006), and some have recently been applied to the problem of recover-

ing path-integrated magnetic fields from proton-flux images (Kasim et al. 2017). In

Appendix I.4, we outline one such field-reconstruction algorithm, which is both sim-

ple to implement and computationally efficient (Sulman et al. 2011). Furthermore,

we have recently made available an open-source PYTHON code (‘PROton-imaged

B-field nonLinear Extraction Module’, or PROBLEM) which solves the inversion

problem numerically using this approach. As explained in Section 2.2.2, the recon-

structed path-integrated magnetic field can be combined with deflection-field spectral

relation (2.11) to deduce the magnetic-energy spectrum.

To summarise, like the linear regime the path-integrated magnetic field and

magnetic-energy spectrum are always recoverable from an individual proton-flux im-

age in the nonlinear injective regime. This perhaps counter-intuitive result essentially

holds because of the irrotationality of the perpendicular-deflection field, discussed in

Section 2.2.2. Furthermore, the techniques used to achieve this are more widely ap-

plicable than those derivable from linear theory. However, care must be taken when

applying the field-reconstruction algorithm to arbitrary proton-flux images, because

the results can be misleading if the plasma-image mapping is not injective. This is

described in the next section.

2.3.3 Caustic regime: µ ≥ µc

For µ greater than µc, gradients in the perpendicular-deflection field are sufficiently

large that the plasma-image mapping (2.7) becomes multi-valued in places (see

Figure 2.2f) – a phenomenon sometimes referred to as mesh-twisting (Kugland
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et al. 2012). Physically, in this regime some of the paths of imaging protons cross

before reaching the detector, and hence there exist regions of image flux whose

constituent protons originate from spatially-disconnected initial positions. That

multi-valuedness of the plasma-image mapping only occurs at µ ≥ µc follows from

the observation that such crossing requires that the determinant of the plasma-

image mapping change sign. For this to happen, the magnitude of gradients of the

perpendicular-deflection field must be comparable to gradients in the undeflected

mapping – which by the definition of µ (2.17) is precisely the criterion of µ suf-

ficiently large. This alone does not guarantee the existence of µc; however, the

conditions required for the absence of mesh-twisting at all values of µ are typically

incompatible with stochasticity [see Appendix L of Bott et al. (2017)]. The par-

ticular value of µc depends on the particular stochastic field, but typically is order

unity [although heuristic arguments can be given implying that it likely decreases

logarithmically with the field scale `B; see Appendix L of Bott et al. (2017)].

The multi-valuedness of the plasma-image mapping is closely associated with

caustics, defined as curves on which the determinant of the plasma-image mapping

(2.7) vanishes (equation (14) of Kugland et al. 2012):

det∇⊥0

[
x

(s)
⊥ (x⊥0)

]
= 0 . (2.42)

This is (trivially) because a sign reversal of the determinant for a continuous mapping

cannot occur without the value of that determinant passing through zero. If the

determinant does indeed vanish, the denominator in RK image-flux relation (2.9)

also does, yielding a formally infinite local image-flux. In practice the local image-

flux value is limited by finite resolution of proton images (Kugland et al. 2012)

– however, the morphology of proton-flux images is still dominated by caustics if

there are present. This is evident in the caustic-regime proton-flux image of the test

Golitsyn field, shown in Figure 2.2e.

The relationship between caustics and magnetic fields creating them has been
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studied in great depth elsewhere (see section IV of Kugland et al. 2012); for our

purposes, we simply note that the width, strength and distance between caustics do

not necessarily reflect equivalent properties of the magnetic field, implying that great

care must be taken when qualitatively assessing magnetic structures from proton-flux

images containing caustics.

Similar care must be taken when attempting quantitative analysis. In the caus-

tic regime the reconstruction of the path-integrated field from a proton-flux image

is no longer a well-posed problem: for a given proton image, there exists a num-

ber of path-integrated fields (and hence plasma-image mappings) which give the

same flux distribution via the RK image-flux relation (2.9). Intuitively this seems

reasonable, because without the injectivity constraint, the RK image-flux relation

insufficiently determines the path-integrated field. An explicit example of many

different path-integrated fields corresponding to a simple image-flux distribution is

given in Appendix M of (Bott et al. 2017). In addition to this simple analytical ex-

ample, the impossibility of solving the RK image-flux relation (2.9) for non-injective

plasma-image mappings can be demonstrated numerically (and is done so in Section

2.3.5). Attempts to reconstruct the magnetic-energy spectrum in the caustic regime

are also prone to failure. In short, we emphasise that the caustic regime is much less

amenable to direct analysis than either the linear, or the nonlinear injective regime.

This being the case, identifying the presence of caustics in a proton image is essen-

tial for a sensible interpretation of that image. In principle, caustics should typically

be identifiable in proton-flux images from narrow curves of high proton flux. In

practice, proton-flux images have a finite spatial resolution which can disguise these,

making distinguishing between the nonlinear injective regime and caustic regime a

non-trivial problem. The issue, and possible ways around it, is explored in Section

2.4.3.

For a systematic review of caustic theory in the context of proton imaging for

electromagnetic structures, see Kugland et al. (2012).
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2.3.4 Diffusive regime: µ & rs/(ri + rs) δα� 1

For large µ, the characteristic nature of the plasma-image mapping changes yet again.

The position of protons in any given local region on the detector is dominated by

the perpendicular-deflection field, rather than the projected position in the absence

of magnetic fields. More specifically, if µ & rs/(ri + rs) δα, then proton trajectories

have already crossed as they leave the plasma. This follows because the perpendicular

displacement inside the plasma due to magnetic deflections lz δθ is comparable to

the typical size of magnetic structures `B: lz δθ ∼ µ δα (rs + ri)/rs`B & `B. As

a consequence, the perpendicular-deflection field can no longer be written as the

gradient of the deflection-field potential, and the magnetic field integrated along the

actual proton trajectories is not equivalent to the magnetic field integrated along

undeflected trajectories (in other words, equations (2.15) and (2.16) do not apply in

the diffusive regime).

The diffusive regime is incompatible with the small-deflection assumption for

regular fields with `B ∼ lz, since then the deflection angle δθ & 1. Furthermore,

successful imaging in such a parameter space is practically unfeasible, because it

would require a prohibitively large detector. However, the diffusive regime can be

reached without violating the small-angle approximation for sufficiently small-scale

fields due to the opposite scalings of µ and the typical deflection angle δθ with

correlation length `B: µ ∝ `
−1/2
B , while δθ ∝ `

1/2
B .

In the diffusive regime, image-flux variations are typically much less pronounced

in magnitude than seen in the caustic regime (Figure 2.2g, central part of image).

Qualitatively, this is due to chaotic tangling of proton trajectories from spatially

uncorrelated regions of the imaged field (Figure 2.2h). In a technical sense, a proton-

flux image in the diffusive regime is still filled with caustics, the outlines of which are

still visible in the central part of Figure 2.2g; however, since even pairs of protons

with close initial positions often end up at disparate spatial locations, the proportion

of image flux concentrated into an individual caustic drops as µ increases.
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An alternative interpretation of the proton-flux image in the diffusive regime can

be given in terms of diffusive-type models. As first shown by Dolginov and Toptygin

(1967), the diffusion of a fast proton beam through compact, isotropic stochastic

magnetic fields with correlation length `B � lz, l⊥ can be described by perpendicular

velocity diffusion coefficient

Dw =
V e2B2

rms`B
4m2

pc
2

. (2.43)

The result is valid in the small-deflections limit δθ � 1, which in turn necessitates

that the proton Larmor radius ρp associated with the typical RMS magnetic field

strength Brms satisfy ρp � `B:

ρp
`B

=
mcV

eB`B
∼ δθ−1

√
li
`B
� 1 . (2.44)

For the reader’s convenience, Appendix O.1 of Bott et al. (2017) presents an alter-

native derivation of diffusion coefficient (2.43).

The uncertainty in perpendicular velocity ∆w acquired due to diffusion leads to

a ‘smearing effect’: under a diffusive model with coefficient Dw given by (2.43), the

image-flux distribution is related to the (here non-uniform) initial distribution by

convolution

Ψ
(
x

(s)
⊥

)
=

1

πδ2

∫
d2x̃

(s)
⊥ Ψ

(s)
0

(
x̃

(s)
⊥

)
exp

−(x
(s)
⊥ − x̃

(s)
⊥

δ

)2
 , (2.45)

where

δ = rs
∆w

V
=
eBrmsrs
mpcV

√
lz`B . (2.46)

This result is derived in Appendix O.2 of Bott et al. (2017). We see that a diffusive

model of proton-flux images predicts that an initially uniform flux distribution will

not display relative image-flux deviations if the stochastic magnetic field being im-

aged has a uniform envelope. For a magnetic field with a spatially varying envelope,
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Figure 2.3: Comparison of relative flux image predicted by diffusive model
compared with actual result in diffusive regime. a) 3.3 MeV proton image-flux
distribution associated with magnetic field described in figure 2, with Brms,0 = 750 kG.

Here, relative flux refers to δΨ
(
x

(s)
⊥

)
/Ψ

(s)
0 , where δΨ

(
x

(s)
⊥

)
≡ Ψ

(
x

(s)
⊥

)
− Ψ

(s)
0 is the flux

deviation, and Ψ
(s)
0 the mean image flux. The same imaging parameters as those described

in figure 4 are used (see figure 4g for normalised proton-flux image). b) Predicted relative
proton-flux image assuming uniform initial flux, and diffusive model of imaging beam
evolution (2.45), with δ = δ(x⊥) = δ0 exp

[
−4σx2

⊥/l
2
i

]
. Here, δ0 is given by (2.46), with

Brms = 750 kG, and li = lz = l⊥ = 0.1 cm.

such as the Golitsyn field shown in Figure 2.1, (2.45) instead indicates that different

sections of the initial flux distribution will be subject to different diffusion rates.

For the Gaussian envelope used to create the stochastic field shown in Figure 2.1,

this results in the central region of the proton image having a reduced image flux

when compared to the mean initial image flux; the central region is surrounded by

a ring of greater-than-average image flux (illustrated in Figure 2.3b). Comparing

the diffusive prediction of the relative image-flux distribution to the actual relative

image-flux distribution shown in Figure 2.3a, we see that the diffusive model fails

to capture many features of the true proton-flux image: in particular, caustic struc-

tures. However, for stochastic fields with smaller-scale structures than the Golitsyn

field, the diffusive model is more accurate, and caustic structures are suppressed [two

examples are provided in Appendix O.3 of Bott et al. (2017)].

The observation of decreased intensity of image-flux deviations relative to the

mean image flux is not sufficient to identify uniquely the diffusive regime – the
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same observation also holds for the linear regime (as discussed in Section 2.3.1).

Operationally, the diffusive regime can usually be distinguished by noting that unless

fields have an extremely small spatial correlation scale `B, deflections of protons will

be large enough to result in net loss of proton flux from an image. This loss of

flux can be measured if the initial flux is known. Another, more conclusive test

identifying the diffusive regime – requiring practical modification to experimental

platforms – is to introduce a partial obstruction into the path of the imaging proton

beam. This could include a sharp edge, a pinhole, or some type of grid. In the

diffusive regime, the edges associated with any of these features will appear blurred

by diffusive scattering of protons due to the stochastic fields.

Quantitative analysis of proton images in the diffusive regime is much more re-

stricted in scope that in other regimes. Whilst the plasma-image mapping (2.7) is

still formally valid, in the diffusive regime, the perpendicular-deflection field is an

extremely complicated object, and is not recoverable from an individual proton-flux

image (for the same reason as described for the caustic regime for Section 2.3.3).

That being said, statistical information pertaining to the magnetic field can often be

extracted from proton-flux images. More specifically, for sufficiently small-scale fields

the diffusion coefficient Dw (2.43) can be measured, which is turn gives an estimate

of B2
rms`B. This is most simply done by using one of the partial-obstruction methods

mentioned above, and calculating the extent of blurring effects. It is also conceiv-

able that numerical extraction of Dw could be undertaken, assuming a model for the

image-flux distribution of the form (2.45), and suitable boundary conditions. How

this is done more precisely – and when this is a well-posed mathematical problem –

are open questions which we do not answer here.

There is an extensive literature discussing diffusion due to stochastic magnetic

fields in the context of cosmic rays (Dolginov and Toptygin 1967, Jokipii 1972, Hall

and Sturrock 1967, Parker 1965, Blandford and Eichler 1987); however, the author

of this chapter is not aware of any discussion directly concerned with the diffusive

scattering of a proton imaging beam. The key positive result of this section, then, is
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to have derived a relation (2.45) between the image-flux distribution and the diffusive

scattering of the proton beam by a stochastic magnetic field.

2.3.5 Numerical demonstration of field-reconstruction algo-

rithm

To conclude this characterisation of the four contrast regimes, we illustrate the effi-

cacy (or lack thereof) of the proposed field-reconstruction algorithm for recovering

the path-integrated field numerically in each contrast regime. More specifically,

we apply the field-reconstruction algorithm outlined in Appendix I.4 (the PROB-

LEM code) to the proton images presented in Figure 2.2. The reconstructed path-

integrated fields normalised to the RMS of the actual magnetic field in each case are

shown in Figure 2.4; these are compared with the true path-integrated field, shown

in Figure 2.1b. Figure 2.4 also presents a calculation of magnetic-energy spectrum

determined using spectral relation (2.11) (blue circles) applied to the reconstructed

perpendicular-deflection field in each case. For comparison, the true spectra (red

line) of the Golitsyn fields are shown, along with the results of linear-regime flux

spectral relation (2.35) applied directly to each image-flux distribution (purple cir-

cles).

The possibility of successful reconstruction of the path-integrated field in the

linear regime (from the proton image shown in Figure 2.2a) is illustrated in Figure

2.4a; we see strong agreement with Figure 2.1b in terms of both field morphology

and strength in the central region. The recovery of the magnetic-energy spectrum

from the same proton-flux image is illustrated in Figure 2.4b: both the linear-regime

flux spectral relation (2.35) and deflection-field spectral relation (2.11) recover the

correct power law at the energetically dominant wavenumbers. However, at higher

wavenumbers, a flattening of both predicted spectra is observed. This effect is likely

due to Poisson noise, and is discussed further in Section 2.4.3.

The result of the field-reconstruction algorithm in the nonlinear injective regime
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Figure 2.4: Efficacy of techniques for reconstructing magnetic field statistics
directly from proton-flux images across contrast regimes. For each proton-flux
image shown in figure 2.2, a reconstructed path-integrated magnetic field was produced
by applying the field-reconstruction algorithm (see Appendix I.4) appropriate for inverting
the Monge-Ampère equation (2.39) with boundary conditions (2.40), before recovering the
perpendicular-deflection field using (2.41), and finally the path-integrated field by (2.10).
The true field is shown in figure 2.1b. The magnetic-energy spectrum (true result shown in
red) was predicted in two ways: using spectral relation (2.11) applied to the reconstructed
perpendicular-deflection field (blue), and linear-regime spectral relation (2.35) applied di-
rectly to the proton-flux images (purple). a) Path-integrated magnetic field reconstructed
from linear-regime proton-flux image (µ � 1), figure 2.2a. b) Predicted magnetic energy
spectra, derived from figures 2.2a and 2.4a. c) Same as a), but for nonlinear-injective-
regime proton-flux image (µ < µc), figure 2.2c. d) Same as b), but spectra derived from
Figures 2.2c and 2.4c. e) Same as a), but for caustic-regime proton-flux image (µ ≥ µc),
figure 2.2e. f) Same as b), but for figures 2.2e and 2.4e. g) Same as a), but for diffusive-
regime proton-flux image (µ & 1/δα� 1), figure 2.2f. h) Same as b), but for figures 2.2f
and 2.4f.
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– that is, the algorithm is applied to the image-flux distribution shown in Figure

2.2c – is shown in Figure 2.4b. Similarly to the results for the linear regime, the

predicted path-integrated magnetic field is a close match to the true field in terms

of both its field strength and direction. Figure 2.4d shows the predicted magnetic-

energy spectrum using deflection-field spectral relation (2.11); the true spectrum is

recovered over a wide range of wavenumbers. We note that despite the Poisson noise

being the same in proton-flux images Figure 2.2a and 2.2c, the spectrum predicted

from the latter is less distorted at high wavenumbers. This is because the magnitude

of deviations in the image flux due to magnetic fields are larger in the latter case, so

the relative effect of Poisson noise is reduced.

In contrast, the predicted magnetic-energy spectrum from linear-regime flux spec-

tral relation (2.35) does not follow the expected k−11/3 power law, instead moving

towards a k−2 law. This distorted power law is obtained because the strong, narrow

image-flux structures that appear irrespective of the underlying magnetic-energy

spectrum have a characteristic ‘sharp-edge’ spectrum (Arévalo et al. 2012). We

conclude that direct application to images involving order-unity relative image-flux

variations of linear-regime flux spectral relation (2.35) can lead to misleading results.

Figure 2.4e shows the results of the field-reconstruction algorithm described in

Section 2.3.2 applied to the proton-flux image Figure 2.2e (an image containing

caustics). While the streamlines of the path-integrated perpendicular magnetic field

retain a reasonable agreement, the field strength distribution does not: the typical

magnitude is reduced. The mapping recovered by the field-reconstruction algorithm

is instead the unique injective mapping satisfying Monge-Ampère equation (2.39)

given the image-flux distribution shown in Figure 2.2e.

Figure 2.4f demonstrates that the magnetic-energy spectrum predicted by spec-

tral relation (2.11) applied to the reconstructed perpendicular-deflection field is dis-

torted to a k−2 spectrum, much as the magnetic-energy spectrum predicted by linear-

regime flux spectral relation (2.35) is distorted as nonlinearity of the plasma-image

mapping becomes important.
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Finally, attempts to reconstruct the path-integrated field in the diffusive regime

lead to extremely inaccurate results. This failure is illustrated by the path-integrated

field Figure 2.4g reconstructed from the image-flux distribution shown in Figure 2.4f.

Predicted field strengths are orders of magnitude lower than the true values, and the

recovered field’s morphology resembles that of a regular field rather than of the actual

stochastic one. This inaccuracy is also replicated in the predicted magnetic-energy

spectrum shown in Figure 2.2h: the Golitsyn spectrum is again distorted to a k−2

power law due to the caustic ring-like structure seen in Figure 2.2g, and the predicted

spectrum at the energetically dominant wavenumbers is strongly suppressed.

A simple quantitative way to compare the quality of the predicted reconstruc-

tions for different contrast regimes is to calculate the predicted RMS magnetic field

strength from the recovered magnetic-energy spectra using (2.3). The results are

shown in Table 2.1. It is clear that the predicted values for Brms are close to the

Contrast regime µ B
(R)
rms (kG) Brms (kG)

Linear 0.05 1.10 1.00

Nonlinear injective 0.53 10.5 10.0

Caustic 2.12 29.0 40.0

Diffusive 13.1 36.1 250

Table 2.1: Comparison with true result of RMS magnetic field strength predicted using
magnetic-energy spectrum derived from (2.11) in different contrast regimes.

actual ones in the linear and nonlinear injective regimes, but Brms is under-predicted

in the caustic and diffusive regimes. That the typical field strengths predicted by the

field-reconstruction algorithm are reduced is a manifestation of the general analyt-

ical result that the reconstructed perpendicular-deflection field will always provide

a lower bound on the RMS deflection-field strength (Gangbo and McCann 1996),

which can in turn be used to provide a lower bound on the RMS magnetic field

strength. Explicitly, it can be shown (see Appendix H) that

B2
rms ≥

m2
pc

2

e2l2z

〈
(∇⊥0ϕ)2〉 , (2.47)
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where ∇⊥0ϕ is the deflection-field potential recovered from the solution to Monge-

Ampère equation (2.39). Furthermore, in Appendix H, it is demonstrated for the

Golitsyn test field outlined in Figure 2.1 that this lower bound property becomes

very weak as µ increases further.

In short, this numerical example validates the claim that for proton-flux images of

stochastic magnetic fields created in the linear and nonlinear injective regimes, the

true path-integrated field is extractable using an appropriate field-reconstruction

algorithm. Furthermore, the predicted magnetic-energy spectrum agrees well with

the true result. Neither of these results are true in the caustic and diffusive regimes.

2.4 Technicalities and complications

2.4.1 Assumptions

As mentioned in Section 2.2.2, the applicability of plasma-image mapping (2.7) and

RK image-flux relation (2.9) to the proton imaging set-up depends on various as-

sumptions: a mono-energetic, instantaneous, uniform beam from a point source,

paraxialilty, point projection, and small deflections. Here, we state each of these

precisely, and explore their validity. In addition to the effects stated below, in deriv-

ing the stated plasma-image mapping, a range of physical processes are neglected in

line with previous work on analytic models of proton imaging (Kugland et al. 2012).

These are discussed in Appendix B.

Mono-energetic, instantaneous uniform proton beam from point source

There exist several comprehensive reviews of the generation of proton beams to be

used for imaging via both high-intensity lasers (Wilks et al. 2001, Borghesi et al.

2006, Kar et al. 2008, Daido et al. 2012), and the proton capsule backlighters (Li

et al. 2006a, Manuel et al. 2012); the interested reader is referred to the enclosed

references. In this chapter, we only discuss briefly those properties which justify our



2.4 Technicalities and complications 69

assumption that a proton beam used for imaging can be well modelled as mono-

energetic, instantaneous, uniform, and as originating from a point source.

Mono-energetic

An imaging beam can often be approximated as mono-energetic for two reasons.

First, for the case of capsule implosions, the fusion-generated protons have a char-

acteristic energy determined by the nuclear reaction creating them, a value which is

retained to 3−9% accuracy in the imaging beam. This is not the case for protons gen-

erated using high-intensity laser sources, which typically have a thermal spectrum.

Secondly, proton detectors are typically designed to image different proton energies

separately, by taking advantage of the short distance over which protons of a given

energy typically deposit their energy (Ziegler 1999). Most relevantly for this thesis,

a detector based on sheets of CR-39 interleaved with metal filters has an effective

energy resolution of ∼ 0.1 MeV (Séguin et al. 2003). That being said, it is still not

the case in general that the protons creating any particular experimental proton-flux

image are mono-energetic, irrespective of the energy distribution of the source. For

example, calibrated radiographic film (RCF) in a stack configuration is often used in

proton imaging set-ups; and whilst the distribution of deposited energy per proton

in a given layer of the stack is sharply peaked (∼ 0.2 MeV full-half-width-maximum)

around some critical value of proton energy, the contribution of protons with signif-

icantly higher energies can be non-negligible (Nürnberg et al. 2009). Nevertheless,

for the OMEGA experiment, the mono-energetic assumption is a sound one.

If this assumption were violated, plasma-image mapping (2.7) would still be valid

individually for a given proton with initial speed V – but RK image-flux relation

(2.9) would have to be modified to take into account that protons at different initial

speeds have distinct plasma-image mappings. Doing so leads to a significantly more

complicated image-flux relation.
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Instantaneous

The instanteneity of the imaging process is the result of the temporal pulse length

of proton sources τpulse and the transit time of protons across the plasma τpath being

small compared to the evolution time of the magnetic-field configuration of interest.

For fusion-produced protons, τpulse ∼ 100 ps (Séguin et al. 2004), while for TNSA-

produced protons, τpulse ∼ 10 ps (Wilks et al. 2001). For both, the transit time across

the plasma can be estimated as

τpath ∼ 40

[
lz(cm)

0.1 cm

] [
W (MeV)

3.3 MeV

]
ps . (2.48)

Thus, provided the plasma dynamics to be studied is on nano-second timescales,

this approximation of instantaneity is a good one. This is indeed the case for many

relevant experiments involving stochastic magnetic fields (Tzeferacos et al. 2017,

2018), though by no means all (for example, see Mondal et al. 2012). For time-

varying fields, the effect of inductive electric fields is likely significant – which in

turn leads to the invalidation of expression (2.8) for the perpendicular-deflection

field. In addition, magnetic fields varying on timescales shorter than τpulse would

lead to the front part of the proton beam seeing different magnetic fields to the back

part of the beam; the resulting proton image would then be the superposition of the

proton images for both fields.

Point source

The point source approximation is the natural consequence of the size of the proton

source a being much smaller than the distance ri from the source to the plasma. For

fusion protons, a ≈ 40 − 50µm (Li et al. 2006b), while for TNSA protons this is

even smaller: a ≈ 10µm (Wilks et al. 2001). To prevent the diagnostic interfering

with experiment, one typically chooses ri ≥ 1 cm, so ri � a. However, the source’s

finite size prevents imaging of magnetic structures on scales smaller than the size of

the source; the consequences of this for the extraction of magnetic field statistics are
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discussed in Section 2.4.3.

Initially uniform proton flux

Finally, the uniformity of initial proton flux is a consequence of approximately

isotropic emission of protons from the source across the solid angle encapsulating

the experiment. In practice, this assumption is not always satisfied. Experimental

characterisation of proton-flux images produced by a capsule implosion in the ab-

sence of imaging fields show RMS relative flux deviations of 16 ± 7 % for 3.3 MeV

fusion protons and 26±10 % for 15.0 MeV protons; possible deviations of up to 50 %

across the detector have been measured (Manuel et al. 2012). Naive application of

field-reconstruction algorithms which presume a uniform initial flux to proton images

created using a capsule implosion can therefore result in the accidental recovery of

non-physical path-integrated magnetic fields. This problem is illustrated explicitly

and discussed further in Section 2.4.3. However, such variations are typically limited

to longer length scales: for variations in initial flux with correlation length `∗ on the

detector satisfying `∗ . `∗c ≡ 0.02(ri + rs), the relative amplitude of the variations

compared to the mean flux is typically ∼ 3% (Manuel et al. 2012). This allows for

the application of high-pass filters to isolate flux features resulting from stochastic

magnetic fields from those due to variations in the initial flux (see Section 2.4.3).

The problem is more acute for TNSA protons, whose initial distribution can display

perpendicular spatial structuring (Nürnberg et al. 2009).

Paraxiality

If the distance from the proton source to the plasma is much greater than the dimen-

sions of the plasma, ri � l⊥, lz, we can approximate the section of the beam passing

through the plasma as planar, despite the fact that proton beams generated by fusion

reactions in a D2 capsule implosion generally take the form of a uniformly expanding

spherical shell (Li et al. 2006b). For a given proton, this paraxial approximation is

effectively an expansion of the position and velocity of the proton in terms of half of
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the paraxial parameter

δα

2
=

l⊥
2ri
� 1 , (2.49)

the ratio of the size of the region being imaged to the radius of curvature of the

beam. The factor of two appears, because the approximating plane is chosen to be

exact at the centre of the beam. For typical experimental set-ups, δα ≈ 0.05−0.2�

1 (Kugland et al. 2012).

Increasing the paraxial parameter δα does not significantly change the nature of

the four contrast regimes described in Section 2.3 qualitatively, although for suffi-

ciently large values a slight decay in proton flux towards the edges of images may be

detectable. For quantitative analysis, higher-order corrections in δα to the plasma-

image mapping (2.7) can be introduced (Kugland et al. 2012).

Point projection

The point-projection assumption requires that the distance rs from the plasma to

the detector be much greater than lz. This means that displacements of protons

from their undeflected trajectories acquired inside the plasma due to magnetic forces

are negligible compared to those displacements of protons resulting from their free-

streaming motion beyond the plasma with an altered deflection velocity. Mathemat-

ically, the plasma-image mapping (2.7) is effectively an expansion in

δβ ≡ lz
rs
� 1 , (2.50)

retaining only the leading order term in δβ. In actual proton-imaging set-ups as

typically implemented, lz � ri � rs, so δβ � 1.

Small proton-deflection angles

To derive the expression (2.8) for the perpendicular-deflection field, the size of typical

proton-velocity deflections are assumed small compared to the initial proton velocity.

Since (2.8) shows that deflection velocities are perpendicular to the initial direction
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– that is, that w ·V0 ≈ w · ẑ ≈ 0 (where V0 is the undeflected velocity of an imaging

proton) – the deflection angle of the proton due to magnetic forces must therefore

be small:

δθ ≡ cos−1

[
V0 · (V0 + w)

|V0| |V0 + w|

]
≈ |w|

V
� 1 . (2.51)

The magnitude of this parameter can be practically estimated for stochastic fields

imaged by protons with energy W using deflection angle RMS (2.13):

δθ ∼ eB

mpcV

√
lz`B ≈

[
B(MG)

2.6 MG

] [
W (MeV)

3.3 MeV

]−1/2 [
lz(cm) `B(cm)

0.01 cm2

]1/2

. (2.52)

The same estimate can also be used to determine whether δθ . `B/lz, and hence

whether the perpendicular-deflection field is irrotational. Since `B < lz, this condi-

tion is typically more stringent than δθ � 1.

It is clear that if deflections are not small, δθ ∼ 1 inevitably implies that the

system is in the diffusive regime µ ∼ ri/`B � 1. This has the consequence that,

despite the technical lack of validity of the derivation of plasma-image mapping (2.7)

in this case, proton-flux images in the large-deflection regime are likely to have many

qualitatively similar features to diffusive proton-flux images – albeit combined with

a significant loss of total flux from the detector.

2.4.2 Theoretical complications

We have claimed in the previous sections that the imaging of stochastic magnetic

fields can be classified into four general regimes depending on µ, and that in two

of these regimes (linear and nonlinear injective), the path-integrated field can be

extracted directly from proton-flux images; under the further assumption of isotropy,

this is sufficient to determine the magnetic-energy spectrum of the stochastic field.

Whilst these statements are true for many stochastic fields, there are others for

which the efficacy of the proposed analysis techniques must be re-considered: these

are discussed in this section. Note that we distinguish between inherent constraints
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on the technique, which are unavoidable, and constraints due to experimental effects,

which can in principle be overcome with advances in diagnostic implementation. The

former are discussed in this section, the latter in Section 2.4.3.

Spatially inhomogeneous and anisotropic fields

The classification into four contrast regimes that can be distinguished simply by par-

ticular characteristics of proton-flux images holds for locally homogeneous stochastic

fields. However, this classification is not strictly valid for more general fields with

inhomogeneous or anisotropic statistics. In particular, for an arbitrary proton-flux

image, the contrast regime associated with that image cannot be uniquely identi-

fied. This is related to the non-uniqueness of the inversion problem associated with

recovering path-integrated magnetic fields associated with a particular proton-flux

image – introduced in Section 2.2.3 and discussed in Sections 2.3.3 and 2.3.4. We fur-

ther illustrate this phenomenon with an example consisting of two strikingly distinct

path-integrated fields (incorporating different contrast regimes) giving near-identical

image-flux distributions (Figure 2.5). Despite the mathematical impossibility of

distinguishing between the path-integrated fields in Figures 2.5a and 2.5b without

additional information, in practice there are various qualitative tests that could in

principle be employed. For example, if there are multiple species of imaging protons,

and the transit time and pulse length of all these species are much smaller than the

evolution timescales of the system, the multiple-beam energy comparison technique

described in Section 2.4.3 to find caustics could also be used to distinguish between

these path-integrated magnetic fields. More specifically, the path-integrated field

could be reconstructed from a 3.3 MeV proton image (such as Figure 2.5c), before

predicting what a 15.0 MeV proton image would look like. This could be com-

pared to the actual 15.0 MeV proton image to test the veracity of the reconstructed

path-integrated field.

Even in the situation when the path-integrated field is uniquely extractable from

its associated proton-flux image (implying that the contrast regime of the imaging
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Figure 2.5: Illustration of ill-posedness of reconstruction for spatially inhomo-
geneous stochastic magnetic fields. a) Path-integrated perpendicular magnetic field
associated with small-scale magnetic cocoon configuration (see Appendix G.3) with correla-
tion scale `B = 0.8µm. A Gaussian envelope of the form (2.22) is applied to the magnetic
field, with σ = 3 and Brms,0 = 2.2 MG. b) Path-integrated magnetic field associated
with perpendicular-deflection field reconstructed from proton-flux image c) generated from
magnetic field described in a), assuming an injective mapping. Typical proton deflection
velocities in the central region are reduced by a factor ∼ 25. c) 3.3-MeV proton-flux image
created by imaging field configuration a) with 3× 106 15.0 MeV protons from point source
located at ri = 1 cm from the field configuration, and detector located on the opposing
side, with rs = 30 cm. d) Predicted 3.3-MeV proton-flux image, assuming proton beam
with same imaging parameters as c) experienced path-integrated magnetic field b) while
traversing the plasma.

diagnostic must be linear, or nonlinear injective), for a spatially-inhomogeneous field,

the magnetic-energy spectrum of the stochastic field is not necessarily extractable

from the path-integrated field. More specifically, the derivations of equations for the

magnetic-energy spectrum [deflection-field spectral relation (2.11), or linear-regime

flux spectral relation (2.35)] given in Appendices D and F rely on both the assumption

that magnetic field statistics do not vary along the path of the proton beam, and
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that the statistics are the same perpendicular and parallel to the direction of proton

motion. These assumptions can likely be relaxed to include the case when the field is

statistically inhomogenenous, and anisotropic in the perpendicular direction (Ensslin

and Vogt (2003) demonstrate this in the context of calculating magnetic energy

spectra from Faraday rotation measurements).

Variable µ across scales

It is clear from its definition (2.17) that µ is scale-dependent, increasing as the

scale `B of magnetic structures decreases relative to the path length of the imaging

protons. Magnetic structures imaged in a proton-imaging set-up are, therefore, in a

potentially different contrast regime depending on their strength and size. For multi-

scale stochastic fields, such as those with power law spectra of the form EB(k) ∝ k−p,

we can estimate µ at a particular scale `B. The field strength at this scale for such

a power law goes as

B ∼ B0

(
`B
lz

)(p−1)/2

, (2.53)

and so µ is given by

µ ∼ µ0

(
`B
lz

)p/2−1

. (2.54)

We see that for p > 2, µ decreases with scale, whereas the opposite is true for p < 2.

We discuss the consequences of both possibilities in turn.

The case of sufficiently steep power spectra (p > 2) – of which the Golitsyn

spectrum (2.21) with p = −11/3 is an example – is generally much easier to inves-

tigate. The largest µ is at largest scales, which coincides with both the strongest

magnetic and path-integrated structures. Whether the path-integrated field and

magnetic-energy spectrum can be extracted successfully is therefore not altered by

the presence of smaller-scale fields.

On the contrary, for shallow spectra (p < 2), small-scale fields become extremely

important for a proper understanding of proton-flux images, as well as their analysis.

Firstly, the fact that µ increases with decreasing scale (in opposition to the path-
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Figure 2.6: Illustration of variation in µ across scales, with consequent discrep-
ancy in structure size between path-integrated magnetic field, and proton-flux
image. a) Predicted path-integrated field for periodic stochastic Gaussian magnetic field
specified on 10012 array of spatial extent li = l⊥ = lz = 0.1 cm, with power law spectrum
of the form (2.55), spectral cutoffs kl = 4π/li, ku = 800π/li, and field RMS Brms = 10 kG.
b) Proton-flux image generated with 3.3 MeV protons from a point source at distance
ri = 1 cm from the array, with imaging detector at distance rs = 30 cm on the opposite
side.

integrated field) means that the dominant features in a proton image may be at

much smaller scales than the dominant features in the path-integrated field. We

illustrate this with an example. Figure 2.6 shows a typical path-integrated magnetic

field resulting from a k−1 spectrum with a wavenumber range of a few decades.

Creating a proton-flux image from this path-integrated field using the plasma-image

mapping (as described in Appendix I.3), we see that the strongest features are at

the smallest scales, in contrast to the path-integrated magnetic field, where larger

coherent structures are evident. This can be explained physically with recourse

to an interpretation of proton-flux images as projections of path-integrated MHD

current structures: for shallow enough spectra, the dominant MHD current structures

are at the smallest scales. For actual proton-flux images, this fine structure would

typically be masked by finite-resolution effects; that being said, for stochastic field

configurations, Figure 2.6 provides another example of the inadequacy of using image-

flux structure as a proxy for magnetic field structure.

More quantitatively, the ability to reconstruct both path-integrated fields and

magnetic energy spectra is limited by diffusive scattering at small scales. If µ(`B) <
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µc at all scales, for µc the critical value of µ at which the plasma-image mapping (2.7)

loses injectivity, both can be recovered. However, this inequality being reversed at

small scales can prevent successful reconstruction not only at those scales, but those

at which injectivity is technically preserved. This is because large-scale structures

are distorted by small-scale ones.

The phenomenon of smaller-scale fields preventing successful reconstruction of

larger-scale ones is best illustrated by considering an example. Figure 2.7a shows a

stochastic magnetic field with a magnetic-energy spectrum of the form

EB(k) =
B2
rms

8π

log ku/kl
k

, k ∈ [kl, ku] , (2.55)

combined with a Gaussian envelope of the form (2.22). The wavenumber-range is

chosen to be large – that is, kl � ku – and field strength such that the proton

imaging set-up applied to the largest structures has µ < µc. The proton-flux image

(Figure 2.7b) has strong image-flux structures on many scales, with larger image-

flux structures somewhat dispersed by smaller, caustic ones. Figure 2.7c, shows the

same field, but with high wavenumbers filtered out at a scale kc. The resulting

proton-flux image (Figure 2.7d) now falls into the nonlinear injective regime, indi-

cating that µ at larger length-scales is indeed below the critical value. Figure 2.7e

shows the path-integrated magnetic field reconstructed from Figure 2.7b using the

field reconstruction algorithm described in Section 2.3.2. While the reconstruction

still captures the global morphology of the field, its fine structure is altered. This

difference is shown more clearly by calculating the magnetic-energy spectra, shown

in Figure 2.7f. The magnetic-energy spectrum resulting from spectral relation (2.11)

applied to the reconstructed field is suppressed at high wavenumbers. Indeed, the

effect is sufficiently strong to lead to spectral distortion at wavenumbers which would

otherwise be correctly reconstructed if wavenumbers k > kc were removed. In con-

trast to the reconstruction of steeper power spectra, the magnetic-energy spectrum

calculated from linear theory using formula (2.35) applied to the proton image shown
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in Figure 2.7b is closer to the true result, although the associated spectral curve is

still distorted.

In short, for shallow magnetic-energy spectra, the presence of small-scale fields

leads to the suppression of small-scale image-flux structures, which in turn hides high

wavenumber modes when attempting to reconstruct both path-integrated fields and

magnetic-energy spectra.

2.4.3 Experimental complications

In addition to the theoretical restrictions placed on the use of a proton imaging

diagnostic to assess magnetic field statistics, additional constraints arise from limi-

tations to the implementation of the diagnostic. These are discussed more generally

elsewhere, but here we outline three effects which are particularly important when

attempting to extract accurately path-integrated magnetic fields and energy spectra

directly from proton images: Poisson noise, initial inhomogeneities in the initial flux

distribution, and finite image resolution effects imposed by a finite source size.

Poisson noise

Poisson noise is an unavoidable effect associated with proton-flux images involving a

finite number of imaging protons, and leads to spectral distortion. The finite number

of protons in the imaging beam mean that locally the initial flux distribution is

noisy. Since the sample is very large, these deviations are well described by Poisson

statistics. Thus, if the mean flux per pixel is NΨ, then the standard deviation of

fluctuations is
√
NΨ, giving signal-to-noise ratio 1/

√
NΨ.

Since such noise is uncorrelated, its contribution to the two-dimensional rela-

tive image-flux spectrum is uniform. More specifically, the requirement that the

integrated power spectrum of Poisson noise has variance 1/NΨ leads to

η̂(PN) ≈
(
δx

2π

)2
1

NΨ

, (2.56)
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Figure 2.7: Analysing proton-flux images of stochastic magnetic fields with
broad magnetic energy spectra. A stochastic magnetic field sample, with magnetic-
energy spectrum of the form (2.55), is generated in a region, with dimensions li = lz =
l⊥ = 0.1 cm. Field values are specified on a 3013 array (grid spacing δx = li/301). The
spectral cut-offs were set to be kl = 6π/li, ku = 2π/δx, and Brms,0 = 40 kG. A Gaussian
envelope of the form (2.22) is again applied to the magnetic field, with σ = 3. Imaging of
the field is then implemented using the parameters given in Figure 4. a) Path-integrated
perpendicular magnetic field as experienced by imaging 3.3 MeV protons. b) 3.3-MeV
proton-flux image. c) Path-integrated perpendicular magnetic field, with magnetic field
wavemodes whose wavenumber exceeds kc = 30π/li removed. d) 3.3-MeV proton-flux
image of filtered magnetic field. e) Predicted path-integrated magnetic field found by
applying field reconstruction algorithm. f) Magnetic energy spectra: true result (red),
plotted with prediction using deflection-field spectral relation (2.11) (blue) and linear-
regime spectral relation (2.35) (purple).
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for δx the pixel size in length units. This in turn gives predicted magnetic-energy

spectrum

E
(PN)
B (k) ≈ 1

(2π)3

m2
pc

2V 2

e2r2
s lz

δx2 1

NΨ

. (2.57)

Thus for a multi-scale spectrum, values of the true spectrum will be dominated by the

Poisson contribution if too small. This presents a potential difficulty for analysing

proton-flux images in the linear regime if either the mean image-flux is low, or the

physical signal is weak. The problem is evident for the predicted spectra shown

in Figure 2.4b (purple markers): the shallowing of the spectrum as predicted by

linear-regime flux spectral relation (2.35) is due to Poisson noise.

However, in practice the Poisson noise does not usually prevent successful analysis

of proton-flux images. The effect on Poisson noise on the spectrum can be antici-

pated using (2.57), and subsequently removed (Churazov et al. 2012). Furthermore,

nonlinear field reconstruction algorithms tend to reduce spectral distortion (Figure

2.4b, blue markers). Thirdly, the restrictions on pixel size required to manage Pois-

son noise are usually less stringent that those already in place due to other factors

limiting resolution (Séguin et al. 2004). That being said, if possible it is preferable

to design proton-imaging set-ups in such a way that the magnitude of Poisson noise

be significantly less than image-flux features due to magnetic fields.

Inhomogeneity of initial flux distribution

The methods used to reconstruct magnetic field statistics directly from proton-flux

images described in Sections 2.3.1 and 2.3.2 rely on prior knowledge of the initial

flux distribution. For experimental implementations of proton imaging, this initial

distribution is usually assumed to be uniform. However, as discussed in in Section

2.4.1, at the present time it is difficult in practice to achieve a completely uniform

initial flux distribution. In the absence of alternative methods for determining the

initial flux, there is consequently significant uncertainty over this quantity.

Unfortunately, the ramifications of an unknown initial flux distribution for suc-
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cessful extraction of magnetic field statistics cannot be disregarded: in general, path-

integrated fields are no longer uniquely determined by the proton-flux image alone.

Conceptually this is because it becomes impossible to distinguish between variations

in the image flux resulting from magnetic deflections, and those due to variations

in the initial flux. We illustrate this phenomenon with a numerical example – Fig-

ure 2.8. Taking two distinct path-integrated fields (Figures 2.8c and 2.8d), but also

choosing two distinct initial flux distributions (Figures 2.8a and 2.8b), it can be seen

that it is possible to produce a near identical image-flux distribution (Figures 2.8e

and 2.8f). Naive assumption of a uniform initial flux distribution when applying a

field reconstruction algorithm can therefore lead to prediction of non-physical field

structures: a far from satisfactory outcome.

The problem is accentuated further by the fact (first stated in Section 2.4.1) that

initial variations in flux are typically concentrated on larger length-scales, and so

associated non-physical path-integrated fields recovered by any field-reconstruction

algorithm can have a significant magnitude compared to physical fields. More specif-

ically, we can use equation (2.28) to estimate the uncertainty in RMS magnetic field

magnitude ∆Brms introduced by uncertainities in the initial proton flux with typical

RMS magnitude (δΨ/Ψ0)rms,S and correlation length `∗ on the detector:

∆Brms(kG) ≈ 21

[
W (MeV)

3.3 MeV

]1/2 [
ri(cm)

1 cm

]−1

×
[
lz(mm)

1 mm

]−1/2 [
`(mm)

0.83 mm

]1/2 [
(δΨ/Ψ0)rms,S

0.16

]
kG , (2.58)

where ` ≡ `∗/M (and `∗ = 2.5 cm, corresponding to the correlation length of the

largest periodic structure which can appear on a 10 cm by 10 cm detector such as the

one relevant to this thesis), and we have used the value for (δΨ/Ψ0)rms,S typically

found for 3.3 MeV protons derived from a fusion-capsule source (Manuel et al. 2012).

We conclude that the relative error induced by uncertainities in the initial proton
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Figure 2.8: Effect of initial flux inhomogeneity on well-posedness of field recon-
struction algorithms. a) Non-uniform initial 3.3-MeV proton image-flux distribution,
with Ψ0(x⊥0) = Ψ0/4

(
5− 6x2

⊥0/l
2
i

)
. Imaging parameters of the set-up are the same as

those described in Figure 4. b) Uniform initial flux distribution. c) Path-integrated per-
pendicular magnetic field experienced by beam with initial flux distribution shown in a).
The magnetic field is the same as that described in Figure 2, with Brms,0 = 15 kG. d)
Path-integrated perpendicular magnetic field experienced by initial flux distribution shown
in b). The magnetic field is constructed by applying the field reconstruction algorithm to
proton-flux image c). e) 3.3-MeV proton-flux image resulting from initial flux distribu-
tion a) experiencing path-integrated field c). f) 3.3-MeV proton-flux image resulting from
initial flux distribution b) experiencing path-integrated field d).
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flux distribution is significant:

∆Brms

Brms

≈ 0.52

[
`(mm)

0.83 mm

]1/2 [
`B(mm)

0.08 mm

]−1/2

×
[

(δΨ/Ψ0)rms,S
0.16

] [
(δΨ/Ψ0)rms,S

1

]−1

. (2.59)

This finding is reflected in the significant difference in magnitude of the path-

integrated fields shown in Figures 2.8c and 2.8d, which nonetheless give rise to the

near-identical proton images.

The distorting effect of initial flux inhomogeneities, however, can to a certain

extent be countered. As was noted in Section 2.4.1, variations in initial flux are typ-

ically much smaller than the mean flux for sufficiently small structures. As a result,

short-scale image-flux deviations due to deflections, particularly strong deviations

from nonlinear focusing, are distinguishable from potential initial flux structures.

Difficulties then only arise when considering weaker, long-scale flux variation (strong

long-scale variation is inevitably associated with the appearance of focused narrow

image-flux features). Therefore, to isolate flux structures associated with genuine

path-integrated magnetic field structures, we propose applying a high-pass filter to

the image-flux distribution to remove long-scale variation. In the best-case scenario

– in which all flux structures of interest have correlation lengths below the scale `∗c

defined in Section 2.4.1 – the typical magnitude (δΨ/Ψ0)rms,S of variations in the

initial proton flux satisfies (δΨ/Ψ0)rms,S ≈ 0.03. Assuming a characteristic scale

length l∗filt = 0.8 mm for the applied low-pass filter, it follows that `∗ ≈ 0.25l∗filt, and

so (2.58) gives ∆Brms ≈ 1.9 kG. The relative uncertainity in the RMS field strength

is then approximately given by ∆Brms/Brms ≈ 0.05 for the same parameter values

as presented in equation (2.59). Thus, provided the RMS of flux variations is not too

small, field reconstruction algorithms applied to a high-pass filtered image give a rea-

sonable estimate of fields below the scale of the filtering. Neverthless, we emphasize

that the uncertainty ∆Brms could be greater than this estimate if flux structures of
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interest have correlation lengths larger than `∗c , on account of the typical magnitude

of initial flux variations increasing above this scale (Manuel et al. 2012).

We also note that long-scale path-integrated magnetic fields – if present – could

in principle alter the positioning of short-scale image-flux structures, giving rise

to the possibility that path-integrated fields reconstructed from filtered images are

distorted compared to the true fields at that scale. The importance of this effect

can be tested by comparing the results of the field reconstruction algorithm applied

to the filtered image with the reconstructed path-integrated field deduced from the

unfiltered image, but with filtering applied directly post-reconstruction. In any case,

since long-scale variations in flux are typically not large, intuitively this effect should

not be significant in practice.

Smearing effects due to finite source size

As mentioned in Section 2.4.1, proton-imaging set-ups usually have a small but finite

source size, placing a lower limit on the size of magnetic structures which can be im-

aged. This statement can be made more precise by calculating the effect of the finite

source of the perpendicular velocity distribution of the beam. It can then be shown

using kinetic theory [Appendix D.7 of Bott et al. (2017)] that when a magnetic field

configuration is imaged with a proton beam generated by a finite source, the resulting

image-flux distribution Ψ̃
(
x

(s)
⊥

)
is equal to the image-flux distribution generated by

a point source (the ‘unsmeared flux’ Ψ), but convolved with a point-spread function:

Ψ̃
(
x

(s)
⊥

)
=

∫
d2x̃

(s)
⊥ Ψ

(
x̃

(s)
⊥

)
S
(
x

(s)
⊥ − x̃

(s)
⊥

)
, (2.60)

where S is given by

S
(
x

(s)
⊥ − x̃

(s)
⊥

)
=
V 2

r2
s

P

(
x̃

(s)
⊥ − x

(s)
⊥

rs
V

)
. (2.61)
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Here, P = P (δV⊥0) is the distribution function of perpendicular velocities associated

with the source’s finite size; it is a function of

δV⊥0 = V⊥0 −
x⊥0

ri
V , (2.62)

which quantifies the degree of deviation from the paraxial approximation for the

initial beam-proton velocity. The form of P depends on three-dimensional emission

profile of the proton source.

The limitation of image resolution by a finite source size places a number of con-

straints on the possibility of reconstructing the magnetic-energy spectrum. Firstly,

as mentioned in Section 2.3.3, smearing of fine image-flux structure can make the

differentiation of the nonlinear injective and caustic regimes difficult. This is illus-

trated in Figure 2.9. Figures 2.9a and 2.9b show point-source proton-flux images

of the same artificial test stochastic magnetic field introduced in Figure 2.1 (with

Brms,0 ≈ 60 kG), but created using two imaging proton species with different speeds:

3.3 MeV (Figure 2.9a) and 15.0 MeV (Figure 2.9b). Since µ is inversely propor-

tional to the initial imaging proton speed, µ for the 15.0-MeV proton-flux image is

lower – with the consequence that its plasma-image mapping is injective, unlike the

3.3-MeV proton plasma-image mapping. The two point-source proton-flux images

are qualitatively distinct – pairs of caustics are evident in Figure 2.9a – and hence

can be identified as belonging to the caustic and nonlinear injective regimes respec-

tively. Figures 2.9c and 2.9d show the same fields imaged with protons generated

from a finite spherical source. This reduces the spatial resolution of the image – and

consequently, the sharp caustic structures disappear.

To distinguish between the nonlinear injective and caustic regimes, we need more

information than can be provided by a single proton image. Fortunately, typical

experimental methods for generating imaging proton beams produce at least two

beam energies simultaneously, which can be imaged independently (Wilks et al.

2001, Li et al. 2006b). If the transit and beam duration times of all proton beams
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Figure 2.9: Distinguishing the nonlinear injective and caustic contrast regimes
using nonlinear field-reconstruction algorithms and multiple beam energies. a)
3.3 MeV proton-flux image of magnetic field described in figure 2, with Brms,0 = 64 kG, and
same imaging parameters as those described in figure 3. b) Same as a), but with imaging
beam composed of 15.0 MeV protons. c) Same as a), but now imaging implemented using
a finite uniform spherical proton source with diameter a = 50µm. d) Same as c), but with
imaging beam composed of 15.0 MeV protons. e) Reconstructed path-integrated magnetic
field obtained by applying the field-reconstruction algorithm (described in Section 2.3.2)
to c). f) Same as e), but algorithm applied to d). g) Predicted 3.3 MeV proton-flux image,
assuming imaging proton beam experienced reconstructed path-integrated field shown in
f) as a result of traversing magnetic field (the implementation is discussed in Appendix
I.3). Under the caustic detection scheme outlined in the main text, this image is to be
compared with c). h) Predicted 15.0 MeV proton-flux image, assuming imaging proton
beam experienced path-integrated field shown in e). This image is to be compared with
d).
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are much shorter than the timescales on which dynamical evolution of the magnetic

field occurs, then the proton-flux images from all beams will be of approximately the

same magnetic field (see Section 2.4.1 for a discussion of this).

Comparing proton images of the same magnetic field at different imaging beam

energies is a useful technique for identifying caustics. Most simply, if proton images

contain caustics, irrespective of the beam energy, then the width of strong, positive

image-flux structures will typically increase with lowered beam-energy; in contrast,

if all images fall into the nonlinear injective regime, then the narrowest structures

will occur at the lowest energies. This principle is illustrated in Figures 2.9c and

2.9d, where strong, positive relative image-flux features are broader for the 3.3 MeV

protons than the 15.0 MeV ones – suggesting that the former contains smeared

caustics.

A more robust caustic detection scheme comes from application of the field-

reconstruction algorithm outlined for µ < µc in Section 2.3.2 on the different beam-

energy proton-flux images of the same magnetic structures. If a path-integrated

field reconstructed from one proton species is close to the true path-integrated field,

then all imaging protons species should have seen that reconstructed field: thus

the proton-flux images generated using the plasma-image mapping combined with

the predicted path-integrated field should be consistent with the actual proton-flux

images (this procedure is discussed in Appendix I.3). Figures 2.9g and 2.9h show

the 3.3-MeV and 15.0-MeV proton-flux images predicted using the reconstructed

perpendicular-deflection fields for 15.0 MeV (Figure 2.9f) and 3.3 MeV (Figure 2.9e)

protons respectively, followed by artificial smearing with a point-spread function

appropriate for a uniform finite spherical source [see Appendix E of Bott et al.

(2017)]. Figure 2.9g is very similar to Figure 2.9c, verifying the validity of the

reconstructed perpendicular-deflection field shown in Figure 2.9. However, Figure

2.9h disagrees substantially with Figure 2.9d: for example, the width of positive

image-flux structures in 2.9h is much greater than the true widths in Figure 2.9d.

We conclude that the field-reconstruction algorithm provides an effective method for
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detecting the presence of caustics.

Smearing also has important consequences for accurately reconstructing both

path-integrated fields and magnetic energy spectra. More specifically, smearing re-

duces the strength of path-integrated fields reconstructed directly from proton-flux

images by reducing the sharpness of nonlinearly focused image-flux features. It also

introduces a upper wavenumber cut-off on predicted magnetic energy spectra. Both

these effects are illustrated in Figure 2.10 with a numerical example. Figure 2.10a

shows a proton-flux image generated by imaging the Golitsyn field described in Fig-

ure 2.1, along with the (near-accurate) reconstructed field (Figure 2.10b). Figure

2.10c shows the equivalent image-flux distribution generated by a finite source. The

reconstructed morphology, while similar, is reduced in strength. The effect on spec-

tral reconstruction in this example is more pronouced (Figure 2.10g): wavenumbers

close to and beyond the smearing scale are suppressed in the spectrum derived from

Figure 2.10d.

The impact of smearing on successful extraction of field statistics from proton-flux

images can be somewhat reduced by use of a deconvolution algorithm. In particular,

for a known point-spread function S, there exist algorithms (such as the Richardson-

Lucy algorithm) for recovering the maximum likelihood solution for the unsmeared

image-flux distribution given the smeared image-flux distribution (Richardson 1972,

Lucy 1974). The procedure is illustrated in Figure 2.10e, with associated recon-

structed path-integrated field in Figure 2.10f. It is clear that the maximum likelihood

solution for the de-smeared image-flux distribution recovered by the Richardson-Lucy

algorithm does not have identical morphology to the actual unsmeared image-flux

distribution. However, the morphology and strength of the reconstructed path-

integrated field is much more similar; furthermore, the magnetic-energy spectrum

recovered from the path-integrated field (see Figure 2.10g, orange markers) is a much

closer match to the true result (Figure 2.10g, blue markers).

More quantitatively, Figure 2.10h gives the ratio of the predicted RMS magnetic

field strength to the actual value for a range of field strengths, as calculated by in-
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Figure 2.10: Effect of finite source size on successful extraction of magnetic
field statistics. a) ‘Unsmeared’ 3.3-MeV proton-flux image created by imaging Golitsyn
field, Brms,0 = 30 kG (reproduction of figure 4c for convenience of reference). b) Predicted
path-integrated magnetic field resulting from application of field reconstruction algorithm
to figure a). c) ‘Smeared’ 3.3-MeV proton-flux image created by imaging same field as a),
but with a finite proton source, with diameter a = 50µm. d) Same as b), but with field
reconstruction algorithm applied to c). e) ‘De-smeared’ 3.3-MeV proton image subsequent
to application of Richardson-Lucy algorithm for ten iterations. f) Same as b), but with
field reconstruction algorithm applied to e). g) Magnetic energy spectra: true result (red),
plotted with predictions using deflection-field spectral relation (2.11) applied to b) (blue
circles), d) (dark green squares) and f) (magenta crosses). h) Ratio of predicted to actual
RMS magnetic field strength for a range of field strengths using both linear-regime flux
spectral relation (2.35) (dashed) and reconstructed deflection-field spectral relation (2.11)
(solid), applied to unsmeared (blue), smeared (dark green) and de-smeared (magenta).
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tegrating predictions of the magnetic-energy spectrum. The results from using both

linear-regime flux spectral relation (2.35) and reconstructed deflection-field spectral

relation (2.11) applied to unsmeared (blue), smeared (green), and de-smeared (or-

ange) proton-flux images are shown. It is clear that for both approaches, the smeared

proton-flux image leads to reductions in predictions of field strength of 10-20 % – but

that these can be removed quite effectively using a deconvolution algorithm. We also

note that beyond the appearance of caustics, all methods increasingly under-estimate

the predicted RMS field strength; this is related to the lower-bound property of the

reconstructed perpendicular-deflection fields discussed in Section 2.3.3.

For experimental analysis with a somewhat limited resolution range, we conclude

that deconvolution algorithms are helpful for deducing magnetic-energy spectra over

a reasonable range of wavenumbers.

2.5 Conclusions

In this chapter, we have shown that the magnetic-energy spectrum of a wide range

of isotropic stochastic magnetic fields can be determined using a proton imaging di-

agnostic, but only provided the parameters of the imaging are appropriately tuned.

More specifically, we have used an analytic theory of proton imaging established un-

der a set of simplifying assumptions typically valid when carrying out proton imaging

to show that proton-flux images of stochastic magnetic fields can be classified into

four regimes – linear, nonlinear injective, caustic and diffusive – dependent on µ

(which quantities the relative size of magnetic structures and proton displacements

due to magnetic deflections). In the linear and nonlinear injective regimes, the mag-

netic energy is extractable from the image-flux distribution provided the stochastic

fluctuations are homogeneous and isotropic: and we have described a procedure for

achieving this (the PROBLEM code). In the caustic and diffusive regimes, we have

shown that the problem is not well posed – at least, not without additional as-

sumptions about the structure of the stochastic magnetic field – in that stochastic
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magnetic fields with different magnetic energy spectra can give proton image-flux

distributions with identical statistics. We have investigated several complications to

this description placed by particular types of stochastic fields, in particular showing

that shallow power law spectra are often unreproducable using the proposed (or any

other) proton imaging techniques. In addition, three limitations on the utility of the

diagnostic due to experimental constraints have been described, as well as techniques

for minimising their impact.



Chapter 3

Analysing proton images from the

OMEGA fluctuation dynamo

experiment

3.1 Analysis of 15.0 MeV proton images

3.1.1 Reconstruction of path-integrated fields

The results of the previous chapter are now applied to the experimental data ob-

tained for the fluctuation-dynamo OMEGA experiment discussed in Chapter 1. The

experimental 15.0 MeV proton images first introduced in Figures 1.13a, 1.13c, and

1.13e of Chapter 1 are reproduced in Figure 3.1; we also present the magnitude of the

path-integrated perpendicular magnetic field extracted using the field-reconstruction

algorithm described in Chapter 2 (i.e. the PROBLEM code). In more detail, the

method for applying the field-reconstruction algorithm to the data is as follows. We

first select a region of the proton image to analyse; this region is chosen to be as

large as possible, within the parameters of staying inside the region of high proton

flux between the grids, maintaining an approximately rectangular shape, avoiding

large long-scale variations in flux and choosing a boundary which does not intersect

93
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Figure 3.1: 15.0-MeV proton-image analysis. a) 15.0 MeV proton image corre-
sponding to 29.7 ns after a 10 ns drive-beam pulse initiation (c.f. Figure 1.13a) The
dashed line denotes the boundary of the region to which the reconstruction algorithm is
applied. b) Magnitude of path-integrated perpendicular magnetic field recovered from a)
using field-reconstruction algorithm (for details, see main text). c) 15.0 MeV proton image
corresponding to 34.7 ns after a 10 ns drive-beam pulse initiation (c.f. Figure 1.13c). d)
Magnitude of path-integrated perpendicular magnetic field recovered from c) using field-
reconstruction algorithm. e) 15.0 MeV proton image corresponding to 34.7 ns after a 5 ns
drive-beam pulse initiation (c.f. Figure 1.13e). f) Magnitude of path-integrated perpen-
dicular magnetic field recovered from e) using field-reconstruction algorithm.
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regions with high levels of proton flux. We then embed the cropped region of proton

flux inside a larger rectangular region, whose size is chosen to be as small as possible

while still containing the cropped region. Values of proton flux are then systemat-

ically assigned to pixels outside the cropped region: these values are calculated by

linearly interpolating between the nearest actual pixel value and the mean flux of

the cropped region of protons.

At this point, two filtering procedures were employed. First, the Lucy-Richardson

deconvolution algorithm (Richardson 1972, Lucy 1974) discussed in Section 2.4.3 of

Chapter 2 was applied to the rectangular flux samples, in order to mitigate the

effect of the finite proton source size on the field reconstruction algorithm (that

is, the ‘smearing’ effect described in the aforementioned section). In the case of

a D3He capsule, the proton source profile has been shown experimentally to be

Gaussian, with full-width-half-maximum (FWHM) of 50µm (Séguin et al. 2004, Li

et al. 2006b). The point-spread function affecting the proton image is therefore

also Gaussian with the same FWHM and so the Lucy-Richardson deconvolution

scheme was implemented accordingly. For the particular flux images shown in Figure

3.1, ten iterations of the algorithm were found to balance optimally the recovery

of the flux distribution with the undesired side effect of Poisson noise enhancement

introduced by the deconvolution process. The efficacy of the deconvolution scheme is

further enhanced by the general robustness of the non-linear reconstruction algorithm

to small-scale noise (see Chapter 2, Section 2.4.3). An illustration of successful

application of Lucy-Richardson deconvolution for simulated FLASH proton images

is given later (Figure 3.8). In addition to the deconvolution algorithm, a Gaussian

high-pass filter (FWHM 1.5li ≈ 0.22 cm) was applied to a selected flux region in order

to remove long-scale variation in the flux distribution. Since the dominant structures

remaining in the reconstructed path-integrated field are of the order ˜̀
B ∼ 300µm

and order-unity flux features are still retained in the filtered flux image, we conclude

that our field-reconstruction algorithm captures the energetically dominant magnetic

structures.
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Subsequent to the filtering, we calculated path-integrated fields from the the

rectangular region by assuming that the image-flux distribution Ψ is related to the

path-integrated field by the Monge-Ampère equation (2.39) of Section 2.3.2 – that

is,

Ψ(∇φ(x⊥0)) =
Ψ0

|det∇∇φ(x⊥0)|
, (3.1)

where we remind the reader that the potential φ(x⊥0) is related to the perpendicular-

deflection field w(x⊥0) via equation (2.41):

w(x⊥0) =
V

rs
∇⊥0

(
φ− rs + ri

2ri
x2
⊥0

)
. (3.2)

The initial flux is chosen to be entirely uniform, with mean value set equal to that

of the rectangular flux region. The flux relation (3.1) was inverted numerically using

the finite-difference scheme described in Appendix I.4. Subsequent to convergence of

the algorithm, the perpendicular-deflection field is only retained for pixels inside the

original cropped region, with other values removed via a Gaussian window function,

and is re-oriented to the original position of its associated flux region. The per-

pendicular path-integrated field is calculated using equation (2.10) of Section 2.2.2:

∫ lz

0

ds B⊥(x(s)) = −mpc

e
ẑ×w(x⊥0) . (3.3)

In each image, the magnitude of the path-integrated perpendicular magnetic field is

shown; we emphasise that the output of the field-reconstruction algorithm is in fact

two-dimensional.

It is clear that the peak path-integrated perpendicular magnetic fields recovered

from the 15.0 MeV proton image just prior to collision (Figure 3.1b) are weaker

(∼ 1 kG cm) than those subsequent to collision for both the 10 ns pulse (∼ 4 kG cm

– Figure 3.1d) and the 5 ns pulse (∼ 6 kG cm – Figure 3.1f). The morphology of the

fields is also quite different: smooth, regular field structures prior to collision (`B ∼

0.1− 0.2 cm) give way to much smaller structures (`B . 0.03 cm). When considered
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with respect to the contrast-regime framework outlined in Chapter 2, these results

are consistent with the absence of strong, sharp features in the proton image recorded

at collision (i.e. Figure 3.1a) and their presence subsequent to collision (Figures 3.1c

and 3.1e): the contrast parameter µ is proportional to Brms and also increases for

smaller magnetic structures. In other words, proton images at collision are in the

linear contrast regime (µ� 1), while those subsequent to it satisfy µ ∼ 1. Whether

the path-integrated magnetic structures at these later times are in the non-linear

injective or caustic regimes is a subtle question; we will temporarily defer discussion

of this until Section 3.2.

3.1.2 Calculating the magnetic energy spectrum and char-

acteristic field strengths

Assuming for now that the reconstructed path-integrated perpendicular magnetic

fields are accurate, we can make quantitative estimates of the magnetic field strength

both prior to and after collision. Just prior to the jet collision, the path length lz

of the protons through the plasma is of the order of the grid’s lateral dimensions

lz ∼ ln & 0.2−0.3 cm; since |
∫

B⊥ds| ≈ 1 kG cm, we therefore estimate B . 3−5 kG.

This is consistent with the initial 4 kG magnetic field strengths obtained in the

FLASH simulation.

Subsequent to collision and the emergence of stochastic magnetic field structures,

the spectrum of magnetic field energy EB(k) can be calculated directly from the

path-integrated perpendicular magnetic field using equation (3.3) combined with

deflection-field spectral relation (2.11) of Section 2.2.2:

EB(k) =
1

4π2lz
kEpath(k) , (3.4)

where Epath(k) = m2
pc

2EW (k) /e2 is the one-dimensional spectrum of the path-
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integrated magnetic field under normalisation condition

∫
dk kEpath(k) =

(∫
d2x B⊥

)2

rms

. (3.5)

The RMS value of the magnetic field can then be evaluated by integrating over all

wavenumbers to give (c.f. equation (2.3) of Chapter 2)

Brms =

[
8π

∫ ∞
0

EB(k) dk

]1/2

. (3.6)

In practice, the values of the RMS field strength are best calculated by summing

over pixel values of a Fourier-transformed sample of (zero-mean) path-integrated

perpendicular magnetic fields. As the collision occurs, and the interaction region

of shocked turbulent plasma coalesces, FLASH simulations indicate that the proton

path-length scale lz decreases to lz ≈ 0.6 mm. Assuming this value of lz to be correct,

we calculate the magnetic-energy spectrum from the centre of the interaction region

arising for the 5 ns pulse shape (Figure 3.2a); the result is shown in Figure 3.2b.

The peak of this spectrum occurs at wavenumbers consistent with the claim that

energetically dominant magnetic structures have a size ˜̀
B ∼ 300 − 400 µm. For

wavenumbers & 2π ˜̀−1
B , the uncertainty on the spectral measurement is sufficiently

large that it is not possible to conclude whether the data is more consistent with a

shallow k−1 spectrum (as predicted by the FLASH simulations), or with a spectrum

characteristed by a larger (negative) power-law index (such as a k−5/3 Kolmogorov

spectrum). Intriguingly, it is certaintly the case that any power-law fit for the derived

spectrum at wavenumbers � 2π ˜̀−1
B requires a much larger power-law index than

that obtained in the FLASH simulations. For the RMS field strength, we obtain

Brms ≈ 100 kG.
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Figure 3.2: Reconstructed magnetic-energy spectrum. a) Magnitude of path-
integrated perpendicular magnetic field recovered from a proton image 34.7 ns after drive-
beam pulse initiation using field-reconstruction algorithm (c.f. Figure 3.1f), plotted with
region to be used for spectral analysis. b) Magnetic-energy spectrum derived using equa-
tion (3.4) applied to the region(s) illustrated in panel a). The calculation is performed as
follows: an appropriate Gaussian window function is applied to the chosen sample (which
is embedded in a larger rectangular region), which is subsequently Fourier-transformed.
Equally-spaced annular wavenumber bins (∆k = 3.5π/li, li = 0.1 cm) are then employed
with an unbiased estimator for the central bin position used in each case. The relative
height of the spectrum is then re-normalised using the ratio of the total rectangular re-
gion’s area to the sample area. The error bars on the spectral slope are determined by
calculating the spectra separately for the two marked regions, and then assuming those
spectra constitute independent samples of the path-integrated field.

3.2 Initial discussions

On first inspection, the techniques developed in Chapter 2 for analysing proton im-

ages of stochastic magnetic fields seem to have been at least moderately successful:

we have been able to derive measurements of characteristic magnetic field strengths

from the proton images recorded both at the point of collision and subsequent to it;

in the latter case we have also been able to derive the magnetic-energy spectrum.

The values of the RMS field strength subsequent to collision are relatively simi-

lar to those obtained from the Faraday-rotation diagnostic, providing some initial

confidence in the measurement. The approach also reveals quantitatively how the

magnetic fields present in the experiment differ from those in the FLASH simulation:

in particular, there exist significant magnetic fluctuations at scales somewhat larger

than the largest fluctuations predicted by FLASH (for which ˜̀
B ∼ 150− 200µm).

However, there remain reasonable grounds to treat these initial results with some
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caution. Firstly, it is not immediately clear whether the contrast regime of the

imaging set-up for the largest-scale stochastic magnetic structures is the nonlinear

injective regime or the caustic regime; given the resolution of the set-up, distinguish-

ing between the two requires additional analysis of the form suggested in Section

2.4.3. This issue is further complicated by the possible presence of shallow power-law

magnetic-energy spectra – for example, the k−1 spectral slope found in the FLASH

simulations. As discussed in Section 2.4.2 of Chapter 2, the injectivity assumption

required for the field-reconstruction algorithm to be applicable is scale-dependent.

Small-scale magnetic structures are more likely to lead to the crossing of trajecto-

ries of neighbouring protons than larger structures of the same field strength, even

though the deflections associated with the small structures are smaller. For multi-

scale stochastic magnetic fields, this means that the field-reconstruction algorithm

applied to small-scale flux structures with sufficiently large µ will produce an under-

estimate of small-scale path-integrated fields – which in turns leads to the suppression

of small wavelengths in the magnetic energy spectrum (see Section 2.4.2). Secondly,

the theory presupposes that all flux structures are due to magnetic fields already

present in the plasma prior to the arrival of the imaging proton beam; although

the argument presented in Section 1.4 of Chapter 1 suggests this is reasonable, an

experimental verification of this assumption would be of some value.

Bearing these issues in mind, we now perform a series of additional tests to

validate the approach.

3.3 Validating path-integrated field reconstruction

analysis

3.3.1 Simplifying assumptions

The applicability of the field-reconstruction algorithm to our particular imaging set-

up depends on the various assumptions outlined in Section 2.4.1 of Chapter 2: paraxi-
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ality, point-projection, and small deflections. We remind the reader that the paraxial

approximation – that is, approximating the proton beam as it passes through the

plasma as a planar sheet – is effectively an expansion of the position and velocity of

the particle in terms of half of the paraxial parameter [c.f. equation (2.49)]:

δα

2
≡ l⊥

2ri

� 1 . (3.7)

For all times in our experiment, we have l⊥ . 0.3 cm, ri = 1 cm, giving δα/2 ≈

0.15 � 1, as required. The point-projection assumption – that is, the assumption

that the distance rs from the plasma to the screen is much greater than lz, meaning

that displacements from undeflected proton trajectories acquired inside the plasma

due to magnetic forces are negligible compared to the displacements resulting from

the free motion of particles after they have exited the plasma – also holds, since

rs = 27 cm� lz . 0.3 cm at all times in the experiment.

Next, we check that typical proton-velocity deflections are assumed small com-

pared to the initial proton velocity; this is equivalent to confirming that δθ = |w| /V

is indeed a small parameter. The perpendicular-deflection field w(x⊥0) due to mag-

netic forces of a proton with initial position x0 and velocity V is given by equation

(2.8) – that is,

w(x⊥0) ≈ e

mc
ẑ×

∫ li

0

ds B(x(s)) , (3.8)

where ẑ = V/V is the direction of travel of the proton. The deflection angle of the

proton is then

δθ =
e

mcV

∣∣∣∣∫ li

0

ds B(x(s))

∣∣∣∣ . (3.9)

For our experiment, Figure 3.1 shows that the maximum predicted path-integrated

magnetic field takes a value of ∼ 6 kG cm, which in turn gives maximum predicted

deflection velocity |w| ≈ 5.7 × 107 cm/s. For the slowest species of proton used for

imaging (3.3 MeV), we have V ≈ 2.5×109 cm/s, so δθ ≤ 0.02 for all imaging protons.

Finally, it was claimed in Section 1.4 that structure arising in proton images from
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the OMEGA experiment is due to magnetic fields only, rather than both electric and

magnetic fields; we now validate this claim in two ways. First, we show that the

threshold value Bres below which magnetic field strengths cannot be measured reli-

ably by our proton-imaging set-up satisfies Bres & 0.5 kG: this threshold was used

in Section 1.4 to support a theoretical argument ruling out electric fields. In Sec-

tion 2.4.3, it was shown that the uncertainity ∆Brms in the RMS magnitude of the

stochastic magnetic fields is given by equation (2.58). Substituting the maximum

possible experimental value for the path length (lz ≈ 0.3 cm), and setting the corre-

lation scale ` of initial flux variations equal to the image resolution a ≈ 50µm (which

in our experiment is determined by the proton source size) then gives the required

lower bound:

Bres(kG) & 0.5

[
W (MeV)

3.3 MeV

]1/2 [
ri(cm)

1 cm

]−1

×
[
lz(cm)

0.3 cm

]−1/2 [
a(µm)

50µm

]1/2

kG . (3.10)

Second, we demonstrate that the magnitude of the electric fields necessary for caus-

ing the structures seen in proton images from the OMEGA experiment is much

larger than would be expected physically. The perpendicular-deflection field w(x⊥0)

imparted by an electric field E is given by (Kugland et al. 2012)

w(x⊥0) ≈ e

mpV

∫ li

0

ds E(x(s)) . (3.11)

By analogy to equation (2.13) (or equivalently, a random-walk argument), the RMS

magnitude Erms of a stochastic electric field can then be related to the typical de-

flection angle δθ by Erms ∼ mpV
2δθ/e

√
˜̀
Elz, or equivalently,

Erms ≈ 160

[
W (MeV)

3.3 MeV

] [
lz(cm)

0.06 cm

]−1/2
[

˜̀
E(cm)

0.03 cm

]−1/2 [
δθ

0.01

]
MV/m , (3.12)

where ˜̀
E is the characteristic length scale associated with electric-field structures.
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Comparing this estimate to the characteristic field strength which would arise (for

example) from electron pressure gradients on the same length scale (Gregori et al.

2015), we find that E ∼ kBTe/e˜̀
E, or

E ≈ 1.5

[
Te(eV)

450 eV

][ ˜̀
E(cm)

0.03 cm

]−1

MV/m . (3.13)

The stated conclusion follows.

3.3.2 Early-time proton images

One simple test of the field-reconstruction algorithm is provided by the 15.0 and 3.3

MeV proton images recorded just prior to collision (see Figures 3.3a and Figures

3.3b respectively). The contrast regime of both images is linear (that is, variations

in flux are small compared to the mean flux); thus, in theory the field-reconstruction

algorithm should be applicable to both images. Furthermore, as discussed in Section

1.4 of Chapter 1, the evolution of the plasma jets is slow (∼ 3 ns) compared to the

difference in transit times associated with the two proton species (≤ 0.2 ns). We

conclude that the field-reconstruction algorithm should recover approximately the

same field morphology when applied to separately to both images. The results of

the field-reconstruction algorithm are shown in Figures 3.3c and 3.3d; we have indi-

cated the direction of the path-integrated perpendicular field as well as the strength.

There is both qualitatively and quantitatively good agreement in terms of both field

strength and morphology, validating our approach.

3.3.3 Predicted proton images

Another reality check for the field-reconstruction algorithm can be performed by

generating artificial proton flux images, with the deflections of simulated protons

determined by the reconstructed path-integrated field combined with equation (3.8)

and the RK image-flux relation (see also Appendix I.4). The test consists in com-
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Figure 3.3: Comparison of 15.0 MeV and 3.3 MeV reconstructed path-
integrated magnetic field at collision. a) 15.0 MeV proton image corresponding to
29.7 ns after a 10 ns drive-beam pulse initiation (c.f. Figure 1.13a). b) 3.3 MeV proton im-
age corresponding to 29.9 ns after a 10 ns drive-beam pulse initiation (c.f. Figure 1.13b). c)
Perpendicular path-integrated magnetic field recovered from a) using field-reconstruction
algorithm. Colour variations denote the magnitude of the path-integrated magnetic field
while the black lines with directional arrows are 2D streamlines of the perpendicular path-
integrated magnetic field. d) Same as c) but using path-integrated field recovered from b),
not a).

paring these synthetic images to the experimental ones; by the very construction

of the field-reconstruction algorithm, the results should be the same. To incorpo-

rate the effect of the finite-source size, we apply to the predicted images the same

point-spread function assumed when employing the Lucy-Richardson deconvolution

algorithm in Section 2.4.3. The predicted flux image (Figure 3.4a) derived from

the path-integrated field shown in Figure 3.1f agrees fairly well with Figure 3.1e,

although the strength of the strong, narrow flux features in the predicted flux image

is reduced compared to the experimental one. Enhancing the path-integrated field

by 20% recovers the observed strength of the flux features (see Figure 3.4b), sug-
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Figure 3.4: Validation of field-reconstruction algorithm via predicted proton
images. a) 15.0 MeV flux image predicted using reconstructed path-integrated magnetic
field shown in Figure 3.1f. The image is created by seeding test protons uniformly in the
region over which the path-integrated field is defined (marked by a dashed red line), before
assigning velocities to those particles. These velocities are given by the combination of
a particle’s initial velocity before interacting with fields and velocity perturbation (equa-
tion 3.8) due to magnetic fields. The particles are then allowed to propagate to the screen,
with dimensions set equal to those in the experiment. The mean flux in each region is
set equal to the mean flux of the experimental image. To account for finite source size, a
Gaussian point spread function with FWHM 50 µm ≈ 0.14 cm is subsequently applied to
the images. b) Same as a) but with the strength of the path-integrated field increased by
20%. c) 3.3-MeV flux image predicted using reconstructed path-integrated magnetic field
shown in Figure 3.1f. The equivalent experimental image is shown in Figure 1.13f (and
Figure 3.5b). The path-integrated field experienced by the slower proton species is the
same assuming magnetically dominated deflections, but their initial perpendicular velocity
is reduced. d) Same as c) but with the strength of the path-integrated field increased by
20%.

gesting that the reconstructed path-integrated field shown in Figure 3.1e is in fact

marginally underestimated. This is most likely due to insufficient application of the

Lucy-Richardson deconvolution algorithm.

When considered simultaneously with the 3.3 MeV images, predicted proton im-
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ages can also be used to verify the assumption of injectivity of the 15.0 MeV images.

As was explained in Section 1.4, to a good approximation the 3.3 MeV and 15.0

MeV protons are also deflected by the same magnetic fields. As a result, any path-

integrated perpendicular magnetic field reconstructed from the flux image of one

proton species should be consistent with flux images obtained for the other species.

This can be tested by predicting an image using the perpendicular-deflection field

reconstructed from proton images of one species combined with the RK image-flux

relation, but varying the initial proton speed to match that of the other proton

species. When such a test is carried out for the 15.0 MeV proton reconstructions,

the morphology of predicted 3.3 MeV proton images agrees well with the actual

3.3 MeV proton images – see Figure 3.4c compared to Figure 3.5b for an exam-

ple. Furthermore, the numerical experiments in Section 2.4.3 investigating the use

of the field-reconstruction algorithm in the regime where caustic appearance cannot

be detected by the test given above suggest that the predicted path-integrated field

morphology remains relatively robust, though field strength can be somewhat under-

estimated. This is consistent with the observation (see Figures 3.4b and 3.4d) that

a 20% increase in field strength still leads to similar flux features.

As well as verifying the injectivity assumption, the agreement between actual 3.3

MeV proton images and those predicted using the RK image-flux relation provides

an additional demonstration that the flux structures in the proton images are due to

magnetic rather than electric fields. This is because the perpendicular-deflection field

w(x⊥0) imparted by an electric field E is inversely proportional to the initial proton

speed in the small-deflections limit [see equation (3.11)]. Thus, if electric fields were

responsible for the structures seen in both the 15.0 MeV and 3.3 MeV images, the

3.3 MeV proton image predicted assuming magnetically dominated deflections would

be inconsistent with the experimental data. No such inconsistency is observed.
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3.3.4 Reconstruction analysis of 3.3 MeV proton images

Given the marginality of the injectivity assumption for the faster 15.0 MeV pro-

ton species, the inverse velocity dependence of the contrast parameter implies that

caustics are likely to be present in the 3.3 MeV images, shown in Figure 3.5. Qualita-

tively, the increased thickness of the intense flux-structures in Figure 3.5b compared

to those in the equivalent 15.0 MeV flux image (Figure 3.1f) is consistent with the

existence of caustics in the former (as explained in Section 2.3.3 of Chapter 2). How-

ever, the characteristic structure of branched caustics is disguised by finite resolution

effects. To demonstrate their presence, we instead employ the technique described

in Section 2.4.3 of Chapter 2: apply the field-reconstruction algorithm to the 3.3

MeV images to determine a path-integrated perpendicular magnetic field, predict

15.0 MeV images, and then compare them to the experimental 15.0 MeV images.

Applying the field-reconstruction algorithm to the 3.3 MeV images shown in Fig-

ures 3.5a and 3.5b gives the path-integrated perpendicular magnetic fields shown

in Figures 3.5c and 3.5d respectively. It is clear that the latter underestimate field

strengths compared to those recovered from the 15.0 MeV images, which is a char-

acteristic sign of caustic structure. The 15.0 MeV images predicted using the RK

image-flux relation (Figures 3.5e and 3.5f) are qualitatively quite distinct to the true

images: the predicted high-intensity structures are much broader than the true ones.

We conclude that caustics are indeed present in the 3.3 MeV images.

3.3.5 Energy images

A different approach for assessing whether magnetic forces are indeed the domi-

nant mechanism acting on the beam is to consider the so-called ‘mean-energy map’

recorded on the CR-39 plates for the 15.0 MeV protons (Li and Petrasso 1993, Li

et al. 2016). The mean-energy map is calculated by measuring the diameters of etched

CR-39 tracks; in a given slice, smaller track diameters correspond to higher-energy

protons. If stochastic electric fields (as opposed to magnetic fields) caused proton
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Figure 3.5: Identifying caustics in the 3.3 MeV proton images. a) 3.3 MeV pro-
ton image corresponding to 34.9 ns after a 10 ns drive-beam pulse initiation (c.f. Figure
1.13d). b) Same as a) but with a 5 ns drive-beam pulse initiation (c.f. Figure 1.13f). c)
Path-integrated magnitude of path-integrated perpendicular magnetic field recovered from
a) using field-reconstruction algorithm, under the assumption that no caustics are present
i.e. that equation (3.1) is valid. d) Same as c) but with the field-reconstruction algorithm
applied to b) rather than a). e) 15.0 MeV flux image predicted using (reconstructed)
path-integrated perpendicular magnetic field shown in c). The method for generating the
predicted image is described in the caption of Figure 3.4. The equivalent experimental pro-
ton image is shown in Figure 3.1c. f) 15.0 MeV flux image predicted using (reconstructed)
path-integrated perpendicular magnetic field shown in d). The equivalent experimental
proton image is shown in Figure 3.1e.
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deflections, the resulting changes in proton energy would in principle lead to inhomo-

geneities in the mean-energy map. Figure 3.6 shows that, on the contrary, the mean

proton energy has a uniform distribution without pronounced structures in the inter-

action region. This seems to supports the claim that the structures seen in the flux

images shown in Figures 3.1a and Figures 3.1b are due to deflections of protons by

magnetic, rather than electric fields. That being said, this result should be regarded

Figure 3.6: Mean proton energy images. Mean proton energy versus position for
the 15.0 MeV protons recorded on the second CR-39 plate. a) Target with both grids and
with the two chlorinated plastic foils driven with the 10 ns pulse shape. The D3He capsule
was imploded at t = 34 ns. b) same as a) but with a 5 ns driver pulse length.

with some skepticism. The energy resolution of the plates is ∼ 0.1 MeV (Séguin

et al. 2003); since the maximum deflection angle δθmax associated with the 15.0 MeV

protons satisfies δθmax ≈ 0.01, we conclude that the maximum energy change δW

which any proton could experience is δW ≈ Wδθmax = 0.15 MeV, which is marginally

above the diagnostic’s resolution. It is therefore debatable the extent to which the

technique on its own provides conclusive evidence for the absence of electric fields in

this experiment.
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3.4 Validating spectral analysis

3.4.1 Suppression of small-scale structures for shallow power

spectra

In spite of likely discrepancies between the actual magnetic fields and those simulated

by the FLASH code, the simulated fields still offer a useful testbed for the spectral

analysis techniques employed to deduce the magnetic-energy spectrum in Section

3.1.2. In particular, the possibility of first calculating the precise magnetic-energy

spectrum from the three-dimensional fields in the simulation and then comparing

the result with spectra recovered using the field-reconstruction algorithm enables

the efficacy of the latter to be observed directly. Furthermore, the geometry of

the colliding plasma jets with respect to the simulated proton-imaging diagnostic

provides a more realistic example than the simple test fields described in Chapter 2.

Firstly, the FLASH magnetic fields can be used to illustrate the phenomenon,

described in Section 2.4.2, of suppression of small-wavelength structures when re-

constructing magnetic-energy spectra from proton images. Figure 3.7a shows the

exact path-integrated perpendicular magnetic field experienced by the imaging pro-

ton beam (generated from a point source) resulting in the proton image given in

Figure 3.7b. The field-reconstruction algorithm applied to this image results in the

path-integrated perpendicular magnetic field shown in Figure 3.7c. Qualitatively,

we see that, while the largest path-integrated magnetic-field structures in the re-

constructed image are similar, small-scale structure is absent. More quantitatively,

Figure 3.7d shows three magnetic-energy spectra: the spectrum derived from the 500

µm control volume placed at the centre of the interaction region, the spectrum of the

exact path-integrated field [calculated using equation (3.4) applied to Figure 3.7a],

and the spectrum from the reconstructed path-integrated magnetic field. While the

spectrum calculated from the exact path-integrated field is barely distinguishable

from the spectrum derived from the control volume (given the uncertainity on the
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Figure 3.7: Suppression of magnetic-energy spectrum’s high-wavenumber tail
due to small-scale caustic structure. a) Magnitude of exact perpendicular path-
integrated magnetic field experienced by artificial proton beam as it passes through the
FLASH-simulated magnetic fields (at 34.7 ns after drive-beam pulse initiation). The spa-
tially resolved two-dimensional map is recorded by calculating the average perpendicular
path-integrated field experienced by all protons arriving in a given pixel. The region sub-
sequently used for spectral analysis is demarcated by the dashed line. b) Simulated proton
image associated with beam described in a) (c.f. Figure 1.14b). c) Magnitude of perpen-
dicular path-integrated magnetic field recovered using the field-reconstruction algorithm
applied to b). d) Magnetic-energy spectrum calculated inside the interaction region using
three methods: using FLASH magnetic field values in the 500 µm control volume (red
squares, see also Figure 1.10c of Chapter 1); the exact path-integrated field shown in a)
experienced by the proton beam (blue diamonds); and the path-integrated magnetic field
shown in c) reconstructed from FLASH synthetic proton images (purple crosses). The
error bars on the latter two spectra are calculated using the same approach as was used
for the error bars on Figure 3.2b.

former), the spectrum calculated from the reconstructed path-integrated field has

a much steeper tail (which is statistically significant). We conclude (again) that

the power-law behaviour of shallow magnetic-energy spectra is not recoverable if the

contrast parameter of outer-scale magnetic structures is of order unity. The effect

of high-wavenumber spectral suppression on the predicted value B
(R)
rms of the RMS
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magnetic-field strength is less pronounced than the change to the spectral slope but

is still significant: B
(R)
rms/Brms ≈ 0.78 for the FLASH simulations.

3.4.2 Finite proton source size

Next, we test the Lucy-Richardson deconvolution algorithm used to correct the field-

reconstruction algorithm for a finite proton source size and the calculation of Brms.

Synthetic proton images are generated using the FLASH simulation with both a

point source and a more realistic finite 40µm source. This allows the reconstructed

path-integrated field from the point source (Figure 3.8a) to be compared with the

reconstructed field from the finite source, both without (Figure 3.8b) and with (Fig-

ure 3.8c) the use of the deconvolution algorithm. Figure 3.8b shows that without the

deconvolution algorithm, the reconstruction process leads to lower field strengths;

quantitatively, we find the RMS magnetic-field strength B
(R)
rms,f is only 80% of the

field strength B
(R)
rms,p derived from the point-source reconstruction. However, with the

deconvolution algorithm a much closer match is achieved: the RMS field strength

B
(R)
rms,d in this case satisfies B

(R)
rms,d/B

(R)
rms,p ≈ 0.96. Both these results are reflected

in the magnetic-field spectra (Figure 3.8d) predicted from the proton imaging using

equation (3.4); the magnetic-energy spectrum derived from the path-integrated field

shown in Figure 3.8b is suppressed across all wavenumbers as compared to the other

reconstructed spectra. We note that all reconstructed spectra are suppressed com-

pared to the spectrum derived from the exact path-integrated field, particularly at

high wavenumbers.
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Figure 3.8: Effect of finite proton source size on field-reconstruction algorithm.
a) Path-integrated magnetic field recovered from simulated proton images created using a
quasi-point source of 2× 10−6 µm diameter using field-reconstruction algorithm. b) Same
as a) but with a finite-size proton source of diameter 40 µm. c) Same as b) but with the
Lucy-Richardson deconvolution algorithm included in the reconstruction algorithm. d)
Extracted magnetic-energy spectra for the three previous cases, as well as the magnetic-
energy spectra derived from the exact path-integrated field.

3.5 Implications for the OMEGA fluctuation dy-

namo experiment

The results of our validation of the field-reconstruction algorithm and associated pre-

diction for the magnetic-energy spectrum are mostly positive but with several provi-

sos. We have demonstrated that the assumptions required for the analysis technique

to be valid are satisfied and the self-consistency of the field-reconstruction algo-

rithm has been illustrated. It has subsequently been shown that most likely source

of the intense flux-structures seen after jet collision are indeed stochastic magnetic

fields and that the values for the path-integrated field obtained from the 15.0 MeV
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reconstructions are consistent with the 3.3 MeV images. Less favourably for the

technique, we have found that two effects inhibit the accuracy of the reconstructed

path-integrated field: the finite proton source size and the potential suppression of

small-wavelength path-integrated structures due to the presence of small-scale caus-

tics. The former can mostly be rectified using the Lucy-Richardson deconvolution

algorithm, but the latter is a fundamental limitation of the set-up. Considering these

two effects concurrently, we conclude that the ∼ 100 kG values of the reconstructed

RMS magnetic-field strength is likely to represent a reasonable estimate of the true

RMS magnetic-field strength (or perhaps a slight underestimate); however, the pre-

dicted magnetic-energy spectrum is not necessarily a reasonable reflection of the true

spectrum.

The implications of these results for the physics underlying the OMEGA exper-

iment are as follows. We have been able to verify that the initial seed magnetic

fields are indeed energetically subdominant: B ≈ 4 kG. In the absence of any strong

turbulence in the flows, the explanation that these fields are generated by the Bier-

mann battery mechanism produced at the laser spots and then advected by the flow

– an explanation supported by the FLASH simulations – seems reasonable. We have

then shown that, as the two plasma flows collide, the magnetic-field morphology

becomes stochastic and characteristic strengths grows from their small initial val-

ues to ∼ 100 − 120 kG. We assume this to be near the saturated value of the field

strength, because the Faraday rotation measurement begins over 2 ns (comparable

to dynamical times) before the proton-imaging diagnostic and we infer similar mag-

netic field strengths from both. We note that the expected timescale for saturation

to be reached is of the order of an outer-scale eddy-turnover time, τL = L/uL ∼ 6

ns (Tobias et al. 2013), a period that is comparable to the time that has elapsed

between the initial flow collision and the magnetic field measurements. Since the jet-

collision results in a turbulent plasma with a magnetic Reynolds number above the

threshold for dynamo action, a plausible candidate for the measured amplification is

the fluctuation dynamo.
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We claim that the increase of the magnetic field during the collision cannot be

simply explained by the compression of the field lines due to the formation of shocks

due to the quasi-parallel nature of the initial seed fields. Additional Biermann battery

field generation is not a plausible explanation either; this is because the turbulent

Peclet number PeL – which can be calculated for a multi-species collisional plasma

with a known electron temperature Te, electron density ne and turbulent velocity uL

at scale L using

PeL ≡
uLL

χ

≈ 0.14

[
Zeff

7.3

] [
log Λ

7

] [
uL (cm/s)

107 cm/s

]
×
[
ne (cm−3)

1020 cm−3

] [
Te (eV)

450 eV

]−5/2 [
L (cm)

0.06 cm

]
, (3.14)

where χ = 5.1×1021 T
5/2
e /neZeff log Λ cm2/s is the thermal diffusivity, Zeff ≡

∑
j Z

2
j nj/ne

is the effective ion charge experienced by the electrons when interacting with the mul-

tiple ion species (each with charge Zj, number density nj), and log Λ is the Coulomb

logarithm (Simakov and Molvig 2014) – is small for our experiment, assuming ex-

perimentally measured parameters in the interaction region. As a consequence, the

plasma is close to isothermal, and temperature gradients in the interaction region

are not strong enough for the Biermann battery to be efficient. Both these claims

are supported by FLASH simulations.

Collisionless (magnetic-field-generating) plasma processes such as the ion Weibel

instability (Huntington et al. 2015) cannot be responsible for the amplification of

the magnetic field either, on account of the plasma’s high collisionality. More specif-

ically, during the formation of the interaction region (∼ 29 ns), we estimate the

characteristic linear growth rate of the ion Weibel instability associated with the
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counter-propagating jets as being (Ryutov et al. 2014)

γW ∼
Ujet

c
ωpi ≈ 9.3×108αW

[
ZC

6

] [
M

12

]−1/2 [
Ujet (cm/s)

2× 107 cm/s

] [
ne (cm−3)

1× 1019 cm−3

]1/2

s−1,

(3.15)

at wavenumber k ∼ d−1
i ≡ ωpi/c (for ωpi the plasma frequency). Here, αW is a

growth-rate reduction factor associated with the stabilising effects of intra-jet col-

lisions on the Weibel instability. By comparison, the collisional slowing rate ν
C|C′
S

– which is also approximately equal to the collisional perpendicular relaxation rate

ν
C|C′
⊥ – is given by

ν
C|C′
S ∼ 8.1× 108

[
ZC

6

]3 [
M

12

]−1/2 [
Ujet (cm/s)

2× 107 cm/s

]−3 [
ne (cm−3)

1× 1019 cm−3

]
s−1, (3.16)

where we have used the fact that, with respect to the carbon-ion population in one

jet, the distribution of carbon ions in the other jet is effectively a beam travelling

with velocity 2Ujet (Huba 1994). Assuming αW . 0.5 (in fact, a conservative choice

of upper bound – see Ryutov et al. (2014)), we conclude that collisional relaxation

prevents the Weibel instability from being present. Once the interaction region has

coalesced, the collisional slowing rate of carbon ions subsequently arriving into the

interaction region increases approximately eightfold, on account of the interaction

region itself being approximately stationary in the laboratory frame; thus, the ion

Weibel instability is inhibited in this experiment.

One simple test of the fluctuation-dynamo hypothesis is the following: if sat-

uration of the fluctuation dynamo is reached, the magnetic field energy should

become comparable to the turbulent kinetic energy at the outer scale. We find

B2
rms/4πρu

2
L ≈ 0.03 − 0.04 (where ρ is the plasma’s mass density and we have as-

sumed that Brms ≈ 100 − 120 kG). Although this mean magnetic-energy-density is

only a small finite fraction of the kinetic energy-density, there are a number of argu-

ments suggesting that such an energy ratio is indeed indicative of dynamo saturation.

First, in simulations of the fluctuation dynamo conducted for magnetic Reynolds
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numbers Rm not much larger than the critical threshold Rmc, the dissipation rate of

the magnetic field is found to be greater than the dissipation rate of kinetic energy;

when combined with the observation that the field distribution is found to be quite

intermittent, this typically results in small energy ratios (Schekochihin et al. 2004c,

Beresnyak 2012). Second, since for the low-Pr number MHD dynamo it is anticipated

that magnetic energy will be concentrated equally across all scales between the outer

scale and the resistive scale, the inability of the proton-imaging diagnostic to mea-

sure structures with characteristic wavelengths . 100µm implies that a significant

fraction of the magnetic energy is not detected by the proton-imaging diagnostic.

Since the energy ratio depends on the square of the magnetic field, including this

fraction would result in a significantly higher magnetic-kinetic energy ratio.

Another good indication that the magnetic field has reached a dynamically sat-

urated state is its attainment of dynamical strengths in the most intense structures,

which are not necessarily volume filling. To find an upper experimental bound on

the maximum field, Bmax, we assume that the deflections acquired by the imaging

protons across the plasma come from an interaction with a single structure. The

strongest individual structure in the reconstructed path-integrated image has scale

∼ 140µm with a path-integrated field of 6 kG cm. This gives Bmax . 430 kG, which

leads to B2
max/(4πρu

2
L) . 0.5, consistent with dynamical strength.

3.6 Conclusions

In summary, the results of the experiment appear to provide a consistent picture of

magnetic field amplification by turbulent motions, in agreement with the longstand-

ing theoretical expectation that the fluctuation dynamo is responsible for dynamical

equipartition between kinetic and magnetic energies in high magnetic Reynolds num-

ber plasmas – and in particular found in many astrophysical environments. A crucial

step in arriving at these results was the theory of proton imaging for stochastic mag-

netic fields derived in Chapter 2, which allowed for quantitative measurements of
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both the initial and final magnetic field strengths. This being said, it is reasonable

to maintain a degree of skepticism about the robustness of these conclusions. More

specifically, for this particular experiment the proton imaging diagnostic was not em-

ployed on every laser shot: and thus, only two shots for this experiment employed the

proton imaging diagnostic successfully subsequent to the development of stochastic

motion in the interaction region (and hence possible formation of stochastic magnetic

fields). We are therefore unable to confirm the consistency (or not) of the final RMS

field strengths attained in the plasma, which must be regarded as a limitation of this

work.



Chapter 4

Characterising the evolution of

dynamo-generated magnetic fields

in turbulent laser-plasma

4.1 Introduction

In this chapter, we report on a second experiment carried out at the OMEGA laser

facility which attempted to create a Pr ∼ 1 fluctuation dynamo. We provide a time-

resolved characterisation of the plasma dynamo’s evolution, measuring spatially av-

eraged electron and ion temperatures, densities, flow velocities, and magnetic fields.

Most significantly, we experimentally determine a lower bound on the fluctuation dy-

namo’s growth rate, finding that growth occurs much more rapidly than the turnover

rate of driving-scale stochastic motions in the plasma. The second experiment also

demonstrates that the key result of the first experiment – amplification of magnetic

fields to dynamical strengths – can be replicated robustly.

119
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Figure 4.1: Experimental set-up of modified platform. An annotated photograph
of a target used in our experiment. The laser-beam-driven foils are composed of CH plastic
and are 3 mm in diameter and 50 µm in thickness; attached to the front sides of each foil
are 230 µm thick, 3 mm diameter annular ‘washers’, also composed of CH plastic, with a
400 µm central hole. The separation between the two opposing foils is 8 mm. The shields
(which prevent direct interaction between the front- and rear-side blow-off plasmas) are
also CH plastic. CH plastic cans attach polyamide grids to the foils; the grids themselves
are 250 µm thick, with a 3 mm diameter, 300 µm holes and 100 µm wires. The holes in
the opposing grids are chosen to be offset (see bottom right); grid A has a hole located
at its centre, while grid B has crossing rods. Ten 500 J drive beams (individual pulse
length 1 ns) with 351 nm wavelength and 800 µm focal spot size were applied to each foil,
configured to deliver a 10 ns staggered flat pulse shape with a total energy per foil of 5 kJ.
The orientation of the Thomson scattering (TS) beam is denoted, as well as the cylindrical
scattering volume and collection direction. A D3He capsule is attached to the target for the
proton imaging diagnostic (see Section 4.5 for technical details): fusion protons generated
by the capsule’s implosion which pass between the target grids are detected via a CR-39
pack positioned as shown.

4.2 Experimental design

The platform employed for the experiment was quite similar to that described in

Section 1.2.2 (see Figure 4.1 for a schematic of the experimental target): a region of

turbulent plasma was created by colliding two laser-plasma jets, whose flow profiles

were pre-modified by two asymmetric grids. At a given instant, the plasma was

characterised using various experimental diagnostics: X-ray imaging for investigat-
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ing the interaction-region plasma’s evolution (Section 4.3), Thomson scattering for

measuring the physical state of the plasma (Section 4.4), and proton imaging for

quantifying magnetic fields (Section 4.5).

In spite of the many similarities with the first OMEGA experiment, the target

utilised in the new experiment was distinct in a few key regards. The thickness of

the grid wires was decreased to 100 µm, whilst the hole width was maintained at

300 µm (see Figure 4.1, bottom right). This change was implemented in order to

reduce inhomogeneity of the interaction region’s global morphology arising from the

asymmetry of the grids. Chlorine dopants previously introduced into the CH foils

in order to enhance X-ray emissivity of the plasma were removed; their presence

in even moderate quantities was subsequently found to affect the interaction-region

plasma’s dynamics significantly and in particular to reduce the magnetic Prandtl

number. Finally, rod supports connecting the grids to the CH foils were removed

and the grids instead attached via CH ‘cans’ (see caption of Figure 4.1). This

modification increased the field of view of both the X-ray framing camera and proton

imaging diagnostics; recent improvements in target fabrication procedures mitigated

the risk of target warping, which previously prohibited such a modification from

being introduced.

We also somewhat altered our methodology for diagnosing the plasma state. In

place of a polarimetry set-up, we instead measured the Thomson scattering spectra

of high-frequency fluctuations – the electron-plasma-wave (EPW) feature – as well

as low-frequency fluctuations – the ion-acoustic-wave (IAW) feature – concurrently.

Furthermore, in place of the previous measurements resolving the scattering spec-

trum from a small volume during a 1 ns time window, we instead employed a spatially

resolved, 1 ns time-integrated set-up, measuring plasma parameters in a cylindrical

region passing through the grids’ midpoint, with length 1.5 mm and a 50 µm2 cross-

sectional area (see Figure 4.1). This allowed for the simultaneous measurement of

a range of fundamental plasma parameters indicative of characteristic values of the

interaction-region plasma: mean electron number density n̄e, fluctuation electron
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number density ∆ne, electron temperature Te, ion temperature Ti, in-flow velocity

ūin and small-scale stochastic velocity ∆V . Because of the prior validation for our

set-up of the accuracy of magnetic-field measurements as derived from proton imag-

ing (Rigby et al. 2018), the absence of polarimetry did not prevent the measurement

of any significant physical quantities.

In order to obtain a time-resolved characterisation of our experiment, we ad-

vanced the application of our diagnostics from shot-to-shot, beginning prior to colli-

sion and then proceeding in 1.5 ns intervals. The specifications of the X-ray framing

camera diagnostic, the Thomson scattering diagnostic and the proton imaging diag-

nostics, as well as the results obtained for our experiment, are given in Sections 4.3,

4.4 and 4.5 respectively.

4.3 X-ray framing camera

Images of self-emitted soft X-rays (around ∼ 0.1 − 1.5 keV) from the interaction-

region plasma were recorded using a framing camera (Kilkenny et al. 1988, Bradley

et al. 1995) configured with a two-strip microchannel plate (MCP) (Rochau et al.

2006) and a 50 µm pinhole array. The pinhole array was situated 9.14 cm away

from the centre of the target and the main detector at 27.4 cm, giving rise to a

2× image magnification. A thin filter composed of 0.5 µm polypropene and 150

nm of aluminium was placed in front of the MCP, removing radiation with photon

energy . 100 eV. The MCP itself was operated with a 1 ns pulse-forming module

at a constant 400 V bias, and the two strips sequentially gated: this allowed for two

images (time-integrated over a 1 ns interval) of the plasma at pre-specified times to be

detected for each experimental shot. Electrons exiting the MCP struck a phosphor

plate, producing an optical image which was recorded using a 4096 × 4096 9-µm

pixel charge-coupled device (CCD) camera. The chosen voltage bias was such that

the response of the CCD camera was linear and thus the relative counts of two given

pixels provides a measure of the relative (optical) intensity incident on the CCD.
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Figure 4.2: Imaging of self-emitted X-rays for each experimental shot. Char-
acteristic output images from X-ray framing camera diagnostic on one experimental shot.
In both images, the colour map is linear and adjusted such that the maximum displayed
pixel value is 1,050 (corresponding to the maximum pixel count of all our experimental
images). The images shown have been cropped and are both 870 × 641 pixels. To aid
interpretation of the images, an outline of the target has been superimposed onto both
images. The respective designs of grid A and B are shown in Figure 4.1, bottom right. a)
X-ray image, recorded with the first MCP strip 33.5 ns after the drive-beams are initiated.
On this experimental shot, the Thomson scattering probe beam was initiated 1 ns after the
first MCP strip was gated and the proton backlighter capsule irradiated 1.5 ns later again;
thus, self-emitted X-rays detected in the image are purely due to the interaction-region
plasma’s dynamics. b) X-ray image, recorded with the second MCP strip 38.5 ns after
the drive-beams are initiated. This image was recorded after both the Thomson scattering
probe beam and the proton backlighter were employed.

To allow comparison between the X-ray images of the interaction-region plasma

at different stages of its evolution, the framing-camera bias was fixed throughout

the experiment and its value optimised for probing the interaction-region plasma at

peak emission. Given this normalisation and the measured signal-to-noise ratio, the

effective dynamic range of the camera was ∼100.

Two X-ray images arising from one particular experimental shot are shown in

Figure 4.2. Of the two X-ray imaging times recorded for a given experimental shot,

the earlier time (see Figure 4.2a) was chosen to fall before the application of the

other diagnostics, in order to measure the X-ray emissivity of the interaction-region

plasma in the absence of any additional perturbing effects associated with those

diagnostics (in particular, probe heating from the Thomson scattering beam, or

X-ray heating from the proton capsule backlighter); the latter time (Figure 4.2b)

was chosen to be after the application of the other diagnostics, for determining
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whether such heating effects were indeed significant. Comparing Figure 4.2a and

Figure 4.2b, we see that, in addition to the dynamical evolution of the interaction

region, increased emission is observed in the latter image from plasma between grid

A and the central interaction-region plasma. This effect is most likely due to the

aforementioned heating; the diagonal feature corresponds to the projected trajectory

of the Thomson scattering beam and only plasma between grid A and the target

centre is visible to the proton backlighter capsule. We henceforth refer to the earlier

time images as ‘unperturbed’ self-emission X-ray images and the latter as ‘perturbed’

images; the various consequences of the perturbative heating effects of the other

diagnostics will be discussed subsequently.

Given the (previously mentioned) fixed X-ray framing camera bias, we find that

for times . 25 ns, self-emitted X-rays from the individual plasma jets are barely

detectable in the absence of the diagnostic perturbative heating effects (see Fig-

ure 4.3a and Figure 4.3b). However, around 26 ns after the onset of the driving

laser pulses, a region of emission situated approximately halfway between the grids

emerges (Figure 4.3c). 1.5 ns later, the total intensity of the region is significantly

higher (Figure 4.3d). We conclude that the interaction-region plasma coalesces at

around 26 ns.

Subsequent to the formation of the interaction-region plasma, the size of the re-

gion of bright emission increases in both the direction parallel to the ‘line-of-centres’

– that is, the line connecting the midpoints of grid A and grid B – and perpen-

dicular to it (see Figure 4.4). Emission peaks 3 ns after the interaction-region’s

coalescence, before decaying away at later times (first column of Figure 4.4). Con-

currently to the peak emission being reached, random fluctuations in the detected

X-ray intensity across the emitting region appear (second column, Figure 4.4) and

subsequently become clearly visible by eye. The X-ray images shown in Figure 4.4

are all unperturbed images; the equivalent perturbed images are shown in Figure 4.5.

Aside from the previously discussed characteristic differences between unperturbed

and perturbed images, the qualitative evolution of the perturbed images over time
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Figure 4.3: X-ray self-emission prior to and at interaction-region coalescence.
The featured sequence of X-ray images are taken on different experimental shots. For
clarity’s sake, we only compare unperturbed images from the first MCP strip i.e. images
unaffected by diagnostic heating. The first three images are adjusted to have the same
colour map, normalised to the maximum pixel count (56 counts) of c); the final image is
normalised to its own maximum pixel count. We note that the absence of noise in d) is due
to the much higher signal-to-noise ratio. To aid interpretation of the images, a projection
of the target is superimposed in grey on each image. The respective timings (in ns) of the
images after drive-beam laser-pulse initiation are a) 23.0 ns, b) 24.5 ns, c) 26.0 ns, and
d) 27.5 ns.

is broadly similar.

In order to distinguish fluctuations in emission from global inhomogeneities in

total self-emission from the interaction-region plasma, we determine relative X-ray

intensity maps based on empirically derived mean-emission profiles. The mean-

emission profiles are calculated via the direct application to the images of a 57

× 57 pixel smoothing mean-filter. With a pixel size of 9µm, this corresponds to

assuming that the mean-emission profile varies smoothly on scales & 500µm; the

largest relative fluctuations inside the interaction region have typical size L . 200−

400µm, providing a modest scale separation. However, applying only a smoothing

mean-filter to the images is inadequate for determining reasonable mean-emission
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Figure 4.4: The interaction-region plasma’s evolution. Unperturbed self-emission
X-ray images of the interaction-region plasma. Each image was recorded at the indicated
time on a different experimental shot. Far-left column: absolute X-ray intensity images,
normalised to a maximum count value of 1,050. Mid-left: X-ray intensity images normalised
by the maximum pixel value in the image. Mid-right: mean-emission profiles calculated
from the far-left column; the boundary denoted in red in each image is that used to calculate
the two-dimensional Gaussian window function discussed in the main text and the colour
map is the same as the far-left images. Far-right: relative X-ray intensity map calculated
from the mean-emission profile. Fluctuations with a positive value with respect to the
mean intensity are denoted in blue, negative in red, with maximum and minimum values
set at ±100% of the mean value.
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Figure 4.5: The interaction-region plasma’s evolution in the presence of per-
turbative diagnostic heating. Perturbed self-emission X-ray images of the interaction-
region plasma. The parameters of each column are identical to those of Figure 4.4. We
note that the CCD camera used to record this sequence of images was damaged in a small
localised region, slightly below the centre of each image; we therefore chose our window
functions so that this region was excluded from subsequent analysis.

profiles; the presence of shocks on either side of the interaction-region plasma implies

that the global emission profile would in reality have sharp boundaries (on scales

. 500µm), a feature not adequately picked up by a linear filter. This phenomenon

is evident in Figure 4.4, where the X-ray emission is observed to drop rapidly over

∼ 10− 20 pixels (∼ 100− 200µm). To account for this, a two-dimensional Gaussian

window function on the scale of the boundary is combined with the mean-emission
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profile to prevent the boundary region from distorting the calculated relative X-ray

intensity map (similar techniques are also applied when spectrally analysing data

with gaps (Arévalo et al. 2012)). The mean-emission profiles calculated for the

unperturbed and perturbed X-ray images shown in the far-left columns of Figure 4.4

and Figure 4.5 respectively are given in the third columns of the same figures and

the corresponding relative intensity images are presented in the far-right columns.

Quantitative analysis of the X-ray images can be carried out by noting that the

plasma jets are fully ionised even prior to collision (Te ∼ 200 eV) and so X-ray

emission from the plasma during the interaction is dominated by Bremsstrahlung

radiation. Assuming a thermal distribution of particles, the Bremsstrahlung emission

spectral density εffω for a CH plasma is given by

εffω = 1.2× 10−36Zeffn
2
eT
−1/2
e exp

(
− ~ω
kBTe

)
ḡff , (4.1)

where Zeff = (Z2
C +Z2

H)/(ZC +ZH) is the effective ion charge experienced by electrons

(ZH and ZC being the charges of hydrogen and carbon ions respectively), ω the

frequency of radiation, kB Boltzmann’s constant, and ḡff the velocity averaged Gaunt

factor (Rybicki and Lightman 1979). Since the interaction-region plasma is optically

thin to X-rays detected by the framing camera, the measured (optical) intensity I

on the CCD camera satisfies I ∝
∫

ds
∫

dω εffωR̂(ω), where the integral is performed

along the line-of-sight, and R̂(ω) is a function incorporating the (relative) frequency-

dependent responses of both the X-ray camera filter and the MCP (see Figure 4.6a).

Substituting equation (4.1), this proportionality relation becomes I = I(ne, Te) ∝∫
ds n2

ef̂(Te), where f̂(Te) is a temperature-dependent function given by

f̂(Te) =
Â

T
−1/2
e

∫
dω R̂(ω) exp

(
− ~ω
kBTe

)
, (4.2)

for Â a normalisation constant. The function f̂(Te) is plotted in Figure 4.6b; we

see that for temperatures ∼ 300 − 500 eV (the characteristic temperature of the
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Figure 4.6: Response of the X-ray framing camera. a) Response functions R̂(ω)
associated with X-ray framing camera filter alone (black, dotted), the microchannel plate
alone (blue), and the combined response (red). The total response and filter response are
normalised to their maximum values respectively; the MCP response was normalised to its
value at the frequency at which the total response is maximised. b) Relative temperature
dependence of the measured optical intensity on the CCD camera. The curve is normalised
to its value at Te ≈ 350 eV.

plasma just after interaction-region coalescence– see Section 4.4), the measured X-

ray intensity is only weakly dependent on temperature. However, the X-ray intensity

is a sensitive function of electron number density.

The relationship is significant for several reasons. First, the FHWM of the emit-

ting region can be used as a reasonable measure of the width ln of the interaction

region, on account of its increased density compared to either jet. Determining this

width is essential for extracting magnetic field estimates from the proton imaging (see

Section 4.5). Figure 4.7a illustrates how this measurement is carried out in practice:

we consider three vertically averaged lineouts of the mean-emission profile, calculate

the FWHMs of these lineouts, and then estimate the error on the measurement from

the standard error of the FWHMs. The mean-emission profile is marginally more

robust than the original X-ray image for calculating ln, because fluctuations distort

the measured maximum value of the vertically averaged profile. The resulting val-

ues of ln are shown in Figure 4.7c, in blue. Following an initial decrease in value

subsequent to the interaction region’s coalescence, ln increases steadily over time.

Second, relative fluctuations δI in X-ray intensity (such as those shown in Fig-

ure 4.7b) are closely correlated with fluctuations δne in density; indeed, for small
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Figure 4.7: Characterising the interaction-region plasma using X-ray imaging.
a) Mean-emission profile of unperturbed X-ray image, recorded 33.5 ns after drive-beam
pulse initiation, shown with regions used to calculate average one-dimensional parallel
profiles. One such profile, along with the half-maximum value, is also depicted. b) Relative
X-ray intensity map associated with mean-emission profile given in a). c) Root-mean-
square (RMS) of relative X-ray fluctuations (in red) and width of the interaction region ln
over time (in blue). To determine an error on the RMS fluctuation measurement, the RMS
values of fluctuations in unperturbed and perturbed images recorded at the same time are
employed, under the assumption that the statistics of the density fluctuations (and hence
the intensity fluctuations) are negligibly affected by diagnostic perturbative heating effects.
d) One-dimensional power spectrum of relative density fluctuations (red line), calculated
from the relative X-ray intensity map given in b). The error on the spectrum (pink patch)
is determined using the power spectrum of b) and the power spectrum of the relative X-ray
intensity map derived from the perturbed X-ray image at 33.5 ns equivalent to b).

intensity fluctuations compared to the mean intensity Ī, δI/Ī ≈ 2
∫

ds δne/n̄e (as-

suming that δTe/T̄e . δne/n̄e, an assumption which will be validated later – see

Section 4.6). The root-mean-square (RMS) of the relative X-ray fluctuations there-

fore provides a simple measure of the onset of stochasticity in the interaction region.

The increase in relative X-ray fluctuation magnitude (δI/Ī)rms shown in Figure 4.7c

(in red) illustrates that significant fluctuations develop in a 5 ns interval following

interaction-region coalescence, after which their magnitude saturates at a finite frac-
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tion of the mean X-ray intensity of the region: δI . 0.3Ī. Under the additional

assumption that density fluctuations contribute to the line-of-sight integral as a ran-

dom walk, we find δne/n̄e . (ln⊥/L)1/2δI/2Ī, where ln⊥ is the perpendicular extent

of the interaction region and L the characteristic scale of dominant density fluctu-

ations in the plasma. Taking ln⊥ . 0.3 cm and L ≈ 0.04 cm (corresponding to

the grid periodicity), we deduce that δne/n̄e . 0.5. Thus, it follows that density

fluctuations are not too large compared to the mean density and thus the stochastic

motions of the plasma are subsonic.

Third, under the assumption of isotropic fluctuation statistics, the power spec-

trum of path-integrated density fluctuations derived from the X-ray fluctuations can

be directly related to the power spectrum of density fluctuations. Since in a sub-

sonic plasma density behaves as a passive scalar (Zhuravleva et al. 2014), this in

turn allows for the measurement of the velocity power spectrum (as was described

in Section 1.2.3 for the first OMEGA experiment). The results of such a calcu-

lation applied to Figure 4.7b are shown in Figure 4.7d: the spectrum is extended

across the full range of resolved wavenumbers and for characteristic wavenumbers

2π/L . k < kres = 127 mm−1, the spectral slope is consistent with a Kolmogorov

power law. Such a power law would be anticipated theoretically for turbulent, sub-

sonic plasma.

Finally, we explore differences between unperturbed and perturbed X-ray images

recorded at the same time, in order to characterise the perturbative heating effects

associated with the Thomson scattering and proton imaging diagnostics. Figure 4.8a

and Figure 4.8b document such a comparison ∼ 3 ns after collision (at ∼ 26 ns) while

the equivalent comparison ∼ 12.5 ns after collision is given by Figure 4.8c and Fig-

ure 4.8d. Qualitatively, we note that emission from the interaction-region plasma

itself in the former case is not obviously different in the perturbed and unperturbed

images: the absolute value of the emission is similar, as is the morphology of the

region. However, at later times, emission from the perturbed X-ray images is no-

ticeably higher. More quantitatively, we use the maximum pixel values of the one-
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Figure 4.8: Perturbed versus unperturbed self-emission X-ray images. a) Self-
emission X-ray image at 29.0 ns after the initiation of the drive-beam pulse, in the absence
of perturbative diagnostics. The colour map of the image is the same as Figure 4.2. b) Same
as a), except in the presence of perturbative diagnostics. c) Unperturbed X-ray image at
38.5 ns. d) Perturbed X-ray image at 38.5 ns. e) Evolution of mean maximum value of one-
dimensional mean-emission profiles over time for unperturbed (red) and perturbed (blue)
X-ray images. The error on each measurement is calculated using the error arising from the
three distinct lineouts calculated from different perpendicular positions in the interaction-
region plasma – see Figure 4.7a. f) Mean-interaction width over time for unperturbed
and perturbed X-ray images. The width and errors are calculated in the same manner as
described in the caption of Figure 4.7.

dimensional mean-emission profiles used to calculate the interaction region width

(c.f. Figure 4.7a) to compare the relative emission levels associated with the un-

perturbed and perturbed cases respectively (Figure 4.8e). Somewhat unexpectedly,

we find that immediately subsequent to interaction-region coalescence, emission from

the unperturbed cases is greater. This trend is most likely to be explained by thermal
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expansion of interaction-region plasma induced by the additional diagnostic heating:

although hotter temperatures would result in slightly increased emission, this trend

would be counteracted by lower mean densities in the expanded interaction region,

particularly since the measured X-ray intensity is much more strongly dependent

on density than temperature for Te ∼ 300 − 500 eV. This argument derives some

weight from the observation that the measured interaction-region width in the per-

turbed images is slightly larger (Figure 4.8f) immediately subsequent to collision.

At later times, Figure 4.8e illustrates the (expected) trend of significantly reduced

X-ray intensity in the unperturbed images as compared to the perturbed ones. The

most likely explanation of this observation is a reduced interaction-region plasma

temperature in the unperturbed case (Te ∼ 50− 100 eV); we will quantify this effect

in Section 4.4.

4.4 Thomson scattering diagnostic

The Thomson scattering diagnostic employed a 30 J, frequency-doubled (526.5 nm)

laser, which probed the plasma in a cylindrical volume with cross-sectional area 50

µm2 and length 1.5 mm centred on the target’s centre, which is coincident with the

target chamber centre (TCC). The orientation of the scattering volume is shown in

Figure 4.1. The scattered light was collected with scattering angle 63◦. As men-

tioned in Section 4.2, the Thomson scattering signal was resolved spatially along

the cylindrical scattering volume and integrated over the 1 ns duration of the laser

pulse. The high and low-frequency components of the spectrum are recorded sep-

arately using two distinct spectrometers; the separation is performed using a beam

splitter. For experimental times approximately coincidental with interaction-region

coalescence, clear scattering spectra at both low at high frequencies were obtained.

The unprocessed IAW and EPW features for four times close to interaction-region

coalescence are shown in Figure 4.9 (Figure 4.9a to Figure 4.9d are the IAW features

and Figure 4.9e to Figure 4.9h the EPW features).
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Figure 4.9: Experimental Thomson scattering spectra at interaction-region
coalescence. The low-frequency spectra (IAW features) are shown in the left column
(a-d) and the high-frequency spectra (EPW features) in the right column (e-h). The
scattering volume is oriented at a 63◦ angle to the direction parallel to the line-of-centres;
for convenience of reference (particular in relation to the X-ray images), we report distances
projected onto the line-of-centres. The timings of the images are as follows: a), e), 24.0
ns; e), f) 25.5 ns; c), g) 27.0 ns; d), h) 28.5 ns.

To interpret these IAW and EPW features, a theory relating the scattered laser

-light detected at a particular wavelength – or, equivalently, frequency – to funda-

mental properties of the plasma is needed. For a given scattering vector k, it can

be shown that the spectrum I(k, ω) of the laser light scattered by the plasma at
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frequency ω is given by (Evans and Katzenstein 1969)

I(k, ω) = NeI0σTS(k, ω) , (4.3)

where Ne is the total number of scattering electrons, I0 the intensity of the incident

laser, σT ≡ (e2/mec
2)2 sin2 ϑT the Thomson cross-section for scattering by a free

electron (e is the elementary charge, me the electron mass, c the speed of light, and

ϑT the angle between the wavevector of scattered light and the electric field direction

vector of the incident light), and

S(k, ω) ≡ 1

2πNe

∫
dt exp [i(ω − ω0)t]〈ne(k, 0)ne(k, t)

∗〉 (4.4)

the dynamic form factor (for ω0 the frequency of the incident light). Assuming

the distribution functions of the plasma are close to shifted Maxwellian distribu-

tions, with electron number density ne, electron temperature Te, temperature Tj

of ion species j, and bulk fluid velocity u, and also that the plasma Debye length

λD . 10−6 cm (assumptions which will be justified a priori), we find that α ≡

1/kλD & 8 > 1; thus, we can employ the Salpeter approximation for the dynamic

form factor (Evans and Katzenstein 1969):

S(k, ω) ≈ 1

kvthe

Γα

(
ω̃ − ω0

kvthe

)
+
∑
j

Zj
kvthj

(
α2

1 + α2

)2

Γᾱj

(
ω̃ − ω0

kvthj

)
, (4.5)

where ω̃ ≡ ω − k · u is the Doppler-shifted frequency, the sum is over all ion species

in the plasma, Zj is the charge of ion species j,

Γα(x) ≡ exp (−x2)
√
π |1 + α2W (x)|2

, (4.6)

and ᾱj = Zjα
2Te/Tj(1 + α2). Here, the complex function W (x) can be defined in

terms of the plasma dispersion function Z(x) via W (x) ≡ 1 + xZ(x) (Fried and

Conte 1961). For low-frequency fluctuations (in particular, ion-acoustic waves), ω−
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ω0 ∼ kvthj and so the first term on the right hand side of (4.5) is small by an

O[Zi(meTi)
1/2/(miTe)

1/2] � 1 factor when compared to the second (this factor is

indeed small provided the ion temperature Ti – assumed equal for all ion species

– is comparable to the electron temperature); thus the shape of the low-frequency

spectrum is dominated by the second term. On the other hand, for high-frequency

fluctuations (electron-plasma waves) satisfying ω − ω0 ∼ kvthe, the second term is

smaller than the first by an exponential factor O[exp (−meTi/miTe)] � 1; thus the

shape of the high-frequency spectrum is dominated by the first term. We conclude

that we can relate physical properties of the plasma to the measured EPW and IAW

features using fits given by the first and second terms of (4.5) respectively.

However, for our experiment, there is a complication: the presence of stochas-

tic motions and density fluctuations. The presence of such fluctuations mean that

the bulk fluid velocity u and electron density ne are not necessarily fixed param-

eters inside the Thomson scattering volume during the time-integrated spectrum,

but instead possess a range of values. To account for this range, we assume that

fluctuations of velocity and density are isotropic and normally distributed in the

time-integrated Thomson scattering volume, with means ū and n̄e, and standard

deviations ∆u and ∆ne respectively. Under this assumption, the appropriate fit for

the IAW feature is

SIAW(k, ω) ≈
√

3√
π∆u

∫
dŨ‖ exp

[
−

3(Ũ‖ − ū‖)2

∆u2

]

×
∑
j

Zj
kvthj

(
α2

1 + α2

)2

Γᾱj

(
ω − kŪ‖ − ω0

kvthj

)
, (4.7)

where ū‖ ≡ k̂ · u, while for the EPW feature, we use

SEPW(k, ω) ≈ 1√
π∆ne

∫
dñe exp

[
−(ñe − n̄e)2

∆n2
e

]
1

kvthe

Γα

(
ω − ω0

kvthe

)
. (4.8)

In spite of the seeming complexity of their defining equations, for a fully ionised CH
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plasma the spectral shapes implied by (4.7) and (4.8) are quite simple: a double peak

structure, where the position and width of the peaks depends on plasma parameters.

For the IAW feature, the distance between the peaks provides a measure of Te; the

shift in the position of the double-peaked spectrum with respect to the incident probe

beam frequency gives a measurement of the bulk velocity ū‖; the width of both peaks

is a function of both Ti and of small-scale stochastic motion ∆u. The effect of the

density on the shape of the IAW feature is negligible. For the EPW feature, the

opposite holds: the position of the peak is determined by ne. The width of the peak

is in general determined by a range of factors – Landau damping, collisions and the

range of densities ∆ne. For our experiment, both collisional broadening and that by

Landau damping are small, but the spread of densities can be significant.

We illustrate the fitting procedure with two examples. Figure 4.10a shows the

IAW feature at 27.0 ns after the laser pulse. To fit the experiment spectrum at a

given position, we first average the spectrum over a 100 µm interval centred at that

position. We then calculate a fit using equation (4.7), substituting ω = kc, and vary-

ing Te, Ti, ū‖ and ∆u. In the chosen geometry of the diagnostic, the bulk velocity

parallel to k̂ is equal to the in-flow velocity ūin parallel to the target’s line of centres

i.e. ū‖ = ūin. We do not use an absolute calibration of the spectrum for the fit;

we instead normalise the height of the theoretical spectrum to the lower-wavelength

experimental peak (the higher-wavelength experimental peak is typically distorted

by a stray-light feature). Once a best fit is obtained, we then vary each parameter

individually to assess the sensitivity of the fit. Figure 4.10b and Figure 4.10c demon-

strate this process for the electron temperature Te and velocity ∆u respectively: we

find sensitivities of ±30% for Te and ±15% for ūin. Fitting Ti and ∆u is more sub-

tle, because both quantities have a similar effect on the spectrum. We therefore

instead choose to fit an effective ion temperature, Ti,eff including both broadening

from ion temperatures and small-scale stochastic motions; we will subsequently out-

line a method for determining separately Ti and ∆u. The sensitivity of the fit for

Ti,eff is found to be ±40%. While it is in general true that the sensitivity of a fit can
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Figure 4.10: Fitting the IAW feature. a) IAW spectrum from 27.0 ns after drive-
beam pulse initiation. In subsequent plots, the experimental 1D spectrum (in red) is
calculated by averaging the full spectrum horizontally over the region denoted by the
translucent rectangle. b) Experimental spectrum, plotted with best-fit spectrum (Te =
470 eV, Ti,eff = 620 eV, ūin = 230 km/s, ne = 1.2× 1020 cm−3) in solid blue, as well as fits
parametrised by Te sensitivity bounds (-30% dashed, +30% dotted). All fits are convolved
with the (experimentally measured) instrument function, which has a characteristic width
of 0.025 nm. The sharp peak seen at the probe beam wavelength (526.5 nm) is a so-called
‘stray-light’ feature, and is not part of the plasma’s Thomson scattering spectrum; it is
disregarded for the purposes of fitting. c) Same as b) but plotted with fits parametrised by
ūin sensitivity bounds. d) Same as b) but plotted with fits parametrised by Ti,eff sensitivity
bounds.

be underestimated systematically using our chosen methodology – that is, fixing all

physical parameters for the fits save one, and then varying the chosen parameter to

determine the sensitivity – on account of couplings between parameters, such con-

siderations do not apply to the IAW fits. This is because the parameters ∆u, Te,

and Ti,eff each only influence one characteristic of the fit: the average peak position,

peak separation and peak width respectively.

Figure 4.11a shows the EPW feature for the same experimental shot. We again
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Figure 4.11: Fitting the EPW feature. a) EPW spectrum from 27.0 ns after drive-
beam pulse initiation. In subsequent plots, the experimental 1D spectrum (in red) is
calculated by averaging the full spectrum horizontally over the region denoted by the
translucent rectangle. b) Raw experimental spectrum, plotted with linear background fit.
c) Background-subtracted experimental spectrum plotted with best-fit spectrum (Te =
470 eV, Ti,eff = 620 eV, ūin = 230 km/s, n̄e = 1.2× 1020 cm−3, ∆ne = 0.35× 1020 cm−3) in
solid blue, as well as fits parametrised by n̄e sensitivity bounds (-10% dashed, +10% dot-
ted). All fits are convolved with the (experimentally measured) instrument function, which
has a characteristic width of 0.025 nm. d) Same as b) but plotted with fits parametrised
by ∆ne sensitivity bounds.

determine the experimental EPW spectrum at a given position by averaging over a

100µm interval. Before attempting to fit the EPW spectrum, we must first subtract

the background signal: this is more significant for the EPW spectrum than the IAW

spectrum – on account of the former’s reduced magnitude – and is most likely to be

associated with radiative emission from the plasma. We find that the background

signal for our data is well characterised by a linear fit (see Figure 4.11b). We then

fit the experimental spectrum (4.8) by varying n̄e and ∆ne, before determining the

sensitivity of the fits to variations in these quantities: we find ±10% for n̄e (Fig-
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ure 4.11c) and ±40% for ∆ne (Figure 4.11d). As with the IAW fits, n̄e and ∆ne

affect different characteristics of the EPW fit, and so our methodology for assessing

the fit sensitivity is appropriate. However, we note that the peak position of the

EPW feature can be weakly sensitive to the assumed electron temperature as well

as n̄e; since the electron temperature is held constant when fitting the EPW feature,

using the value determined from the IAW feature, the quoted ±10% sensitivity for n̄e

could in practice be a slight underestimate. Nonetheless, we do not believe it worth-

while carrying out a multivariate sensitivity fit, because the dependence of the peak

position on electron temperature is anticipated theoretically to be O(α−2)� 1 when

compared to the dependence on the mean electron density. Since the uncertainty in

Te from the IAW fit is ±30%, we conclude that corrections to the sensitivity in n̄e

due to the uncertainty in Te will be no more than a few percent.

In order to arrive at measurements of the parameters indicative of the interaction-

region plasma, we average the parameters obtained from fits at each position over the

complete spatial extent of the observed IAW and EPW features. The time evolution

of physical parameters is obtained by repeating the experiment, but applying the

Thomson scattering diagnostic at a different time with respect to the drive beams.

To determine independently Ti and ∆u, we use the fact that motions are subsonic

and thus estimate ∆u ≈ cs∆ne/n̄e, where cs is the sound speed; this leaves Ti as the

only free parameter determining Ti,eff in the fits.

The evolution of temperatures in plasma present in the Thomson scattering

volume is shown in Figure 4.12a, densities in Figure 4.12b, and velocities in Fig-

ure 4.12c. At 24 ns, the characteristic electron and ion temperature is given by

Te ≈ Ti ≈ 180 eV, the characteristic flow speed ūin ≈ 260 km/s, and mean elec-

tron number density n̄e ≈ 2.5 × 1019 cm−3. Such parameters are similar to those

previously obtained for a single plasma jet (see Section 1.2.3), and thus suggest

that the interaction-region plasma has not yet coalesced. By contrast, 1.5 ns later,

both electron and ion temperature were found to be much larger than their jet pre-

collision values: Te ≈ Ti ≈ 450 eV. The measured mean electron number density
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Figure 4.12: Time-evolution of interaction-region plasma state. a) Evolution of
electron temperature (blue), effective ion temperature (red) and ion temperature (black,
dashed) over time. All values are determined as described in the main text; errors are
determined by combining in quadrature the fit sensitivity and the variability of parameters
as measured across the Thomson scattering volume for each time. The alternative electron
temperature history at later times (blue, dotted) is a projected lower bound calculated
from the difference in mean self-emitted X-ray intensities in the presence and absence
of the Thomson scattering diagnostic. b) Evolution of mean electron density n̄e (blue)
and ∆ne (red) over time. Errors are calculated in the same manner as the temperature
errors. An alternative density history (blue, dashed) is determined from the self-emission
X-ray images under the assumption of dominant Bremsstrahlung emission. c) Evolution
of bulk in-flow speed (blue), sound speed (red) and turbulent velocity (purple) in the
Thomson scattering volume. Errors are calculated in the same way as those for density
and temperature.

also increased, to n̄e ≈ 8 × 1019 cm−3; in addition, a range of densities were ob-

served, with ∆ne ≈ 2× 1019 cm−3. For a measured characteristic in-flow velocity of

ūin ≈ 220 km/s, this range of densities gives rise to small-scale stochastic velocity

∆u ≈ 55 km/s. Assuming Kolmogorov scaling for the random small-scale motions

– indeed, as is consistent with the spectral slope determined in Figure 4.7d – the

characteristic velocity u` at scale ` satisfies u` ∼ urms(`/L)1/3; thus, because the

dominant contribution to ∆u arises from stochastic motions with scale compara-
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Figure 4.13: Experimental Thomson scattering spectra at later times. The
low-frequency spectra (IAW features) are shown on the left (a-b) and the high-frequency
spectra (EPW features) in the right column (c-d). The timings of the images are as follows:
a), c), 30.0 ns; b), d) 37.5 ns.

ble to the Thomson scattering cross-section width lTS ≈ 50µm, we conclude that

urms ≈ 110 km/s. In the 3 ns interval subsequent to collision, the ion temperature

increased above the electron temperature (Ti ≈ 600 eV), before both fell to lower

values (Te ≈ Ti ≈ 400 eV). The mean electron number density increased monoton-

ically over the same interval, with a final measured mean electron number density

of n̄e ≈ 1.8 × 1020 cm−3. The relative magnitude of density fluctuations remained

consistent (∆ne/n̄e ≈ 0.25) over the interval.

For later times, no EPW feature was observed and the IAW feature manifested

itself erratically (see Figure 4.13). We believe that this diagnostic failure was due to

the increased density of the interaction region (as well as substantial density gradi-

ents) resulting in significant refraction of the Thomson scattering probe beam. We

were therefore unable to measure n̄e or ∆ne for times & 30 ns using the Thomson
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scattering diagnostic. A reasonable estimate of n̄e can still be obtained, however,

using the X-ray framing camera diagnostic. More specifically, (again) assuming that

X-ray emission from the plasma is dominated by Bremsstrahlung, we can estimate the

mean electron number density n̄e(t1) at time t1 in terms of the mean electron number

density n̄e(t2) at time t2 via the following relationship: n̄e(t1) ≈ n̄e(t2)[I(t1)/I(t2)]1/2.

Thus, assuming a reference value for n̄e(t2) at t2 = 29.0 ns (derived via linear interpo-

lation from the Thomson scattering density measurements), we obtain the evolution

profile shown in Figure 4.12b. The results imply that the density continues to rise for

a ∼ 2 ns interval after the final Thomson scattering measurement of density is ob-

tained, reaching a peak value n̄e ≈ 2.4× 1020 cm−3 at t = 30 ns, before subsequently

falling slightly at later times.

We were still able to use the IAW feature to measure the bulk flow velocity, the

electron temperature and the effective ion temperature in some spatial locations at

later times. The bulk flow velocity was found to drop to around 100 km/s at 30 ns;

at 37.5 ns, a similar value was obtained but with a reversed sign. The electron tem-

perature as measured by the Thomson scattering diagnostic remained consistently

around 400 eV. However, as was discussed at the end of Section 4.3, evidence from

the X-ray framing camera diagnostic suggests that heating of the interaction-region

plasma by the Thomson-scattering beam becomes significant at later times in the

experiment, on account of the higher densities, reduced temperatures, and extended

path-length of the beam through the plasma.

We can explain this effect theoretically via the following simple argument. The

fraction of probe beam energy fa absorbed by the plasma can be estimated as fa ≈ 1−

exp (−κalbeam), where κa is the the absorption coefficient of the beam in the plasma

and lbeam the path-length of the beam through the interaction-region plasma (Colvin

and Larsen 2013). The dominant absorption process affecting the beam is inverse
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Bremsstrahlung and so

κa = 3.6

[
Zeff

5.3

] [
log Λ

7

] [
ne(cm−3)

1.5× 1020 cm−3

]2

×
[
Te(eV)

330 eV

]−3/2 [
ω0(s−1)

3.6× 1015 s−1

]−2 [ εD
0.97

]−1/2

cm−1, (4.9)

where εD ≡ 1 − ω2
pe/ω

2
0 is the dielectric permittivity of the plasma. Estimating

lbeam ≈ 0.13 cm from the interaction-region-width X-ray measurements at 38.5 ns,

we conclude that κalbeam ≈ 0.45 and thus fa ≈ 0.36. We conclude that the total

energy Eheat conferred to the Thomson scattering volume (neglecting conduction)

is Eheat ≈ 1.1 × 108 erg. Noting that the internal energy density εth of the plasma

is εth ≈ 3neTe (1 + 〈Z〉−1) /2 (assuming Ti ≈ Te), it follows that the total thermal

energy Eth present in the Thomson scattering volume is given by

Eth = 1.1× 108

[
〈Z〉+ 1

4.5

] [
ne(cm−3)

1.5× 1020 cm−3

] [
Te(eV)

330 eV

] [
VT(cm3)

7.5× 10−4 cm3

]
erg ,

(4.10)

where VT is the volume of the Thomson scattering collection volume. We conclude

that at the prescribed density, Eheat & Eth for electron temperatures Te . 330 eV.

We therefore conclude that the electron temperature at later times could be sig-

nificantly lower than the value measured by the Thomson scattering beam in the

absence of the probe beam heating.

This heating effect can also now be investigated directly by combining the Thom-

son scattering results with those from the X-ray imaging diagnostic. We recall

that the intensity I recorded on the CCD camera is dependent on temperature:

I ∝
∫

ds n2
ef̂(Te), where f̂(Te) is defined by equation (4.2) and plotted in Figure 4.6b.

Thus, if the electron number density of the interaction-region plasma is known at

two given times, any difference in total intensity evident in an X-ray image can be at-

tributed to distinct temperatures. Applying this logic to unperturbed and perturbed

X-ray images recorded at the same point in time (on different experimental shots)

and presuming that at later times probe heating has a minimal effect on plasma
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density, we can use the differences in intensity calculated in Figure 4.8f to provide

an estimate of the unperturbed electron temperature (Te)up. More specifically, it fol-

lows that (Te)up ≈ (Te)pf̂
−1 (Iup/Ip) ≈ 50 eV, where (Te)p is the perturbed electron

temperature, Ip the mean X-ray intensity in the unperturbed image, and Iup the

mean X-ray intensity in the perturbed image. This inferred bound is significantly

below the temperature measured by the Thomson scattering diagnostic, confirming

the importance of probe-beam heating.

The absence of a direct measurement of ∆ne prohibits a specific measurement of

the small-scale stochastic velocity for times > 28.5 ns. Instead, we obtain upper and

lower bounds respectively on urms via two distinct methods. For the upper bound,

we assume that Ti = Te (not an unreasonable assumption at later times in the ex-

periment – see Section 4.6) and thus attribute the higher value of the effective ion

temperature measured using the Thomson scattering as being solely due to small-

scale stochastic motions. Such an approach does indeed provide an upper bound to

the small-scale stochastic velocity, because compressive heating in the plasma pref-

erentially affects the ion population (Shafranov 1957), and thus we would expect

that Ti & Te in the interaction-region plasma (as, indeed, is observed experimen-

tally in the 3 ns interval after collision); assuming Ti = Te therefore minimises the

contribution of thermal ion motions to the broadening of the IAW feature peaks.

For the lower bound, we assume that ∆u ≈ cs min (∆ne/n̄e), where the minimum is

calculated over all Thomson scattering measurements of ∆ne subsequent to collision

and cs at later times is calculated assuming the previously discussed lower bound on

the electron temperature. This bound is an underestimate of the turbulent velocity,

because any cooling of the plasma at later times would result in an increased Mach

number and thus increased density perturbations. Evaluating these bounds gives

40 km/s < urms < 120 km/s at later times: in other words, stochastic motions are

maintained at later times, although those motions could be decaying in magnitude.
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Figure 4.14: 15.0 MeV proton images of interaction-region plasma. Each image
is approximately 300 × 300 pixels, with an effective pixel size of 12µm; by comparison, the
proton source size is ∼40 µm. The parameters of the imaging set-up are as follows: the
distance ri from the proton source to the centre of the target is ri = 1 cm, and the distance
from the proton source to the detector is 28 cm. The magnification of the imaging set-up is
thus ×28; all images are again presented with the magnification removed. The grid outline
evident on the bottom left of each image is grid A and the top-right grid B. The mean
proton flux Ψ0 per pixel in these images is ∼ 50 protons per pixel; the signal-to-noise ratio
is thus ∼ 14%.

4.5 Proton imaging diagnostic

The proton-imaging diagnostic was again implemented by imploding a D3He capsule,

whose specification was very similar to the previous OMEGA experiment, but with

two key differences: the capsule was coated in a thin layer of aluminium and the

laser-beam configuration altered so that each beam had a reduced energy of 270 J per

beam but with a (shorter) 0.6 ns pulse length. The 15.0 MeV proton images for our

experiment – presented in a time sequence – are shown in Figure 4.14. Proton images

before the formation of the interaction-region plasma (Figure 4.14, top, far-left) show

little in the way of structure at the centre of the grids, which is consistent with the

absence of significant magnetic fields. Around the time at which the interaction

region has formed, a moderate evacuation of proton flux is observed in a central

region between the grids (Figure 4.14, top, mid-left), with characteristic magnitude

Ψ similar to the mean proton flux Ψ0: |Ψ − Ψ0| . 0.3Ψ0. By contrast, in all
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Figure 4.15: Path-integrated magnetic fields in interaction-region plasma. In
each image, the magnitude of the path-integrated perpendicular magnetic field is shown;
the output of the field-reconstruction algorithm is in fact two-dimensional. The method
for applying the field-reconstruction algorithm is the same as described in Section 3.1.1.

subsequent proton images (beginning at times t & 27.2 ns), order-unity variations in

proton flux are measured (|Ψ − Ψ0| & Ψ0) whose structure and position is highly

stochastic – see Figure 4.14b for an example. Such a pronounced change is consistent

with a significant alteration to the magnetic field’s morphology.

Further analysis is again performed by reconstructing the path-integrated per-

pendicular magnetic field experienced by the imaging proton beam directly from the

measured proton image using the field-reconstruction algorithm outlined in Chap-

ter 2 (and 3). The results of the algorithm applied to the proton images shown

in Figure 4.14 are presented in Figure 4.15. The strength and morphology of the

reconstructed path-integrated fields after the collision are quite distinct from those

at collision, with peak values in the latter case reaching ∼ 8 kG cm, and randomly

orientated filamentary structures being evident.

Having determined the path-integrated magnetic field, the requisite approach

for estimating the characteristic magnetic field strengths and structure sizes once

again depends on the underlying nature of the magnetic field structure. The path-

integrated field structures evident at earlier times (in particular, Figure 4.15, top,
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mid-left) are non-stochastic. Thus, the simplest way of estimating the average

strength of magnetic fields in the interaction region is to repeat the approach taken

in Section 3.1.1: calculate the mean value of the path-integrated perpendicular mag-

netic field and divide by the path length of the protons through the interaction region.

We carry out this calculation for the data from this experiment by first evaluating

〈|
∫

d2x B⊥|〉 in three square regions (see Figure 4.16a, and the caption for their

precise dimensions), and determining the mean value (and errors) across the three

regions. We then estimate lz using our measurement of the average interaction-region

width ln derived from the X-ray imaging diagnostic (see Figure 4.7c), combined with

the known angle θp = 55◦ of the proton beam through the interaction region (as

compared to the line-of-centres): it follows that lz ≈ ln/ sin (55◦) ≈ 1.7ln. Finally,

we estimate 〈B〉 via 〈B〉 ≈ 〈|
∫

d2x B⊥|〉/lz; we obtain 〈B〉 ≈ 5 kG.

However, such an estimate implicitly makes several assumptions about the nature

of the underlying structure of the (non-stochastic) magnetic field, which need to be

checked. First, components of the magnetic field parallel to the path of the proton-

imaging beam are assumed to be negligible compared to perpendicular components.

Second, the estimate presupposes that the path-integrated field does not change

sign along the path. To check these assumptions, we follow a standard method for

analysing proton images of non-stochastic magnetic fields (Sarri et al. 2012, Kugland

et al. 2013), and consider parametrised models of known three-dimensional magnetic

field structures. To assist in finding such a model for our experimental data, we note

that the largest component of the path-integrated field at 25.7 ns is predominantly

orientated perpendicularly to the direction of the line-of-centres projected onto the

proton image (Figures 4.16b and 4.16c show this component and its alternative

respectively). As we show presently, the observed structure at the point of maximum

path-integrated field strength – which is oscillatory in the parallel direction, and

elongated in the perpendicular direction – can be shown to be consistent with the

presence of two ‘cocoon’ structures with oppositely signed azimuthal magnetic fields,

with symmetry axis parallel to the line-of-centres.
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Figure 4.16: Path-integrated magnetic fields at interaction-region-plasma co-
alescence. a) Magnitude of path-integrated perpendicular magnetic field 25.7 ns after
drive-beam pulse initiation. The three square regions in which the average path-integrated
field is evaluated have an edge length of 800 µm, and are angled at 35◦ to the horizontal
axis of the path-integrated field map. The centre of the middle square region corresponds
to the centre of the proton image. b) Component of the path-integrated magnetic field
in the direction perpendicular to the projected line-of-centres. The component is calcu-
lated from the full (two-dimensional) perpendicular path-integrated magnetic field. The
arrow indicates the (positive) direction of the chosen path-integrated field component. c)
Component of the path-integrated magnetic field in the direction parallel to the projected
line-of-centres d) One-dimensional lineout of path-integrated field component given in b)
(black, solid line) calculated by averaging the semi-transparent rectangular region denoted
in a) across its width, along with model (4.18) using optimised parameters B+

0 b = −0.72 kG
cm, B−0 b = 0.47 kG cm, a = 270µm, and lc = 131µm. The total contribution is plotted
(purple, dashed), as well as the individual contributions from the cocoon nearer grid A
(blue, dotted), and nearer grid B (red, dotted).

A particularly simple model of a single cocoon structure is provided by (Kugland

et al. 2012): in this model, the magnetic field B is given by

B = B0
r

a
exp

(
−r

2

a2
− z2

b2

)
eφ , (4.11)

where (r, φ, z) is a cylindrical coordinate system with symmetry axis z, B0 is a

characteristic magnetic field strength (related to the maximum field strength Bmax
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via B0 = Bmax

√
2 exp [1]), a the characteristic perpendicular size of the cocoon, b the

characteristic parallel size of the cocoon, and eφ the azimuthal unit vector. Kugland

et al. (2012) shows that the path-integrated magnetic field associated with such a

structure when viewed at angle θ with respect to z axis is

∫
dsBx =

B0a
2b
√
π cos θ

d2

y

d
exp

(
−x

2

a2
− y2

d2

)
, (4.12)∫

dsBy = −B0ab
√
π cos θ

d

x

a
exp

(
−x

2

a2
− y2

d2

)
, (4.13)

where

d ≡
√
a2 cos2 θ + b2 sin2 θ . (4.14)

Here, the two-dimensional Cartesian coordinate system (x, y) is chosen to be per-

pendicular to the viewing direction, with basis vectors satisfying x̂ · ẑ = 0, ŷ · ẑ 6= 0.

Motivated by the geometry of our experiment, we further assume that the perpen-

dicular extent of the cocoon structures is much greater than the parallel extent i.e.

a� b; then, it follows that for angles θ such that π/2−θ � b/a, d ≈ a cos θ. For our

experiment, θ ≈ 54◦, and so d ≈ a/
√

3. Under these assumptions, equations (4.12)

and (4.13) become

∫
dsBx ≈ 3B0b

√
π
y

a
exp

(
−x

2

a2
− 3

y2

a2

)
, (4.15)∫

dsBy ≈ −B0b
√
π
x

a
exp

(
−x

2

a2
− 3

y2

a2

)
. (4.16)

We conclude that in such a model the path-integrated field is indeed elongated in

the x direction (which by definition is precisely the direction perpendicular to the

projected-line-of-centres), and for x . y the path-integrated perpendicular magnetic

field is also predominantly in the x direction.
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The magnetic field associated with a double-cocoon configuration takes the form

B = B+ + B−

=

[
B+

0 exp

(
−(z + `c)

2

b2

)
+B−0 exp

(
−(z − `c)2

b2

)]
r

a
exp

(
−r

2

a2

)
eφ , (4.17)

where B+ is the magnetic field of the cocoon centred at z = −`c < 0 (and B+
0

its magnetic field strength), and B− is the magnetic field of the cocoon centred at

z = `c > 0 (and B−0 its magnetic field strength). Under the assumptions previously

discussed for a single cocoon, the x component of the path-integrated magnetic field

associated with the double-cocoon configuration is

∫
dsBx ≈ 3b

√
π exp

(
−x

2

a2

)
×

[
B+

0

y + ˜̀
c

a
exp

(
−3

(y + ˜̀
c)

2

a2

)

+B−0
y − ˜̀

c

a
exp

(
−3

(y − ˜̀
c)

2

a2

)]
, (4.18)

where ˜̀
c ≈
√

2`c/
√

3. Having finally derived a model for the path-integrated mag-

netic field (with four free parameters: B+
0 b, B

−
0 b, a and `c), we compare it with

a lineout across the strongest path-integrated magnetic field structure (see Fig-

ure 4.16b). Figure 4.16d shows the lineout, as well as the model with an optimised

fit: B+
0 b = −0.72 ± 0.05 kG cm, B−0 b = 0.47 ± 0.05 kG cm, a = 270 ± 19µm, and

`c = 131 ± 9µm (here, the errors in the model parameters correspond to the 95%

confidence intervals for each parameter). The agreement of the model with these

parameters is reasonable, with an adjusted R-squared value of 0.97. As a further

reality check, we calculate the predicted one-dimensional profile of proton flux associ-

ated with our model, and compare the result to a one-dimensional lineout calculated

directly from the relevant proton image in the same region as was used to determine

the experimental path-integrated field profile (see Figure 4.17a and Figure 4.17b);

we find that the predicted profile is a close match to the experimental data.
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Figure 4.17: Validating double-cocoon model for magnetic field at interaction-
region coalescence. a) 15.0 MeV proton image from which Figure 4.16a is calculated,
portrayed with semi-transparent rectangular region. b) One-dimensional lineout nor-
malised proton flux (blue, solid line) calculated by averaging semi-transparent rectangular
region denoted in b) across its width, along with one-dimensional prediction from model
(4.18) using the optimised parameters given in the caption of Figure 4.16.

Having obtained a satisfactory model for the magnetic field, we are now able to

address the two assumptions implicitly made in the original estimate of the char-

acteristic magnetic field strength at interaction-region coalescence. First, inside the

rectangular region to which we have applied our model, the magnetic field is pre-

dominantly in the x direction, and so the component parallel to the protons’ path

is indeed small. Second, due to the particular angle of imaging, the Bx components

of the opposing cocoon structures add constructively rather than destructively at

all positions. Thus, we conclude that the assumptions we made were reasonable (at

least, for the strongest path-integrated structure). We note that the mean magnetic

field strength associated with the double-cocoon configuration is ∼ 7 kG, which is

consistent with our previous estimate.

Unfortunately, the full three-dimensional structure associated with the double-

cocoon magnetic field configuration cannot be recovered from the path-integrated

field alone: this is because the latter only determines the path-integrated field

strengths B+
0 b and B−0 b, rather than B+

0 , B−0 and b separately. To overcome this

underdetermination, we invoke the likely origin of the fields (the Biermann bat-

tery mechanism), and assume that b ≈ λT/2, where λT is the thermal precursor

length (Graziani et al. 2015). This quantity denotes the typical length scale of elec-
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Figure 4.18: 3D structure of magnetic fields at interaction-region-plasma coa-
lescence. a) Slice-plot (in plane characterised by basis vectors ŷ and ẑ) of Bx component
associated with three-dimensional double-cocoon magnetic-field configuration (4.17), with
optimised model parameters B+

0 b = −0.72 kG cm, B−0 b = 0.47 kG cm, a = 270µm, and
`c = 131µm, and b = 0.01 cm. The width of the plotted interaction region is obtained from
the X-ray image recorded at the equivalent time (c.f. Figure 4.3c).

tron temperature gradients at the shocks demarcating the interaction-region plasma

(see Section 4.6); for our experimental parameters, we find λT ≈ 200µm, and so

b ≈ 100µm. We thereby obtain B+
0 ≈ 72 kG and B−0 ≈ 47 kG. A slice plot of the

resulting three-dimensional double-cocoon structure is shown in Figure 4.18. The

maximum field strength of the configuration is Bmax ≈ 31 kG. For reference, the

position of the interaction region observed from the X-ray imaging diagnostic is

plotted; our model is consistent with the measured fields being inside the interaction

region. We note that the two critical assumptions initially made to estimate the

magnetic field strength – weak magnetic fields parallel to the direction of the proton

beam, and no cancellation of field along the proton’s path – are self-evident from the

three-dimensional structure of the magnetic field.

For the stochastic path-integrated magnetic fields which emerge subsequent to

collision, a different approach is required: as in Section 3.1.1, we again assume

isotropic, homogeneous statistics of the stochastic magnetic field in the interaction-

region plasma, which in turn allows for the extraction of the RMS magnetic field
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strength Brms directly from the path-integrated field spectrum Epath via

Brms =

[
2

π`z

∫
dk kEpath(k)

]1/2

. (4.19)

This equation arises from substituting equation (3.4) for the magnetic-energy spec-

trum into (3.6) for the magnetic-energy density. We can subsequently calculate

the characteristic correlation length `B of the stochastic magnetic field via equa-

tion (2.13), which can be rewritten in terms of the path-integrated perpendicular

magnetic field as

`B =
1

`zB2
rms

(∫
d2x B⊥

)2

rms

. (4.20)

We focus on measuring Brms and `B rather than the magnetic-energy spectrum for

the reasons discussed in Chapter 3: in particular, the likely presence of strong, small-

scale magnetic fields leading to self-intersection of the imaging beam, in turn meaning

that the magnetic-energy spectrum is not robustly measured by the proton-imaging

diagnostic for this experiment.

To systematise our analysis of the data for this experiment, we consider the same

three fixed regions of the path-integrated magnetic field images introduced in Fig-

ure 4.16a, and calculate Brms and `B for those particular regions (see Figure 4.19a).

Such an approach also allows us to test the assumption that the stochastic mag-

netic fields are both homogeneous and isotropic. Figure 4.19 shows the magnetic-

energy spectra calculated using equation (3.4) for the three chosen regions in the

case of path-integrated fields calculated at 27.2 ns. Apart from at the largest scales,

we find that the three spectra match closely, supporting our original assumption.

The isotropy assumption is tested in Figure 4.19c. In each box, we calculate the

magnetic-energy spectra both for wavenumbers predominantly parallel to the pro-

jected line-of-centres, and for wavenumbers predominately perpendicular to the pro-

jected line-of-centres. The results are then combined to obtain averaged parallel and

perpendicular spectra. We find that both spectra agree within the uncertainty of
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Figure 4.19: Magnetic fields subsequent to interaction-region-plasma coa-
lescence. a) Path-integrated perpendicular magnetic field determined from the field-
reconstruction algorithm applied to the 15.0 MeV proton image obtained at 27.2 ns, plot-
ted with the boundaries of fixed square regions used for calculating Brms and `B. The
dimensions and positioning of these regions is the same as in Figure 4.16. b) Test of
homogeneity of stochastic magnetic field statistics. The magnetic-energy spectra associ-
ated with the left, middle and right square regions are calculated using (3.4), along with
the nominal resolution of the proton-imaging diagnostic, and the grid scale. The plotted
k−3 is included for reference, but does not have physical significance. c) Test of isotropy
of stochastic magnetic field statistics. For each square region, the magnetic-energy spec-
trum associated with predominantly parallel wavenumbers is calculated by determining
the spectral slope from magnetic-field Fourier components with k‖ > k⊥, and vice versa
for the magnetic-energy spectrum associated with predominantly perpendicular wavenum-
bers. Mean parallel and perpendicular spectra are subsequently obtained by averaging
the results from each region (the errors are determined similarly). d) RMS magnetic field
strength (red, solid) and maximum magnetic field bounds (red, dashed), over time, with
correlation length `B (blue). We emphasise that the mean and maximum field strengths
at 25.7 ns (red, dotted) are calculated differently to the other times, on account of the
non-stochastic field structure (see Figure 4.16a).

the measurement. This validates the isotropy assumption because, from the sym-

metry of our experiment, any anisotropy would manifest itself with respect to the

line-of-centres and would therefore be evident in our images.

Having validated the assumptions underlying our method, we now calculate the

mean values of Brms and `B arising from each path-integrated field image, and the



4.5 Proton imaging diagnostic 156

errors on those measurements. The results of this calculation applied to the full time-

sequence of proton images Figure 4.15 are shown in Figure 4.19d. Brms is found to

jump significantly in a 1.5 ns interval subsequent to collision, reaching a peak value

∼ 120 kG, before decaying quite significantly, to around ∼ 70 kG. The correlation

length `B obtains characteristic values `B ≈ 0.01 cm for all measured times, save

those at later times, where `B increases somewhat.

We can also calculate reasonable upper and lower bounds of the maximum mag-

netic field strength obtained in the stochastic field via two distinct methods. For the

lower bound, we note that by the central limit theorem, the kurtosis of the path-

integrated magnetic field will always be smaller than the actual magnetic field itself.

Therefore, the ratio between the maximum path-integrated field and the RMS path-

integrated field will always be smaller than the equivalent ratio for the magnetic field:

in other words, a reasonable lower bound isBmax,l = Brms(
∫

d2x B⊥)max/(
∫

d2x B⊥)rms.

The upper bound is derived using the approach previously employed in Section 3.5:

we assume that the maximum measured path-integrated magnetic fields are ob-

tained while associated imaging protons crossed just a single magnetic structure:

Bmax,u = (
∫

d2x B⊥)max/`B. The results of these bounds are shown in Figure 4.19d,

and at the time corresponding to maximal Brms, we find 310 kG < Bmax < 810 kG.

In addition to providing a time-resolved characterisation of the evolution of the

stochastic magnetic fields in the plasma, the proton images from the experiment also

demonstrate the degree of robustness of the key result: the amplification of magnetic

fields to dynamically significant values. More specifically, the eddy turnover time on

the scale ˜̀
B of magnetic structures corresponding to the peak of the reconstructed

magnetic-energy spectrum is ∼ 3 ns, which is greater than the 1.5 ns time interval

between consecutive proton images; thus, the statistics of stochastic magnetic fields

in the plasma should in principle not change significantly over the 1.5 ns time inter-

val. It thereby follows that if the characteristic values of Brms and `B obtained in

the experiment are robust, then one would expect consistency between the results

obtained from the analysis of proton images separated by 1.5 ns intervals. Employing
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Figure 4.19d to assess this consistency (or lack of it), we see that in the time interval

between 27.2 ns and 33.2 ns, the differences in RMS field strengths and correlation

lengths between consecutive images are much smaller than the actual values them-

selves, although a ∼20% dip in the measured field strength at 31.7 ns (and a similar

increase in the correlation length) demonstrates the degree of uncertainity in our key

result.

4.6 Discussion

We conclude that similarly to the first OMEGA experiment, the new experiment

does indeed result in a region of plasma which manifests stochastic motion on a

range of scales, and quite possibly turbulent motion. In spite of some uncertainty

about the late-time physical properties of the turbulent plasma, there exists a 5 ns

time window starting from the formation of the interaction region during which the

plasma state is throughly characterised. In this window, we find that the plasma is

fairly well described as being classical and collisional (λe ≈ 10µm, λCC ≈ 0.6µm,

λHC ≈ 16µm), and so transport coefficients can be estimated (see Tables 4.1 and 4.2)

using collisional transport theory (Braginskii 1965, Colvin and Larsen 2013, Cross

et al. 2014, Huba 1994). More specifically, momentum transport in the plasma is

dominated by hydrogen ions, on account of their long mean-free-path compared to

carbon ions (Simakov and Molvig 2014, 2016), while heat transport is dominated by

electrons. We assume the conventions given in Schekochihin et al. (2004c) for the

resistive and viscous dissipation scales.

The time history of both the fluid Reynolds number Re and the magnetic Reynolds

number Rm in the interaction-region plasma is shown in Figure 4.20a. Prior to the

formation of the interaction-region plasma, Re ≈ 1, 200, which exceeds Rm ≈ 200.

However, after the jets coalesce, the rapid collisional shock heating of both ions and

electrons simultaneously decreases the resistivity and enhances the viscosity, leading

to a switched ordering of dimensionless numbers: Re ≈ 200, and Rm . 900. Both
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Quantity Value

Carbon/hydrogen charges (MC,MH) 12, 1

Average atomic weight (〈M〉) 6.5

Carbon/hydrogen charges (ZC,ZH) 6, 1

Mean ion charge (〈Z〉) 3.5

Effective ion charge (Zeff) 5.3

Electron temperature (Te) 460 eV

Ion temperature (Ti) 580 eV

Electron number density (ne) 1.2× 1020 cm−3

Carbon number density (nC) 1.7× 1019 cm−3

Hydrogen number density (nH) 1.7× 1019 cm−3

Bulk velocity (ūin) 1.9 ×107 cm/s

Turbulent velocity (urms) 1.1 ×107 cm/s

Outer scale (L) 0.04 cm

RMS magnetic field (B) 90 kG

Maximum magnetic field (B) 250 kG

Adiabatic index (γI) 5/3

Table 4.1: Summary of measured plasma parameters related to the experiment at ∼ 27 ns
after the drive-beam laser pulse is initiated. The effective ion charge (which appears in
various physical parameters) is given by Zeff = (Z2

C + Z2
H)/(ZC + ZH).

the viscosity and resistivity are sensitive functions of ion and electron temperature

respectively (ν ∝ T
5/2
i , η ∝ T

−3/2
e ), and so even the moderate cooling observed in the

5 ns interval after peak temperatures are reached results in approximate equalisa-

tion of both parameters (Re ≈ Rm ≈ 500). At very late times, the potential heating

effects associated with the external diagnostics lead to significant uncertainty as to

the values of Re and Rm in the absence of any diagnostic perturbation. With tem-

peratures matching those measured directly by the Thomson scattering diagnostic,

Re ≈ 750, Rm ≈ 300; however, assuming instead temperatures close to the (previ-

ously discussed) lower bound Te ≈ Ti ≈ 50 eV, the fluid Reynolds number is over

two orders of magnitude larger (Re ≈ 105), while Rm ≈ 20.

We note that for times . 30 ns, the characteristic velocity of stochastic motion is

smaller than the in-flow velocity, and thus the fluid Reynolds number ReL and mag-

netic Reynolds number RmL of the driving-scale stochastic motions are somewhat

reduced in the interval of interest: ReL ≈ 120−600, and RmL ≈ 250−450. Since the
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Quantity Formula Value

Coulomb logarithm (log Λ) 23.5− logn
1/2
e T

−5/4
e −

√
10−5 +

(log Te−2)2

16
∼ 7

Mass density (ρ) 1.7× 10−24 (MCnC +MHnH) 3.7× 10−4 g cm−3

Debye Length (λD) 7.4× 102 T
1/2
e

n
1/2
e

[
1 + Te

Ti
Zeff

]−1/2

6.3× 10−7 cm

Sound speed (cs) 9.8× 105 [(〈Z〉+1)γITe]
1/2

〈M〉1/2 2.3× 107 cm/s

Mach number urms/cs 0.5

Plasma β 4.0× 10−11 neTe+(nC+nH)Ti
B2 370

Carbon-carbon
mean free path (λCC)

2.9× 1013 T 2
i

Z4
CnC log Λ

6.2× 10−5 cm

Hydrogen-carbon
mean free path (λHC)

2.1× 1013 T 2
i

Z2
HZ

2
CnC log Λ

1.6× 10−3 cm

Electron-ion
mean free path (λe)

2.1× 1013 T 2
e

Zeffne log Λ
1.0× 10−3 cm

Electron-carbon
equilibration time (τ εCe)

3.2× 108 MCT
3/2
e

Z2
CnC log Λ

8.6× 10−9 s

Electron Larmor
radius (ρe)

2.4 T
1/2
e

B
5.7× 10−4 cm

Carbon Larmor
radius (ρC)

1.0× 102 M
1/2
C T

1/2
i

ZCB
1.5× 10−2 cm

Hydrogen Larmor
radius (ρH)

1.0× 102 M
1/2
H T

1/2
i

ZHB
2.6× 10−2 cm

Thermal
diffusivity (χ)

3.0× 1021 T
5/2
e

Zeffne log Λ
3.0× 106 cm2 s−1

Turbulent Peclet
number (PeL)

urmsL/χ 0.15

Dynamic
viscosity (ζ)

3.7× 10−5 M
1/2
H T

5/2
i

Z2
C log Λ

1.2× 102 g cm−1 s−1

Kinematic
viscosity (ν)

ζ/ρ 3.1× 103 cm2 s−1

Turbulent Reynolds
number (ReL)

urmsL/ν 140

Viscous
dissipation scale (lν)

L/Re
3/4
L 9.8× 10−4 cm

Resistivity (η) 3.1× 105 Zeff log Λ

T
3/2
e

1.0× 103 cm2 s−1

Magnetic Reynolds
number (RmL)

urmsL/η 380

Magnetic Prandtl
number (Pr)

RmL/ReL ∼ 1

Resistive scale (lη) L/Pr1/2 6.0× 10−4 cm

Table 4.2: Summary of relevant theoretical plasma parameters for the experiment at
∼ 27 ns after the drive-beam laser pulse is initiated. The units system used for all physical
quantities in the above formulas is again Gaussian CGS, except temperature expressed in
eV.
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Figure 4.20: Evolution of theoretical plasma parameters. a) Evolution of the
fluid Reynolds number Re (red, solid line) and magnetic Reynolds number Rm (blue, solid
line) over time. Re and Rm are calculated using the formulae given in Table 4.2, though
substituting urms with ūin in order to enable comparisons between the state of the plasma
across the entire evolution of the experiment. The input plasma state variables are those
measured by the Thomson scattering diagnostic; however, Re at later time (red, dash-dot)
is instead calculated using an extrapolated density derived from the X-ray measurements.
An estimate of Rm at later times assuming lower bound on electron temperature Te ≈ 50 eV
is also shown (blue, dotted). b) Evolution of energy densities in the plasma-interaction
region. For times ≤ 30 ns, the kinetic energy and turbulent kinetic energy are calculated
using plasma state variables as derived from the Thomson scattering diagnostic; at later
times, the density is determined using the X-ray imaging diagnostic. The bounds on the
turbulent kinetic energy derive from the equivalent bounds on the turbulent velocity. The
RMS and maximum magnetic energy derive from proton imaging diagnostic.

turnover time τL of the largest stochastic motions is τL = L/urms ≈ 4 ns, we conclude

that the experimental platform does indeed produce a region of plasma with Prandtl

number Pr ∼ 1 which persists for the timescale over which the largest stochastic

motions decorrelate. It should be emphasised that the fluid Reynolds number of

the interaction-region plasma is sufficiently low that the flow will not be entirely

chaotic; however, as was discussed in Section 1.1.4, fully developed turbulence is not

necessary for the fluctuation dynamo to operate.

We have also measured magnetic fields over time in the interaction-region plasma,

and found that stochastic magnetic fields emerge during the 5 ns time window.

Having measured both the magnetic field and dynamical properties of the interaction-

region plasma, we can now compare the time history of the turbulent and magnetic

energy densities (see Figure 4.20b). When the interaction-region plasma initially

coalesces, the turbulent kinetic energy density εturb ≡ ρu2
rms/2 ≈ 2 × 1010 erg/cm3
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is over four orders of magnitude larger than the average magnetic-energy density

(εB = B2/8π ≈ 1 × 106 erg/cm3). However, 1.5 ns later, the relative magnitude of

the magnetic energy is significantly larger: εB/εturb ≈ 0.02. As the density of the

interaction-region plasma subsequently rises, both the turbulent kinetic energy and

magnetic energy increase, maintaining a relative constant ratio. The upper bound

on the magnetic energy at later times becomes (within error) a comparable order of

magnitude to the average turbulent energy.

We attribute the origin of the initial magnetic fields to the Biermann battery

mechanism acting on the jet plasma as it passes through the (just-formed) shocks

demarcating the interaction region plasma; mis-aligned density and temperature

gradients arise on account of this initial inhomogeneity of the jets perpendicular to

the flow direction. The magnitude of this magnetic field can be estimated as

B ≈ 10

[
δne/ne

0.5

] [
δTe(eV)

200 eV

] [
L(cm)

0.04 cm

]−1 [
ūin(cm/s)

2× 107 cm/s

]−1

kG , (4.21)

for δne the magnitude of the density profile inhomogeneity (which is assumed to be

on the scale of the grid periodicity L), δTe the temperature jump from the initial

jet to the interaction region. This estimate agrees approximately with our experi-

mentally observed initial field strengths. We note that the previous OMEGA experi-

ment did not observe the Biermann battery field generated by the interaction-region-

boundary shocks, on account of lacking time-resolved measurements of the magnetic

field during collision. In the interaction-region itself, magnetic fields generated by

the Biermann battery mechanism alone seem insufficient to explain the observed

field strengths; this is because the turbulent Peclet number PeL ≡ urmsL/χ (for χ

the thermal diffusivity) in the interaction-region plasma is small (PeL ≈ 0.1), and so

electron temperature gradients in the interaction-region plasma are suppressed (as

was also found for the previous OMEGA experiment). It therefore seems a plausible

conclusion that turbulence is responsible for amplifying magnetic fields from their

initial values up to dynamical strengths.
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We can use the experimental data to provide a lower bound on the growth rate γ

of the observed stochastic magnetic fields. Noting the field strength both at collision

(B1 ≈ 5 kG) and 1.5 ns later (B2 ≈ 87 kG), we find γ & 6.7 log (B2/B1)× 108 s−1 ≈

1.9×109 s−1 ≈ 8τ−1
L (for τL the turnover time of the largest-scale stochastic motions).

Thus, we conclude that the initial growth is significantly more rapid that would be

expected were magnetic field amplification solely due to the largest-scale stochastic

motions. Assuming Kolmogorov scaling for the velocity u` ∼ urms(`/L)1/3 of stochas-

tic motions at scale `, it can be concluded that this rate of field growth is only con-

sistent with stochastic motions whose characteristic scale satisfies ` . 20µm � L.

Such a result validates a key prediction of fluctuation-dynamo theory that the most

rapid initial growth is not caused by stochastic motions with the largest magnitude

but instead those with the largest shear rate; for stochastic motions obeying Kol-

mogorov scalings, the most rapidly shearing motions are expected to be those at the

viscous scale `ν ≈ 4µm, with growth rate γ ≈ Re
1/2
L τ−1

L ≈ 12τ−1
L .

We note that the maximum measured ratio εB/εturb ≈ 0.03 of the magnetic energy

εB to the turbulent kinetic energy εturb is somewhat smaller than that obtained for

Pr ≈ 1 MHD simulations with comparable Reynolds numbers (Schekochihin et al.

2004c, Haugen et al. 2004); a similar phenomenon to that found for the previous

OMEGA experiment. Simulations with Pr ≈ 1 typically find that εB/εturb is between

10% and 40% of the turbulent kinetic energy at saturation; complete equipartition

of magnetic and kinetic energy is not obtained, because the magnetic field tends

to have a higher degree of intermittency. In spite of this, the argument proposed

in Section 3.5 attributing the discrepancy to poor effective resolution in the proton

imaging diagnostic also applies here: indeed, since for the Pr ≈ 1 MHD dynamo it is

anticipated that magnetic energy will be concentrated at scales closer to the resistive

scale, this problem may be even more acute for this experiment. However, the time-

resolved measurements from the second OMEGA experiment also reveals another

potential explanation: soon after the emergence of strong, stochastic magnetic fields,

the Hall parameter ωH = λe/ρe attains order-unity values. It is well known that both
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magnetic field evolution and heat conduction is altered significantly in a plasma

with magnetised electrons (Braginskii 1965); thus, we cannot rule out the possibility

that the fluctuation dynamo’s saturation mechanism is altered in our experiment

compared to that of a bona fide MHD plasma.

In terms of how the experiments compares to astrophysically relevant plasma –

in particular, the turbulent ICM – Schekochihin and Cowley (2006) provide typical

parameters for both the cool cores of galaxy clusters (such as Hydra A), and sur-

rounding hot cluster plasma. The length and time scales associated with the cluster

plasma are greater than their laboratory equivalents by many orders of magnitude

(for example, LICM ≈ 3 × 1023 cm). However, it is well known that in the absence

of dissipation two systems with different length and time scales can be modelled by

the same governing equations (Cross et al. 2014); thus, provided the relevant dimen-

sionless numbers which quantify dissipation in the laboratory plasma (in particular,

ReL, PeL and RmL) obey the same asymptotic hierachy as the astrophysical plasma

of interest, then the results of the experiment are relevant to their astrophysical

analogue. For the ICM, PeL,ICM ≈ 1, ReL,ICM ≈ 10 − 100, and RmL,ICM ≈ 1030.

Comparing these to the experimental values, we see reasonable agreement for ReL

and PeL: both the laboratory and astrophysical systems are moderately turbulent

(but not hugely so), and in both systems the isothermal approximation holds below

the driving scale of the turbulence. The magnetic Reynolds number in the astrophys-

ical case is much larger than the laboratory experiment; however, since the physical

mechanism underpinning the Pr = RmL/ReL > 1 dynamo is expected to be similar

to the Pr� 1 dynamo (see Section 1.1.4), it might be hoped that the physics of the

former would still be relevant to the latter. That being said, there do remain some

significant differences between the experiment and astrophysical plasma. In particu-

lar, the underlying microphysics of the laboratory plasma places it arguably closer to

a collisional MHD model than the astrophysical case; as discussed in Section 1.1.5,

the strong magnetisation of both electrons and ions introduces new physics, the full

ramifications of which are not understood for dynamo processes.
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4.7 Conclusions

In summary, the second experiment at OMEGA facility broadly supports the results

of the first: plasma undergoing stochastic motion is capable of amplifying mag-

netic fields up to dynamical strengths, provided the magnetic Reynolds number is

large enough. The time-resolved characterisation provided by the second experiment

has demonstrated that magnetic-field amplification occurs more rapidly than the

turnover rate of the driving-scale stochastic motions, a result consistent with the-

oretical expectations. However, the experiment has also revealed two facets of the

plasma’s evolution hitherto not considered. First, the seed field in the interaction

region is not simply magnetic field generated at the laser spots and then advected to

the centre of the target; it is instead likely to be the result of the Biermann battery

acting at the shocks demarcating the interaction region plasma itself. Second, the

saturation of the fluctuation dynamo in our experiments may be affected by elec-

tron magnetisation effects: an effect not considered in conventional MHD fluctuation

dynamo theory.



Chapter 5

Conclusions and future research

5.1 Summary of work undertaken

In this thesis we have been concerned with two laser-plasma experiments carried

out on the OMEGA facility, which have investigated magnetic-field amplification in

turbulent plasmas and in particular the fluctuation dynamo.

Chapter 1 details the first of the two experiments, which consisted of the collision

of two rear-side-blowoff plasma jets with profiles pre-modified by misaligned grids:

evidence for both the presence of turbulence and the necessary theoretical plasma

conditions for the fluctuation dynamo to operate were presented. Key to demonstrat-

ing the actual existence and efficacy of the dynamo (and thus realise the scientific

goals of the experiment) was the ability to measure accurately stochastic magnetic

fields; yet with the analysis techniques available at the time when the experiment

was initially conducted, such measurements could not be performed.

In order to overcome this deficiency, a new analysis technique for recovering

the magnetic-energy spectrum of stochastic magnetic fields using a proton imaging

diagnostic (a commonly employed diagnostic in laser-plasma experiments) was de-

veloped in Chapter 2 using both pen-and-paper theory, and numerical simulations

with test stochastic magnetic fields. It was found that recovering the magnetic-

energy spectrum is possible if the proton imaging set-up obeys certain constraints:

165



5.1 Summary of work undertaken 166

in particular, that gradients in deflections of the imaging proton beam must not be

so large as to cause the beam to self-intersect prior to reaching the detector. Four

‘contrast’ regimes of proton imaging were defined – linear, non-linear injective, caus-

tic and diffusive – in which the underlying relationship between the path-integrated

stochastic magnetic field and the associated distributions of detected proton flux are

qualitatively distinct; the magnetic-energy spectrum can only be recovered in the

first two regimes. Further limits on the technique placed by both theoretical and

experimental considerations were discussed in some depth, so that the technique’s

proper application could be understood.

In Chapter 3, the analysis technique was applied to proton-imaging data arising

from the initially presented fluctuation-dynamo OMEGA experiment. Quantitative

estimates of the initial magnetic field strengths at collision, and then after it, were

obtained. The quality of these measurements was successfully verified using a range

of appropriate tests. For the strong stochastic magnetic fields observed after collision

the magnetic-energy spectrum was derived; however, subsequent validations using

FLASH simulations as a test case illustrated that the high-wavenumber component of

the spectrum was not robustly determined for these particular experiments. In spite

of this limitation, the magnetic field strength determined by the analysis technique

demonstrated that a fluctuation dynamo was indeed likely to be realised in the

experiment: the first time this has been done in the laboratory.

Finally, a second experiment on the OMEGA facility was described in Chap-

ter 4. This experiment attempted to provide a time-resolved characterisation of

dynamo-generated magnetic fields using a slightly modified target to that employed

to the first experiment. Imaging of self-emitted X-rays was used to provide infor-

mation about the collision between the two jets, and the subsequent formation of

a plasma undergoing stochastic motion. Analysis of Thomson-scattering data pro-

vided detailed information about the plasma state over the course of the experiment.

Analysis of proton-imaging data – again using the previously developed technique –

demonstrated that amplification of magnetic fields occurs much more rapidly than
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the timescale of the largest-scale stochastic motions in the plasma. This observation

provided experimental evidence for the theoretical hypothesis that magnetic-field

amplification via the fluctuation dynamo occurs most rapidly at small, rather than

large, scales.

5.2 Future research paths

There are various ways in which the work carried out for this thesis could be ex-

tended. Firstly, the study of the proton imaging of stochastic magnetic fields con-

ducted in Chapter 2 is by no means exhaustive. To start with, magnetic stochasticity

is often not isotropic. Recent laser-plasma experiments investigating Weibel and fil-

amentation instabilities (Fox et al. 2013, Huntington et al. 2015) observed elongated

coherent magnetic structures with stochastic variation in the plane perpendicular to

the colliding flows, but with approximate uniformity in the parallel direction. The

assumption of three-dimensionally isotropic statistics is not appropriate for such

experiments; however, adapting the analysis carried out in this chapter relating the

deflection-field spectrum (obtained from proton images) to the magnetic-energy spec-

trum should be possible in principle, and would be of scientific interest. This would

be an appropriate question to be addressed separately and would ideally include

numerical tests with simulations of Weibel-like perturbations.

In Chapter 2, we focused on determining the magnetic-energy spectrum from

proton images: but the spectrum is not the only statistical quantity of interest for

non-Gaussian fields. Probing the helicity or intermittency of stochastic magnetic

fields is likely to be possible with a proton imaging diagnostic; doing so could help to

address questions about the detailed structure of fields generated by the small-scale

fluctuation dynamo (Schekochihin et al. 2004c) or the saturated state of the Weibel

instability (Huntington et al. 2015).

The techniques currently proposed for analysing caustic and diffusive regime im-

ages are significantly less comprehensive than other regimes. However, work carried
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out in the context of optics suggests that approaches such as statistical topology

could be used to directly analyse caustic features more methodically, particularly

with additional prescriptions for the sort of stochastic field being investigated (Berry

and Upstill 1980). In the diffusive regime, investigating the inversion of a diffusive

model of proton imaging in order to extract the diffusion coefficient also promises

to be a fruitful avenue of research. It should be noted that there is a practical

motivation for exploring these problems: recent laboratory-astrophysics experiments

creating stochastic magnetic fields at the National Ignition Facility (USA) seem to

result in proton images which fall squarely into the diffusive regime (work yet to be

published, but see Rygg et al. 2015).

On the topic of fluctuation-dynamo experiments, there still remain a number of

potential future experiments which would strengthen the claims outlined in this the-

sis. First of these would be an experiment which convincingly demonstrated that the

saturated RMS field strengths found in these experiments does indeed correspond

to dynamical significance. This could be realised by increasing the initial seed field

strength in the experiment using, for example, a pulsed magnetic field generator (Fik-

sel et al. 2015). If the previously measured saturated states are indeed dynamically

significant, the magnetic field strength measured in this state should be independent

of the seed field strength. Another experiment could attempt to pin down the thresh-

old value of Rmc at which the fluctuation dynamo becomes operative by performing

a parameter scan over different Rm. Finally, there exist a number of theoretical

uncertainties concerning dynamo processes which future experiments could poten-

tially address. One such example another would be the conclusive demonstration of

dynamo action in a weakly collisional plasma. Several experiments addressing these

questions are currently in the design or post-shot-day-analysis phases.

All being said and done, the theory of proton imaging of stochastic magnetic

fields outlined in Chapter 2 provides a helpful conceptual framework for approaching

analysis of stochastic magnetic fields using proton imaging, as well as enabling more

information to be extracted from experimentally-obtained proton-flux images than
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was previously possible. Furthermore, the insights from this same chapter are useful

for optimising the design of future experiments investigating magnetic stochasticity

in plasma such that imaging regimes of maximal efficacy can be achieved. All of these

aspects will hopefully allow for proton imaging to be increasingly comprehensive as a

diagnostic tool for assessing stochastic magnetic fields in laser-plasma experiments.

The successful experimental realisation of the fluctuation dynamo described in Chap-

ters 3 and 4 renews confidence in the theoretical frameworks (outlined in Chapter

1) which attribute the origin and sustainment of dynamical magnetic fields in the

ICM to the operation of dynamo processes. Future experiments based on those out-

lined here can only further improve our understanding of this fundamental physical

process.
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Appendix A

Glossary of notation and

mathematical conventions

As an aid to reading, in this appendix we provide a glossary of notation commonly

used throughout the thesis in Table A.1; in Table A.2, notation pertaining to the

theory of proton imaging of stochastic fields described in Chapter 2 is summarised.

The units system is Gaussian CGS.

We define the Fourier transform f̂ of a function f and the inverse transform in

n-dimensions according to the following convention:

f̂(k) =
1

(2π)n

∫
dnx exp [−ik · x] f(x) , (A.1)

f(x) =

∫
dnk exp [ik · x]f̂(k) . (A.2)

For isotropic functions f = f(r) and f̂ = f̂(k) in three dimensions, this gives

f(r) = 4π

∫ ∞
0

dk k2f̂(k)
sin kr

kr
, (A.3)

which in turns implies that the value of f at the origin under this convention is
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Notation Quantity

e Elementary charge

me,mp Electron/proton mass

c Speed of light

u Total velocity field (1.1)

δu Fluctuating, stochastic velocity field (1.1)

ū Mean velocity field (1.1)

E(k) Kinetic-energy spectrum (1.3)

urms RMS stochastic velocity field strength (1.4)

`u Velocity field correlation length (1.5)

B Total magnetic field (1.2)

δB Fluctuating, stochastic magnetic field (1.2)

B̄ Mean, regular magnetic field (1.2)

EB(k) Magnetic-energy spectrum (1.6)

Brms RMS stochastic magnetic field strength (1.7)

`B Magnetic field correlation length (1.8)

˜̀
B Scale of magnetic-energy spectral peak

(pe) p (Electron) pressure

ρ Mass density

ν Kinematic viscosity

L Outer scale of turbulent cascade

(u`) uL Characteristic velocity at scale (`) L

τL Turnover rate uL/L

`ν Viscous dissipation scale

η Resistivity

`η Resistive scale

E Electric field

j Current

Te, Ti Electron/ion temperature

ne, ni Electron/ion density

(ln⊥) ln Interaction-region width (perp. extent)

lTS Thomson-scattering focal-spot scale

lpath Thomson-scattering beam path-length

λ Thomson-scattering beam wavelength

Table A.1: Glossary of commonly used notation
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Notation Quantity

V Beam-proton speed

W Beam-proton energy

ri Distance from beam source to magnetic field configuration/plasma

lz Parallel size of magnetic field configuration/plasma

l⊥ Perpendicular size of magnetic field configuration/plasma

rs Distance from magnetic field configuration/plasma to detector

M image-magnification factor (2.18)

a Finite proton-source radius

δθ Typical proton deflection angle (2.52)

δα Paraxial parameter (2.49)

δβ Point-projection parameter (2.50)

µ Contrast parameter (2.17)

(x⊥0) x0 (Perpendicular) initial beam-proton position coordinate

(x⊥) x (Perpendicular) beam-proton position coordinate

(x
(s)
⊥ ) x(s) (Perpendicular) beam-proton image position coordinate

(r⊥) r (Perpendicular) distance vector

w(x⊥0) Perpendicular-deflection field (2.8)

wrms RMS deflection-field strength

EW (k⊥) Deflection-field spectrum (2.12)

Brms,0 Effective RMS stochastic magnetic field strength (2.23)

ϕ(x⊥0) Deflection-field potential (2.15)

Ψ0(x⊥0) Initial beam flux distribution

Ψ
(
x

(s)
⊥

)
Image-flux distribution function (2.9)

δΨ
(
x

(s)
⊥

)
Image-flux deviation from mean proton flux

lΨ Relative image-flux correlation length (F.27)

Ψ
(s)
0

(
x

(s)
⊥

)
Unperturbed image-flux distribution

Dw (Isotropic) perp. stochastic magnetic diffusion coefficient (2.43)

τpulse Temporal pulse-length of proton source

τpath Transit time of imaging protons across plasma

τsource Transit time of imaging protons to plasma

Table A.2: Glossary of notation for proton-imaging theory
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simply the integral of the 1D power spectrum of f :

f(0) = 4π

∫ ∞
0

dk k2f̂(k) ≡
∫ ∞

0

dk Ef (k) . (A.4)

The integral of f over all radii (which for normalised correlation functions gives the

correlation scale) is ∫ ∞
0

dr f(r) = 2π2

∫ ∞
0

dk kf̂(k) . (A.5)

For two-dimensional isotropic functions,

f(r) = 2π

∫ ∞
0

dk kf̂(k) J0(kr) , (A.6)

where J0 is the zeroth-order Bessel function of the first kind. Similarly to the three-

dimensional case, we find

f(0) = 2π

∫ ∞
0

dk kf̂(k) ≡
∫ ∞

0

dk Ef (k) , (A.7)

and ∫ ∞
0

dr f(r) = 2π

∫ ∞
0

dk kf̂(k) . (A.8)



Appendix B

Negligible processes when deriving

plasma-image mapping (2.7)

In deriving plasma-image mapping (2.7), perpendicular-deflection field (2.8), and

RK image-flux relation (2.9), it was assumed that the evolution of the proton beam

as it passes through the plasma is dominated by forces arising due to magnetic

fields inherent in the plasma; in this appendix, we explain the justification for this

simplification. In general, the interaction of a beam of protons with a plasma involves

a broad range of physical processes. However, due to the large velocity of the beam

protons, and their low density, the governing physics can be simplified considerably.

Firstly, self-interaction of the beam can be taken to be negligible, on account

of the beam’s initial number density nbeam taking values nbeam ∼ 1010 − 1012 cm−3.

This can be demonstrated by considering space-charge effects in the beam: it can be

shown that the electric potential energy in an un-neutralised proton cloud (assuming

the above values for the beam density) drops to a small fraction of the beam’s kinetic

energy well before reaching the plasma (Kugland et al. 2012). Furthermore, once the

protons reach the plasma, beam space charge is screened by plasma electrons.

Typically, a fast particle beam interacting with a plasma would be subject to

collisionless kinetic effects, such as the beam-plasma instability. For initial beam

velocity V , the maximum linear growth rate of the beam-plasma instability scales as
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γ ∼ ωpi
nbeam

ni

(
V

∆V

)2

, (B.1)

where ωpi is the ion plasma frequency, ni the density of ions in the plasma, and ∆V

the initial velocity spread inherent in the proton beam (Krall and Trivelpiece 1973).

For the beam-plasma instability to have a significant effect on the proton-flux image,

we require that the transit time τpath through the plasma be much shorter than the

typical time scale on which the beam-plasma instability grows: viz.,

γ ∼ 1

τpath

≈ V

lz
, (B.2)

which can be rearranged to give an estimate for the typical uncertainty in deflection

angle ∆θkin resulting from collisionless kinetic effects:

∆θkin ≤
∆V

V
∼
(
nbeam

ni

)1/4(
Z

A
ωp,beamτpath

)1/2

, (B.3)

where ωp,beam is the plasma frequency of beam protons in the beam, Z the charge of

the plasma ions, and A their atomic mass. Substituting typical parameters in (for

example) a carbon plasma, with ni ∼ 1020 cm−3, nbeam ∼ 1010 cm−3 and lz ∼ 0.1 cm,

we have for 3.3 MeV protons that ωp,beam ∼ 1.3 × 108 s−1, and τpath ∼ 4 × 10−11 s,

which gives

∆θkin ∼ 2× 10−4 , (B.4)

a smaller effect than other asymptotic parameters.

Collisional effects are also negligible, on account of τpath typically being larger

than collisional relaxation times – in a plasma, for fast ions with energy W the

stopping power is to a good approximation given by the Bohr formula

S(W ) = −dW

dz
=

4πe4ne
mpV 2

log

(
V

ωpbmin

)
, (B.5)

where bmin is the impact parameter, and z the distance travelled through the plasma (Ziegler
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1999). For protons with energy W ≥ 3.3 MeV passing through a carbon plasma, ne ∼

3.5× 1020 cm−3, this gives S(W ) = 6× 104 eV/cm. Since S(W )� W/lz, the energy

∆W lost by a typical proton crossing the plasma is approximately ∆W ≈ −lzS(W ).

For a lz ∼ 1 mm plasma, this gives

∆W

W
≤ 2× 10−3 , (B.6)

The resulting deflection angles are even smaller: for a Maxwellian plasma, it can be

shown that for a suprathermal beam the typical deflection time τD over which the

proton beam distribution spreads perpendicularly to the direction of travel of the

beam is given by

τD =
m2
p

16πe4

V 3

ne log Λ
, (B.7)

where log Λ is the Coulomb logarithm (Krall and Trivelpiece 1973). An estimate for

the typical spread in deflection angles ∆θcoll resulting from collisions is then

∆θcoll ∼
lz
V τD

∼ 16πe4

m2
p

lzne log Λ

V 4
, (B.8)

which has a strong beam-velocity dependence. Estimating ∆θcoll for the same carbon

plasma (and log Λ ≈ 10) described previously, we find

∆θcoll ∼ 1× 10−5 . (B.9)



Appendix C

Further statistical characterisation

of stochastic magnetic fields

This appendix extends the discussion of the statistical characterisation of stochastic

magnetic fields provided in Section 2.2.1 by introducing the magnetic autocorrelation

function (defined in Appendix C.1). For clarity of exposition, we do not directly refer

to the magnetic autocorrelation function in the main text, because by the Wiener-

Khinchin theorem it is equivalent to the magnetic-energy spectrum (2.2) for isotropic,

homogeneous stochastic fields (Ensslin and Vogt 2003): and the magnetic-energy

spectrum is generally of greater interest physically, for reasons discussed in Section

2.2.1. However, as we state in Section 2.2.1, we introduce the magnetic autocorre-

lation function in this appendix for two reasons. First, it provides the most natural

definition of the correlation length `B of a stochastic magnetic field (Appendix C.2).

We show in Appendix C.3 how the result (2.4) in the main text is derived from this

definition. Second, using the magnetic autocorrelation function to derive deflection-

field spectral relation (2.11) (Appendix D) and linear-regime flux spectral relation

(2.35) (Appendix F) enables a simple quantification of asymptotic approximations

made in doing so. In particular, in Appendix C.4 we state a result concerning the

magnitude of the integrated tail of the magnetic autocorrelation function, a term

whose neglect is necessary for the derivations of (2.11) and (2.35).
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C.1 The magnetic autocorrelation function

The magnetic autocorrelation tensor Mnn′(x, x̃) of a general, zero-mean stochastic

magnetic field (B̄ = 0, B = δB) is defined by

Mnn′(x, x̃) ≡ 〈Bn(x)Bn′(x̃)〉 , (C.1)

for arbitrary positions x, x̃ in the plasma. If the stochastic fields are isotropic and

homogeneous, the autocorrelation tensor can be written as a function of displacement

vector r = x̃− x only:

Mnn′(x, x̃) = Mnn′(r) = MN(r) δnn′+(ML(r)−MN(r))
rnrn′

r2
+MH(r) εnn′lrl , (C.2)

for longitudinal, normal and helical autocorrelation functions ML(r), MN(r) and

MH(r), and distance coordinate r = |x̃− x| (Ensslin and Vogt 2003). The solenoidal

condition on the magnetic field ∇ ·B = 0 gives corresponding relation

∂

∂ri
Mij(r) = 0 , (C.3)

which can be used to relate ML to MN (Ensslin and Vogt 2003) via a differential

identity:

MN(r) =
1

2r

d

dr

[
r2ML(r)

]
. (C.4)

For convenience, we derive this result explicitly in Appendix C.5. The magnetic au-

tocorrelation function M (r) is then defined as trace of the magnetic autocorrelation

tensor:

M(r) = Mii(r) . (C.5)

Similarly to the magnetic-energy spectrum, the magnetic autocorrelation function

provides information about typical magnetic field strengths. More specifically, the
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RMS magnetic field strength is given in terms of M(r) by

B2
rms = M(0) . (C.6)

As discussed in Appendix C.2, the autocorrelation function can also be used to

estimate typical structure sizes via the correlation length.

We now state the sense in which the magnetic-energy spectrum and magnetic

autocorrelation function are equivalent: from the Wiener-Khinchin theorem (Ensslin

and Vogt 2003), it follows that the (assumed isotropic) magnetic-energy spectrum

EB(k) defined by (2.2) and autocorrelation function M(r) are related by

EB(k) =
k2

2 (2π)3

∫
d3r exp (−ik · r)M(r) =

1

(2π)2

∫ ∞
0

dr kr sin krM(r) , (C.7)

where we have assumed Fourier-transform normalisation conventions as specified

in Appendix A. The Fourier-inversion relations specified in the same appendix can

be used to deduce the magnetic autocorrelation function from the magnetic-energy

spectrum:

M(r) = 8π

∫ ∞
0

dk EB(k)
sin kr

kr
. (C.8)

Thus if the magnetic-energy spectrum is known, the magnetic autocorrelation func-

tion can be determined, and visa versa.

C.2 Formal definition of correlation length

The correlation length of a stochastic magnetic field `B is defined in terms of the

magnetic autocorrelation function M(r) introduced in the previous sub-appendix:

`B ≡
1

B2
rms

∫ ∞
0

drM(r) . (C.9)
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Thus, as the name suggests, the correlation length of a stochastic magnetic field is

simply a measure of the typical distance over which that field decorrelates with itself.

C.3 Derivation of expression (2.4) for the correla-

tion length in terms of the magnetic-energy

spectrum

The inversion relation (C.8) enables a simple derivation of the expression (2.4) for

the correlation length, that is

`B =
π

2

∫∞
0

dk EB(k) /k∫∞
0

dk EB(k)
, (C.10)

in terms of the magnetic-energy spectrum. Integrating (C.8) over the interval r ∈

[0,∞) gives ∫ ∞
0

drM(r) = 8π

∫ ∞
0

dr

∫ ∞
0

dk EB(k)
sin kr

kr
. (C.11)

Applying correlation-length definition (C.9) and switching the order of integration

leads to

B2
rms `B = 8π

∫ ∞
0

dk EB(k)

∫ ∞
0

dr
sin kr

kr
= 4π2

∫ ∞
0

dk
EB(k)

k
, (C.12)

which on rearrangement and use of equation (2.3), viz.

B2
rms = 8π

∫ ∞
0

dk EB(k) , (C.13)

for the magnetic field strength RMS gives the desired result (C.10).
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C.4 Bound on integrated tail of magnetic auto-

correlation function

In this appendix we provide an estimate for integrated tail of the magnetic autocor-

relation function, which will be used in subsequent derivations of the deflection-field

spectral relations (2.11) and linear-regime flux spectral relation (2.35) given in Ap-

pendices D and F respectively.

It can be shown that in a finite magnetised volume, the autocorrelation function

must satisfy (Ensslin and Vogt 2003)

∫ ∞
0

dr r2M(r) = 0 . (C.14)

which implies that M(r) = o
[
(r/`B)−3] as r/`B → ∞. It follows from this that for

lengths l� `B,

1

B2
rms`B

∫ ∞
l

drM(r) = O

((
`B
l

)2
)
. (C.15)

Thus we conclude that for any magnetic autocorrelation function, the integral of its

tail is algebraically small in `B/l. For some correlation functions (such as exponential

or Gaussian), the tail of the integrated autocorrelation function is smaller still; for

example, if

M(r) = B2
rms exp [−r/`B] , (C.16)

then ∫ ∞
l

drM(r) = B2
rms `B exp [−l/`B] , (C.17)

which is exponentially small in `B/l.
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C.5 Derivation of relation (C.4) between normal

and longitudinal autocorrelation functions

In this subsection, we show that the magnetic field’s solenoidality imposes the con-

dition (C.4) on the longitudinal and normal helical autocorrelation functions, by

considering the autocorrelation tensor of the vector potential A.

Define vector-potential autocorrelation tensor Sll′ = Sll′(x, x̃) by

Sll′(x, x̃) ≡ 〈Al(x)Al′(x̃)〉 . (C.18)

By definition, B = ∇×A, so the magnetic autocorrelation tensor Mnn′ is related to

Sll′ by

Mll′(x, x̃) = εlmnεl′m′n′
∂2

∂xm∂x̃m′
Snn′(x, x̃) . (C.19)

Supposing that the stochastic vector potential is isotropic and homogeneous, we can

rewrite Sll′ in terms of the displacement vector r, similarly to (C.1):

Sll′(x, x̃) = Sll′(r) = SN(r) δll′ + [SL(r)− SN(r)]
rlrl′

r2
+ SH(r) εll′srs , (C.20)

for longitudinal, normal and helical vector-potential autocorrelation functions SL(r),

SN(r) and SH(r). We assume that these functions are unconstrained. Changing

variables to

r = x̃− x , (C.21)

x̄ = x , (C.22)

transforms partial derivatives with respect to x̃, x by

∂

∂x
=

∂

∂x̄
− ∂

∂r
, (C.23)

∂

∂x̃
=

∂

∂r
. (C.24)



C.5 Derivation of relation (C.4) between normal and longitudinal autocorrelation
functions 196

Since Sll′ = Sll′(r) is independent of x̄, we deduce

Mll′(r) = −εlmnεl′m′n′
∂2

∂rm∂rm′

{
SN(r) δnn′ + [SL(r)− SN(r)]

rnrn′

r2
+ SH(r) εnn′srs

}
.

(C.25)

After some elementary but somewhat lengthy manipulations, it can be shown that

εlmnεl′m′n′
∂2

∂rm∂rm′
{SN(r) δnn′} = δll′

[
S ′′N(r) +

1

r
S ′N(r)

]
−rlrl

′

r2

[
S ′′N(r)− 1

r
S ′N(r)

]
, (C.26)

εlmnεl′m′n′
∂2

∂rm∂rm′

{
[SL(r)− SN(r)]

rnrn′

r2

}
= −δll′

[
S ′L(r)− S ′N(r)

r

]
+
rlrl′

r

[
SL(r)− SN(r)

r2

]′
. (C.27)

Assuming that the magnetic autocorrelation tensor is of the form given by (C.1), it

follows that

MN(r) = S ′′N(r) +
2S ′N(r)− S ′L(r)

r
, (C.28)

ML(r) =
S ′N(r)

r
+

2SN(r)− 2SL(r)

r2
. (C.29)

Finally, we observe that ML(r), MN(r) satisfying these expressions implies

M ′
L(r) + 2

ML(r)−MN(r)

r
= 0 . (C.30)

With some further algebraic rearrangement, (C.30) can be recast as (C.4), completing

the proof.
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Derivation of deflection-field

spectral relation (2.11)

Section 2.2.2 claims that the magnetic-energy spectrumEB(k) of a zero-mean stochas-

tic magnetic field (B̄ = 0, B = δB) can be related to the one-dimensional spectrum

EW (k⊥) of the perpendicular-deflection field w(x⊥0) by spectral relation (2.11), that

is

EB(k) =
m2
pc

2

4π2lze2
kEW (k) . (D.1)

We derive (D.1) in this appendix under the assumption that the correlation length `B

of the stochastic magnetic field is much smaller than the path-length lz of the proton

beam through the magnetic field, as well as homogeneity and isotropy of magnetic

field statistics. Our approach for doing so will be to first relate the magnetic auto-

correlation function M(r) defined by (C.2) in Appendix C.1 to an autocorrelation

function of the perpendicular-deflection field, and then utilise the Wiener-Khinchin

theorem.

We begin by defining the deflection-field autocorrelation tensor:

Cll′(x⊥0, x̃⊥0) ≡ 〈wl(x⊥0)wl′(x̃⊥0)〉 . (D.2)

Substituting the definition (2.8) of the perpendicular-deflection field into (D.2) gives
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Cll′(x⊥0, x̃⊥0) =
e2

m2
pc

2
εlmnεl′m′n′ ẑmẑm′

∫ lz

0

dz

∫ lz

0

dz′ 〈δBn[x⊥(z)] δBn′ [x̃⊥(z′)]〉 ,

(D.3)

where x⊥(z) and x̃⊥(z) denote the trajectories of protons with initial perpendicular

positions x⊥0 and x̃⊥0 respectively. We then neglect the distinction between the

integrated field along the undeflected trajectories and along paths parallel to the

z-direction, because the resulting error is O (δα, δθ) under assumptions of statistical

homogeneity and isotropy of magnetic field statistics. The autocorrelation tensor

becomes

Cll′(x⊥0, x̃⊥0) =
e2

m2
pc

2
εlmnεl′m′n′ ẑmẑm′

∫ lz

0

dz

∫ lz

0

dz′ 〈δBn(x⊥0, z) δBn′(x̃⊥0, z
′)〉

=
e2

m2
pc

2
εlmnεl′m′n′ ẑmẑm′

×
∫ lz

0

dz

∫ lz

0

dz′Mnn′(x⊥0 + zẑ, x̃⊥0 + z′ẑ) , (D.4)

where we have introduced the magnetic autocorrelation tensor defined by (C.1) in C.

Anticipating a recourse to homogeneity and isotropy of the magnetic autocorrelation

tensor, change variables in the double integral by

(r⊥, rz) = (x̃⊥0 − x⊥0, z
′ − z) , (D.5)

z̄ = z , (D.6)

which on explicitly assuming a homogeneous, isotropic magnetic autocorrelation ten-

sor gives a homogeneous, isotropic deflection-field autocorrelation tensor

Cll′(r⊥) =
e2

m2
pc

2
εlmnεl′m′n′ ẑmẑm′

∫ lz

0

dz̄

∫ lz−z̄

−z̄
drzMnn′

(√
r2
⊥ + r2

z

)
. (D.7)

The small scale of the field `B allows for an extension of the integration limits to

(−∞,∞) via an intermediate scale `B � l � lz, producing an O(`B/l) error from
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(C.15) in Appendix C.4. The outer integral can then be evaluated independently,

leaving

Cll′(r⊥) =
lze

2

m2
pc

2
εlmnεl′m′n′ ẑmẑm′

∫ ∞
−∞

drzMnn′

(√
r2
⊥ + r2

z

)
. (D.8)

Taking the trace of the deflection-field autocorrelation tensor gives the deflection-

field autocorrelation function C (r⊥) ≡ Cll(r⊥) in terms of the magnetic autocorre-

lation function:

C(r⊥) =
lze

2

m2
pc

2

∫ ∞
−∞

drz

[
M

(√
r2
⊥ + r2

z

)
−Mzz

(√
r2
⊥ + r2

z

)]
. (D.9)

We can then use the solenoidality of the magnetic field – in particular, relation (C.4)

between the longitudinal and normal correlation functions – to show that

∫ ∞
−∞

drzMzz

(√
r2
⊥ + r2

z

)
=

∫ ∞
−∞

drz
r2
z

r2
ML

(√
r2
⊥ + r2

z

)
+
r2
⊥
r2
MN

(√
r2
⊥ + r2

z

)
=

1

2

∫ ∞
−∞

drzM

(√
r2
⊥ + r2

z

)
. (D.10)

Therefore,

C(r⊥) =
lze

2

m2
pc

2

∫ ∞
0

drzM

(√
r2
⊥ + r2

z

)
. (D.11)

This correlation measure has an essentially identical form to that for Faraday rota-

tion autocorrelation function (see Ensslin and Vogt 2003), and so analogies can be

made with results derived in that case. In particular, the correlation length of the

magnetic field is related to C(0) by

`B =
m2
pc

2

lze2

C(0)

M(0)
, (D.12)

which in turn can be rearranged to give the RMS perpendicular-deflection field:

wrms =
e 〈δB2〉1/2

mpc

√
lz`B . (D.13)
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Deflection angle RMS (2.13) follows immediately.

The relation (D.1) between the magnetic-energy spectrum and the perpendicular-

deflection field spectrum can be found by recourse to the Wiener-Khinchin theorem,

which takes the following form for an isotropic deflection-field autocorrelation func-

tion:

EW (k⊥) = 2πk⊥Ĉ(k⊥) , (D.14)

where Ĉ(k⊥) is the Fourier-transformed deflection-field autocorrelation function.

Fourier-transforming (D.11) in the perpendicular direction gives

Ĉ(k⊥) =
πlze

2

m2
pc

2
M̂(k⊥, 0) . (D.15)

However, since magnetic fluctuations are assumed isotropic, we note that

M̂(k⊥, 0) = M̂(k⊥) = 4πk2
⊥EB(k⊥) , (D.16)

where the second equality follows from equation (C.7) in Appendix C.1. The de-

sired result (D.1) is obtained by substituting (D.14) and (D.16) into (D.15), and

rearranging.

In addition to the proof of (D.1), we provide one comment on its validity for

compact configurations. The assumption of universal homogeneity and isotropic

field statistics is technically an inconsistent one for inhomogeneous fields (as is in-

evitable for a compact magnetic field); however, autocorrelation-type analysis can

be extended to include slow variation along path length. In particular, if geometrical

statistics are preserved along the path length, but 〈δB2〉1/2 slowly varies, then we

can describe magnetic autocorrelation tensors of the form

Mnn′(r) = M̃nn′(r)
〈
δB2

〉
(z) . (D.17)
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The deflection-field autocorrelation function becomes

C(r⊥) =
e2

m2
pc

2

∫ lz

0

dz̄
〈
δB2

〉
(z̄)

∫ ∞
0

drz M̃

(√
r2
⊥ + r2

z

)
. (D.18)

However, such a picture is only valid if there is a sufficient separation of scales

between variation of 〈δB2〉(z) and stochastic fluctuations. In particular, if

lz
`B
∼

maxz∈[0,lz ] {δB(z)}
〈δB2〉1/2

, (D.19)

then the magnitude of deflections will deviate from (D.1).



Appendix E

Derivation of linear-regime

image-flux relation (2.26) from

small-deflection RK image-flux

relation (2.9)

In Section 2.3.1, it was stated that in the linear regime, plasma-image mapping (2.7),

and RK image-flux relation (2.9) reduce to simplified expressions (2.24) and (2.25),

which for convenience we reproduce here:

x
(s)
⊥ =

rs + ri
ri

x⊥0 [1 +O(µ)] , (E.1)

and
δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

=
rsri
rs + ri

4πe

mpc2V

∫ lz

0

jz

(
x⊥0

(
1 +

z′

ri

)
, z′
)

dz′ . (E.2)

It was also claimed that the image-flux deviation δΨ(x⊥0) could be related to the

deflection-field potential ϕ(x⊥0) defined by (2.15) according to Poisson equation

(2.30):

∇2
⊥0ϕ(x⊥0) = −Ξ(x⊥0) , (E.3)

202



203

where Ξ(x⊥0) is a source function defined by (2.30),

Ξ(x⊥0) =
rs + ri
ri

V

rs

δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

. (E.4)

In this appendix we derive these results using the fact that in the linear regime,

µ � 1, allowing for asymptotic expansions of plasma-image mapping (2.7) and RK

image-flux relation (2.9) in µ. It also examines the proper magnitude of terms

neglected in the asymptotic expansion of RK image-flux relation (2.9) in µ – in

particular, whether it is consistent to not expand the argument of the image-flux

distribution in terms of its argument, the plasma-image mapping.

To derive the simplified plasma-image mapping (E.1), we start from full mapping

(2.7), that is,

x
(s)
⊥ (x⊥0) =

(
rs + ri
ri

x⊥0 +
rs
V

w(x⊥0)

)
[1 +O(δα, δθ)] , (E.5)

and note that

rs |w(x⊥0)| /V
(rs + ri) |x⊥0| /ri

∼ µ . (E.6)

Thus, (E.5) can be re-written as the simplified linear mapping (E.1) to leading order

in µ:

x
(s)
⊥ =

rs + ri
ri

x⊥0 [1 +O(δα, µ)] . (E.7)

Note that the asymptotic expansion carried out in δθ in order to derive (E.5) is

superceded by the expansion in µ, since by its definition µ is a larger parameter.

Now turning to the image-flux relation, we begin with (2.9):

Ψ
(
x

(s)
⊥ (x⊥0)

)
=

∑
x

(s)
⊥ =x

(s)
⊥ (x⊥0)

Ψ0∣∣∣det∇⊥0

[
x

(s)
⊥ (x⊥0)

]∣∣∣ . (E.8)

Evaluating the determinant in the denominator of image-flux relation (E.8) explicitly



204

in terms of the full plasma-image mapping (E.5), we find

det
∂x

(s)
⊥

∂x⊥0

= det

(
rs + ri
ri

I +
rs
V

∂w(x⊥0)

∂x⊥0

)
=

(
rs + ri
ri

)2
{

1 +
rsri

(rs + ri)V
∇⊥0 ·w(x⊥0)

+

[
rsri

(rs + ri)V

]2

det
∂w(x⊥0)

∂x⊥0

}
. (E.9)

Estimating the relative size of terms on the right hand side of (E.9), we have

rsri
(rs + ri)V

∇⊥0 ·w(x⊥0) ∼ µ ,

(
rsri

(rs + ri)V

)2

det
∂w(x⊥0)

∂x⊥0

∼ µ2 . (E.10)

Assuming µ� 1, the determinant can therefore be expanded in terms of µ as

det
∂x

(s)
⊥

∂x⊥0

=

(
rs + ri
ri

)2 [
1 +

rsri
(rs + ri)V

∇⊥0 ·w(x⊥) +O
(
µ2
)]

. (E.11)

Then expanding image-flux relation (E.8) in terms of µ leads to

Ψ
(
x

(s)
⊥

)
≈
(

ri
rs + ri

)2

Ψ0

[
1− rsri

(rs + ri)V
∇⊥0 ·w(x⊥0) +O

(
µ2
)]

, (E.12)

which can be re-written in terms of the relative flux, normalised by the unperturbed

image flux

Ψ
(s)
0 ≡

(
ri

rs + ri

)2

Ψ0 , (E.13)

to give

δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

=
Ψ
(
x

(s)
⊥

)
−Ψ

(s)
0

Ψ
(s)
0

≈ − rsri
(rs + ri)V

∇⊥0 ·w(x⊥0) . (E.14)

The perpendicular-deflection field in this case is given by (2.16), that is

w(x⊥0) =
e

mpc
ẑ×

∫ lz

0

dz′ B

(
x⊥0

(
1 +

z′

ri

)
, z′
)[

1 +O
(
δα, δθ

lz
`B

)]
, (E.15)

since for µ� 1, δθ lz/`B ∼ µ δα (rs + ri) /rs � 1. We recover the result that in the
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linear regime the image displays the undeflected path integrated z-component of the

magnetic field curl:

δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

=
rsri
rs + ri

e

mpcV
ẑ ·
∫ lz

0

∇⊥0 ×B

(
x⊥0

(
1 +

z′

ri

)
, z′
)

dz′ [1 +O(δα, µ)]

=
rsri
rs + ri

e

mpcV

×ẑ ·
∫ lz

0

∇×B

(
x⊥0

(
1 +

z′

ri

)
, z′
)

dz′ [1 +O(δα, µ)] . (E.16)

Applying Ampére’s law (in the absence of the displacement current) gives the desired

result (F.5).

To derive (2.30), we start from an expression for the perpendicular-deflection field

in terms of the deflection-field potential:

w(x⊥0) =
V

rs
∇⊥0ϕ(x⊥0)

[
1 +O

(
δθ

lz
`B

)]
, (E.17)

Substitution of (E.17) into (E.14) gives

δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

= − ri
rs + ri

∇2
⊥0ϕ(x⊥0) , (E.18)

which on rearrangement gives the expected result (2.30).

A potential subtlety in the derivations of (F.5) and (2.30) (noticed by Graziani

et al. (2017)) arises from the observation that the image-flux distribution is evaluated

in the image-coordinate system. More specifically, we need to check whether using

(E.5) for calculating the argument for the image-flux distribution does not result in

the systematic neglect of any O(µ) terms in the expansion of (E.8) in µ. We do

this by first assuming sufficiently small image-flux gradients, then Taylor expanding

(E.12):

Ψ
(
x

(s)
⊥

)
= Ψ

(
rs + ri
ri

x⊥0

)
+
rs
V

w · ∇(s)
⊥ Ψ

(
rs + ri
ri

x⊥0

)[
1 +O

(
rs δθ

lΨ

)]
, (E.19)
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where∇(s)
⊥ ≡ ∂/∂x

(s)
⊥ , and lΨ � rsδθ is a typical scale on which image-flux deviations

occur. If we further assume that image-flux deviations occur with the same length

scale as magnetic field fluctuations including the image-magnification factor M =

(rs + ri) /ri, that is lΨ ∼ l̃B = M`B, the size of the discrepancy in the image-

flux distribution resulting from using (E.5) as the image-flux distribution function’s

argument is

Ψ
(
x

(s)
⊥

)
−Ψ

(
rs + ri
ri

x⊥0

)
=
rs
V

w · ∇(s)
⊥ Ψ

(
rs + ri
ri

x⊥0

)
∼ µ δΨ� δΨ . (E.20)

a quadratic term in µ. Thus we see that using (E.5) as the argument for the image-

flux distribution is consistent to the asymptotic order of the expansion provided

the perpendicular-deflection field and its derivatives vary on similar scales to the

magnetic field (taking into account the image-magnification factor). That being

said, this term could become important if image-flux gradients occur on smaller

scales than gradients of the magnetic field.



Appendix F

Derivation of linear-regime flux

RMS relation (2.26) and spectral

relation (2.35)

Section 2.3.1 claims that provided µ� 1, the RMS of relative image-flux deviations

can be related to the RMS magnetic field strength via equation (2.26), which is

〈
δΨ

Ψ
(s)
0

2
〉1/2

=

√
π

2

rirs
rs + ri

eBrms

mcV

√
lz
lΨ

=
µ

µ0

, (F.1)

where µ0 is defined by µ0 =
√

2lΨ/`Bπ – lΨ is the relative-image flux correlation

length defined subsequently in equation (F.27) – and satisfies lower bound µ0 ≤ 2/π.

Furthermore, under the same assumption µ � 1 the magnetic-energy spectrum

EB(k) is related to the 2D spectrum of image-flux deviations η̂(k) for homogeneous

and isotropic magnetic field statistics satisfying `B � lz by equation (2.35):

EB(k) =
1

2π

m2
pc

2V 2

e2r2
s lz

η̂

(
ri

rs + ri
k

)
. (F.2)
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where η̂(k) is defined by

η̂(k⊥) ≡ 1

2π

∫
dθ

(
1

Ψ
(s)
0

)2〈∣∣∣ ˆδΨ(k⊥)
∣∣∣2〉 , (F.3)

and ˆδΨ(k⊥) is the Fourier-transformed relative image-flux deviation. In this ap-

pendix we prove both results using a similar approach to that adopted in Appendix

D: we first define an autocorrelation function of the relative image-flux distribu-

tion function and then writing the magnetic autocorrelation function in terms of it.

Evaluating this at the origin will give (F.1). We shall then use the Wiener-Khinchin

theorem to relate the respective spectra of the relative-image flux and magnetic field.

Adopting a uniform initial flux distribution Ψ0(x⊥0) = Ψ0, define the image-flux

autocorrelation function by

η
(
x

(s)
⊥ , x̃

(s)
⊥

)
=

〈
δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

δΨ
(
x̃

(s)
⊥

)
Ψ

(s)
0

〉
. (F.4)

This correlation function can then be related to the magnetic autocorrelation function

by substituting for the relative image-flux distribution using the linear-regime image-

flux relation (2.25), which can be written as

δΨ
(
x

(s)
⊥

)
Ψ

(s)
0

≈ rsri
rs + ri

e

mpcV
ẑ ·
∫ lz

0

∇× δB
(

x⊥0

(
1 +

z

ri

)
, z

)
dz [1 +O(δα, µ)] .

(F.5)

The substitution gives

η
(
x

(s)
⊥ , x̃

(s)
⊥

)
=

〈
e2r2

i r
2
s

m2
pc

2V 2 (rs + ri)
2 εlmnεl′m′n′ ẑlẑl′

∫ lz

0

dz

∫ lz

0

dz̃
∂ δBn(x)

∂xm

∂ δBn′(x̃)

∂x̃m′

〉

=
e2r2

i r
2
s

m2
pc

2V 2 (rs + ri)
2 εlmnεl′m′n′ ẑlẑl′

∫ lz

0

dz

∫ lz

0

dz̃
∂2Mnn′(x, x̃)

∂xm∂x̃m′
, (F.6)

where Mnn′(x, x̃) is again the magnetic autocorrelation tensor, and its arguments are
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the plasma coordinates

x =

[
x⊥0

(
1 +

z

ri

)
, z

]
, (F.7)

x̃ =

[
x⊥0

(
1 +

z̃

ri

)
, z̃

]
. (F.8)

As when calculating the deflection-field correlation function, we expand the argu-

ment of the autocorrelation function in (F.6) along the z-projection of unperturbed

trajectories – neglecting small, O(δα, δθ) terms – to give simplified expressions for

the plasma coordinates, the perpendicular components of which can then be written

in terms of the perpendicular image-coordinate using linear-regime plasma-image

mapping (2.24):

x =

[
ri

ri + rs
x

(s)
⊥ , z

]
, (F.9)

x̃ =

[
ri

ri + rs
x̃

(s)
⊥ , z̃

]
. (F.10)

Again we change integration variables to

(r⊥, rz) = (x̃⊥ − x⊥, z̃ − z) , (F.11)

x̄ = x , (F.12)

which transforms partial derivatives by

∂

∂x
=

∂

∂x̄
− ∂

∂r
, (F.13)

∂

∂x̃
=

∂

∂r
. (F.14)
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Thus,

η
(
x

(s)
⊥ , x̃

(s)
⊥

)
=

e2r2
i r

2
s

m2
pc

2V 2 (rs + ri)
2 εlmnεl′m′n′ ẑlẑl′

×
∫ lz

0

dz̄

∫ lz−z̄

−z̄
drz

(
∂2

∂x̄m∂rm′
− ∂2

∂rm∂rm′

)
Mnn′(x̄, r) . (F.15)

Under the same assumption that `B � lz, we extend the limits of the inner integral

to (−∞,∞), invoking at worst an O(`B/lz) error. If we then assume the turbulence

to be locally homogeneous, the magnetic autocorrelation function is again a function

of r alone, eliminating the first term in the integrand (F.15). The outer integral can

be evaluated independently, leaving

η
(
r

(s)
⊥

)
= − e2r2

i r
2
s lz

m2
pc

2V 2 (rs + ri)
2 εlmnεl′m′n′ ẑlẑl′

∫ ∞
−∞

drz
∂2Mnn′(r)

∂rm∂rm′
. (F.16)

Alternatively writing entirely in terms of variables on the scale of the interaction

region, define rescaled relative image-flux autocorrelation function

η(0)(r⊥) = η
(
r

(s)
⊥

)
, (F.17)

which gives

η(0)(r⊥) = − e2r2
i r

2
s lz

m2
pc

2V 2 (rs + ri)
2 εlmnεl′m′n′ ẑlẑl′

∫ ∞
−∞

drz
∂2Mnn′(r)

∂rm∂rm′
. (F.18)

If we further assume isotropy, the magnetic correlation tensor takes the form given

by (C.2). In this case, it can be shown (after quite a bit of tedious but elementary

manipulation) that the image flux correlation function is directly related to the

magnetic autocorrelation function by

η
(
r

(s)
⊥

)
= η(0)(r⊥) = − e2r2

i r
2
s lz

m2
pc

2V 2 (rs + ri)
2

1

r⊥

d

dr⊥

(
r⊥

d

dr⊥

[
1

2

∫ ∞
−∞

drzM(r)

])
.

(F.19)

Now, by appropriate integration of (F.19) to invert the 2D Laplacian operator, we
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obtain an equation with exactly the same form as the deflection autocorrelation

function (D.11), but substituting an integrated form of the autocorrelation function:

ζ(r⊥) ≡
∫ ∞
r⊥

dr̃⊥
r̃⊥

∫ ∞
r̃⊥

dr′⊥ r
′
⊥ η

(0)(r′⊥) = − e2r2
i r

2
s lz

m2
pc

2V 2 (rs + ri)
2

1

2

∫ ∞
−∞

drzM(r) .

(F.20)

We can re-express ζ(r⊥) as a single integral of η(r⊥) by swapping the order of inte-

gration:

ζ(r⊥) =

∫ ∞
r⊥

dr′⊥ r
′
⊥ η

(0)(r′⊥)

∫ r′⊥

r⊥

dr̃⊥
r̃⊥

=

∫ ∞
r⊥

dr′⊥ r
′
⊥ η

(0)(r′⊥) log
r′⊥
r⊥

. (F.21)

We can then derive an expression for the magnetic autocorrelation function in terms

of ζ(r) by noting (F.20) is an Abel integral equation which can be inverted (Ensslin

and Vogt 2003). The magnetic autocorrelation function is given by

M(r) =
2

π

m2
pc

2V 2 (rs + ri)
2

e2r2
i r

2
s lz

∫ ∞
r

dy
ζ ′(y)√
y2 − r2

. (F.22)

We can rewrite this in terms of the relative image-flux autocorrelation function using

ζ ′(y) = −1

y

∫ ∞
y

dr′ r′ η(0)(r′) , (F.23)

and so

M(r) = − 2

π

m2
pc

2V 2 (rs + ri)
2

e2r2
i r

2
s lz

∫ ∞
r

dy

y
√
y2 − r2

∫ ∞
r′

dr′ r′ η(0)(r′) . (F.24)

Swapping the order of integration again, obtain

M(r) = − 2

π

m2
pc

2V 2 (rs + ri)
2

e2r2
i r

2
s lz

∫ ∞
r

dr′ r′ η(0)(r′)

∫ r′

r

dy

y
√
y2 − r2

. (F.25)

This is the desired relation for the magnetic autocorrelation function in terms of the

relative image-flux autocorrelation function.
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To recover (F.1), we take the limit as r → 0 in (F.25) and using the regularity

condition, deducing

B2
rms

8π
=

1

(2π)2

m2
pc

2V 2 (rs + ri)
2

e2r2
i r

2
s lz

∫ ∞
0

dr η(0)(r)

=
1

(2π)2

m2
pc

2V 2 (rs + ri)

e2rir2
s lz

∫ ∞
0

dr η(r) . (F.26)

Now, defining relative image-flux correlation length lΨ by

lΨ =

∫ ∞
0

dr
η(0)(r)

η(0)(0)
=

〈(
δΨ

Ψ
(s)
0

)2〉−1/2 ∫ ∞
0

dr η(0)(r) , (F.27)

we see by substituting (F.27) into (F.26) that the RMS of relative image-flux devia-

tions is related to the magnetic field RMS by

〈(
δΨ

Ψ
(s)
0

)2〉1/2

=

√
π

2

rirs
rs + ri

eBrms

mpcV

√
lz
lΨ

=
µ

µ0

, (F.28)

in agreement with (F.1).

The relation (F.2) between the magnetic-energy spectrum and two-dimensional

spectrum of the relative image-flux in the linear regime can be determined by re-

writing (F.19) in the following form:

η(0)(r⊥) = − e2r2
sr

2
i lz

m2
pc

2V 2 (rs + ri)
2∇

2
⊥

[
1

2

∫ ∞
−∞

drzM(r)

]
, (F.29)

where ∇⊥ = ∂/∂r⊥. Now Fourier transforming with respect to r⊥, (F.29) becomes

η̂(0)(k⊥) =
e2r2

sr
2
i lz

2m2
pc

2V 2 (rs + ri)
2k

2
⊥M̂(k⊥, 0) . (F.30)

Then, we note that the Fourier transform of the rescaled relative image-flux auto-

correlation function is related to the Fourier transform of the relative image-flux
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autocorrelation function by

η̂(0)(k⊥) = η̂(k⊥)

(
ri

rs + ri

)2

. (F.31)

Again invoking isotropic magnetic field statistics and the Wiener-Khinchin theorem,

we deduce

η̂(k) =
2πe2r2

sr
2
i lz

m2
pc

2V 2 (rs + ri)
2EB(k) . (F.32)

This can be rearranged to give (F.2) as claimed. The derived result agrees with

previous work by Graziani et al. (2017).

Finally, to demonstrate that µ0 ≤ 2/π, we note the following result:

〈(
δΨ

Ψ
(s)
0

)2〉
= 2π

∫ ∞
0

dk kη̂(k) =
r2
sr

2
i

(ri + rs)
2

4π2e2lz
m2
pc

2V 2

∫ ∞
0

dk kEB(k) . (F.33)

Substituting for the mean of squared relative image-flux using (F.28), this can be

used to find the relative image-flux correlation length lΨ in terms of the magnetic-

energy spectrum:

lΨ =

∫∞
0

dk EB(k)∫∞
0

dk kEB(k)
. (F.34)

Recalling that the magnetic correlation length is given by

`B =
π

2

∫∞
0

dk EB(k) /k∫∞
0

dk EB(k)
, (F.35)

we conclude that

µ0 =

√
2lΨ
π`B

=
2

π

∫∞
0

dk EB(k)[∫∞
0

dk kEB(k)
]1/2 [∫∞

0
dk EB(k) /k

]1/2 ≤ 2

π
, (F.36)

where the final step results from the Cauchy-Schwarz inequality applied to the (pos-

itive) integrands in the denominator.

To investigate the accuracy of (F.1) as µ is increased, we consider a particular

stochastic field configuration and then vary the effective µ of a proton-imaging set-up
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Figure F.1: Validity of linear-regime prediction (F.28) of RMS relative image-
flux variations for general µ. For a particular stochastic magnetic field specified on
a 2013 array in interaction region, side length li = l⊥ = lz = 0.1 cm (grid spacing δx =
li/201), the RMS of magnetic field strength Brms is varied; for each different value of Brms,
the same proton-imaging set-up outlined in Figure 2.1 is carried out, and the associated
RMS of relative image-flux deviations is calculated. This is compared to linear-regime
prediction (F.1), with µ0 = 3/2

√
2π ≈ 0.6. The field has a magnetic-energy spectrum of

the form (F.37), Brms = 10 kG, and `B = 30µm.

applied to it. In particular, we consider a random collection of ‘cocoon’ magnetic

fields (see Appendix G.3), which has the following magnetic-energy spectrum:

EB(k) =
〈B2〉 `e

12
√

2π3/2
`4
ek

4 exp
(
−`2

ek
2/2
)
, (F.37)

for `e the typical size of a cocoon. It can be shown for this form of magnetic-energy

spectrum that normalisation constant µ0 is given by µ0 = 3/2
√

2π ≈ 0.6 – derived in

Appendix G. Figure F.1 plots this prediction for a range of normalised µ, along with

the measured RMS for a particular numerical numerical instantiation of a Gaussian

cocoon field.

We observe that (F.1) is very accurate for small µ; however, this no longer holds

as µ increases. For 0.25 < µ < 0.9, the RMS of relative image-flux variations is

under-predicted, with

〈(
δΨ

Ψ
(s)
0

)2〉
∼ 1 =⇒ µ ≈ 0.35 ≈ 0.6µ0 . (F.38)
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For µ > 0.7, the RMS of relative image-flux deviations begins to decrease with µ,

with the consequence that for large values of µ, it becomes much larger than the

RMS of relative image-flux deviations. In short, the condition of order-unity image-

flux variations does not imply that µ as defined by (2.17) in the main text is of the

same order.



Appendix G

Calculation of spectra/correlation

scales for model stochastic fields

In this chapter, we consider three particular examples of magnetic energy spectra:

the power law spectra (2.21) and (2.55) specified in the main text, and the ‘cocoon’

spectrum (first given in (F.37)). For each of these fields, this appendix provides

a more detailed summary of the properties of magnetic fields with this spectra and

associated image-flux distributions: more specifically, the magnetic correlation length

`B given by (2.4), the RMS of the perpendicular-deflection field wrms, the relative

image-flux correlation length lΨ given by (F.27), the RMS of relative image-flux

deviations in the linear regime, and µ normalisation constant µ0.

G.1 Power law spectrum (2.21)

For this chapter we consider the simplest possible power law of the form (for p 6= 1)

EB(k) =
B2
rms

8π
(p− 1)

k−p

k−p+1
l − k−p+1

u

, (G.1)
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where kl = 2π/lc and ku are lower and upper spectral wavenumber cutoffs. Calcu-

lating the correlation length `B with (2.4) gives

`B =
lc
4

p− 1

p

1− (kl/ku)
p

1− (kl/ku)
p−1 ≈

p− 1

p

lc
4
, (G.2)

where the approximate expression is valid is (kl/ku)
p−1 � 1. Note that the correla-

tion length is approximately four times smaller than the wavelength associated with

the lower wavenumber cutoff, even if the spectrum is very steep (p� 1). The RMS

of the perpendicular deflections is then given by

w2
rms =

lc
4

p− 1

p

1− (kl/ku)
p

1− (kl/ku)
p−1

e2 〈B2〉 lz
m2
pc

2
. (G.3)

The relative image-flux correlation length – calculated using (F.34) – is related to

the upper and lower spectral wavenumber cutoffs by

lΨ =
2

π

p (p− 2)

(p− 1)2

(
1− (kl/ku)

p−1)2

(1− (kl/ku)
p)
(
1− (kl/ku)

p−2)`B . (G.4)

Substituting this result into RMS of relative image-flux deviations (2.26) gives

〈(
δΨ

Ψ
(s)
0

)2〉
=

π

2

r2
sr

2
i

(ri + rs)
2

e2 〈B2〉
m2
pc

2V 2

p− 1

p− 2

k−p+2
l − k−p+2

u

k−p+1
l − k−p+1

u

=
π2

4

(p− 1)2

p (p− 2)

(1− (kl/ku)
p)
(
1− (kl/ku)

p−2)(
1− (kl/ku)

p−1)2 µ2 . (G.5)

In the limit of (kl/ku)
p−2 � 1 (a condition which requires p > 2), this gives µ

normalisation constant

µ0 ≈
2

π

√
p (p− 2)

p− 1
. (G.6)
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For 1 < p < 2, the µ normalisation constant becomes a function of the wavenumber

range, decreasing as ku/kl increases – specifically

µ0 ≈
2

π

√
p (2− p)
p− 1

(
kl
ku

)2−p

. (G.7)

This is unsurprising, since heuristically we would expect that for spectral indices in

this range the dominant wavemodes in terms of image-flux in the linear regime are

at the smallest scales, on account of the image-flux distribution being closely related

to projections of MHD current structure in the linear regime.

G.2 Power law spectrum (2.55)

The special case of p = 1 gives power law

EB(k) =
〈B2〉
8π

1

k log ku/kl
. (G.8)

The correlation length is

`B =
lc
4

(
1− kl

ku

)
1

log ku/kl
, (G.9)

and so

w2
rms =

lc
4

(
1− kl

ku

)
1

log ku/kl

e2B2
rmslz

m2
pc

2
. (G.10)

Unlike the case p > 1, the correlation length decreases (albeit logarithmically) with

the wavenumber range of the power law. The relative image-flux correlation length

is

lΨ =
lc
2π

1

ku/kl − 1
log ku/kl . (G.11)
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This is inversely proportional to the wavenumber range if kl � ku, so is much smaller

than the correlation length. The RMS of relative image-flux deviations is

〈(
δΨ

Ψ
(s)
0

)2〉
=
π2

4

r2
sr

2
i

(ri + rs)
2

e2B2
rms

m2
pc

2V 2

lz
`B

ku
kl

1

[log ku/kl]
2 , (G.12)

which gives µ normalisation constant

µ0 =
2

π

√
kl
ku

log
ku
kl
. (G.13)

Thus for a spectrum as shallow as a k−1 power law, order-unity variations in image

flux will occur at µ ∼ µ0

√
kl/ku. This can be interpreted as being due to the smallest

structures having the highest µ for such shallow spectra – discussed in Section 2.4.2.

G.3 Cocoon field

The magnetic cocoon field is formed from spherical blobs of size `e defined precisely

by

B = B0
r

`e
exp

(
−r

2

`2
e

)
eφ . (G.14)

for azimuthal basis vector eφ. As demonstrated elsewhere (see Kugland et al. 2012),

when imaged in the ez direction such a field can lead to either a defocusing or focusing

ring of image flux, depending on its orientation; however, when imaged from the side,

symmetry implies that no overall deflections can be seen. It can be shown that the

spectrum of a field of randomly orientated and positioned magnetic cocoons with

field energy B2
rms/8π has magnetic-energy spectrum (Davidson 2004)

EB(k) =
Brms`e

12
√

2π3/2
`4
ek

4 exp
(
−`2

ek
2/2
)
. (G.15)
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The magnetic correlation length is

`B =

√
2π

3
`e , (G.16)

and the RMS deflection-field strength

w2
rms =

√
2π

3

e2B2
rmslz`e
m2
pc

2
. (G.17)

The relative image-flux correlation length becomes

lΨ =
9

16
`B. (G.18)

Now calculating the RMS of relative image-flux deviations for the linear regime using

(2.26), we find

〈(
δΨ

Ψ
(s)
0

)2〉
=

8π

9

r2
sr

2
i

(ri + rs)
2

e2B2
rms

m2
pc

2V 2

lz
`B

=
8π

9
µ2 . (G.19)

This implies that for a cocoon field, the appropriate normalisation µ0 for the spectra

is given by µ0 = 2
√

2π/3 ≈ 1.65.



Appendix H

Derivation of lower bound (2.47) for

magnetic field RMS by analogy to

the Monge-Kantorovich problem

In this appendix we show that inverting the Monge-Ampère equation to solve for the

path-integrated field is equivalent to the L2 Monge-Kantorovich problem. Due to the

coordinate perturbation itself being the argument of the image-flux distribution, it is

clear that in general treating (2.39) analytically is challenging. However, relating the

Monge-Ampère equation to the L2 Monge-Kantorovich problem enables an explicit

reference to be given to a proof of the existence of a solution. We subsequently

demonstrate the validity of lower-bound for the RMS magnetic field strength (2.47)

in terms of the predicted deflection-field potential resulting from the application of

the field reconstruction algorithm descrived in the main text.

We state again the image-flux relation (2.39) in the case when the plasma-image

mapping is injective:

Ψ(∇⊥0φ(x⊥0)) =
Ψ0(x⊥0)

det∇⊥0∇⊥0φ(x⊥0)
. (H.1)
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For convenience, we renormalise the image-coordinates by

x
(s)
⊥0 =

ri
ri + rs

x
(s)
⊥ , (H.2)

to give modified plasma-image mapping (written in terms of the deflection-field po-

tential)

φ̃ =
1

2
x2
⊥0 +

rirs
rs + ri

ϕ(x⊥0)

V
. (H.3)

The renormalised image-flux relation is then

Ψ
(
∇⊥0φ̃(x⊥0)

)
=

Ψ0(x⊥0)

det∇⊥0∇⊥0φ̃(x⊥0)
. (H.4)

A necessary (but not sufficient) condition for the problem of determining ∇⊥0φ̃ from

the image-flux distribution to be well posed is a suitable boundary condition. In the

main text, we state this boundary condition in Neumann form, that is

∇⊥0φ̃(ΩI) = ΩS . (H.5)

For a finite region, it can be shown that (H.5) is equivalent to a global flux conser-

vation condition of the form

∫
ΩI

Ψ0(x⊥0) d2x⊥0 =

∫
ΩS

Ψ
(
x

(s)
⊥0

)
d2x

(s)
⊥0 . (H.6)

where the mapping sends image region ΩI to ΩS: that is ∇⊥0φ(ΩI) = ΩS. This is

known as a second boundary condition.

The L2 Monge-Kantorovich problem in the context of proton flux mapping is as

follows: given two positive flux distributions functions Ψ0(x⊥0) and Ψ
(
x

(s)
⊥0

)
defined

on regions ΩI and ΩS with equal total mass, find the mapping x
(s)
⊥0 = x

(s)
⊥0(x⊥0) which
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minimises the cost functional

C
(
x

(s)
⊥0

)
=

∫
d2x⊥0

∣∣∣x(s)
⊥0(x⊥0)− x⊥0

∣∣∣2 Ψ0(x⊥0) , (H.7)

where global flux conservation condition (H.6) holds (Gangbo and McCann 1996,

Villani 2008).

The equivalence with the Monge-Ampère equation follows by introducing x
(s)
⊥0 =

x
(s)
⊥0(x⊥0) explicitly into the right hand side of (H.6), to give local condition

det
∂x

(s)
⊥0

∂x⊥0

=
Ψ0(x⊥0)

Ψ
(
x

(s)
⊥0(x⊥0)

) . (H.8)

A theorem (due to Brenier (1991)) shows that the solution to the Monge-Kantorovich

problem is unique, and characterised as the gradient of a convex potential map-

ping (Sulman et al. 2011). Since ∇⊥0φ̃ in the case of proton mapping is convex

if and only if the plasma-image mapping is injective, this solution is precisely the

Monge-Kantorovich potential.

Thus, with boundary condition (H.5) or (H.6), the inversion problem associated

with is well-posed. As mentioned in the main text, a variety of numerical schemes

have been suggested to implement this (see for example Dean and Glowinski 2006,

Sulman et al. 2011).

Explicitly calculating the cost functional in terms of physical quantities for our

problem, we see that for an initially uniform flux,

C
(
x

(s)
⊥0

)
= Ψ0

r2
sr

2
i

(rs + ri)
2 V 2

∫
d2x⊥0 |w(x⊥0)|2 ∝ w2

rms . (H.9)

Thus, the reconstructed Monge-Kantorovich potential minimises the RMS of all pos-

sible perpendicular-deflection fields:

w2
rms ≥

〈
(∇⊥0ϕ)2〉 . (H.10)
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This rigorously demonstrated lower bound can in turn be used to find a lower bound

on predicted field strengths. Supposing we have a field configuration B in a compact

volume V, with size lz in the z direction. Then, it follows from the Cauchy-Schwarz

inequality that

∫
V

B2dV ≥
∫
V

B2
⊥dV ≥ 1

lz

∫
d2x⊥

∣∣∣∣∫ lz

0

dzB⊥(x⊥, z)

∣∣∣∣2 . (H.11)

Thus,

B2
rms ≥

1

l2z

〈∣∣∣∣∫ lz

0

dzB⊥(x⊥, z)

∣∣∣∣2
〉
, (H.12)

with equality if and only if B = B⊥, and B⊥ = B(x⊥). Since

∫ lz

0

dzB⊥(x⊥, z) = −mpc

e
ẑ×w , (H.13)

it follows that 〈∣∣∣∣∫ lz

0

dzB⊥(x⊥, z)

∣∣∣∣2
〉

=
m2
pc

2

e2
w2
rms . (H.14)

Therefore, the magnetic field is bounded below by

B2
rms ≥

m2
pc

2

e2l2z
w2
rms . (H.15)

The final lower bound is given by the deflection-field potential from (H.10):

B2
rms ≥

m2
pc

2

e2l2z

〈
(∇⊥0ϕ)2〉 . (H.16)

Operationally, we conclude that applying a field reconstruction algorithm to a par-

ticular proton-flux image to obtain the perpendicular-deflection field associated with

the Monge-Kantorovich potential, then calculating the RMS deflection-field strength,

provides a technique for determining a lower bound for the RMS magnetic field

strength.

The accuracy of the bound is another matter; Figure H.1 shows the RMS deflection-
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Figure H.1: Accuracy of lower bound (H.10) for RMS deflection-field strength
over increasing RMS magnetic field strengths. Left: actual RMS deflection-field
strength (black) associated with Golitsyn magnetic field configuration defined in Figure 2.1
for a range of RMS magnetic field strengths compared to predicted RMS deflection-field
strength calculated from the perpendicular-deflection field reconstructed from numerically-
generated proton-flux images (red). The imaging parameters of the proton beam were
identical to those used to create proton-flux images in Figure 2.2, as was the implementa-
tion.

field strength wrms for the Golitsyn field defined in Figure 2.1 for a range of RMS

magnetic field strengths. For values of µ not much bigger that µc, the estimate of the

perpendicular-deflection field RMS obtained is not that different from the true value.

However, the discrepancy grows increasingly fast if µ is raised further, diminishing

the usefulness of the bound.



Appendix I

Numerical algorithms

I.1 Generating proton-flux images numerically

In the main text and other appendices, we carry out various numerical experiments,

for which artificial proton-flux images of magnetic fields are generated. In this ap-

pendix, we briefly explain how such images are created.

For a proton point-source, the following procedure is followed. An artificial proton

is generated at a position with Cartesian coordinate (0, 0,−ri), and is assigned a

random velocity, with speed fixed at V . The direction vector is chosen from a uniform

distribution on a constrained surface region of the unit sphere; more specifically,

defining a spherical polar coordinate system around the z-axis, the polar angle θ

is restricted to the interval θ ∈ [0, arctan (l⊥/ri)]. The proton is then mapped to

the plane z = 0, assuming its motion is free. If the initial perpendicular coordinate

x⊥0 of the proton on intersection with the z = 0 plane has either |x⊥0| > l⊥/2 or

|y⊥0| > l⊥/2 – that is, it does not pass through the cuboid containing the simulated

magnetic field (‘interaction region’) – then the artificial proton is discarded. The

procedure is repeated until the specified number of imaging protons is reached.

Once inside the interaction region, the proton’s position and velocity are evolved

using a Boris algorithm combined with magnetic field interpolation (Birdsall and

Langdon 1991, Welch et al. 2004). When a given proton leaves the interaction region,
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it is then mapped to the plane z = rs+lz (if its z-velocity is negative, it is discarded),

again assuming free motion. To create synthetic proton-flux images, protons with

perpendicular image-coordinates x
(s)
⊥ satisfying

∣∣∣x(s)
⊥

∣∣∣ <Ml⊥/2 or
∣∣∣y(s)
⊥

∣∣∣ <Ml⊥/2 –

for M the image-magnification factor – are binned into pixels.

For a proton source with finite spatial extent – a sphere, radius a – emitting

protons isotropically, a similar process is carried out to the point source, with one

modification. Each artificial proton is assigned a random position drawn from uni-

form distribution defined on the unit ball, which is then scaled by the radius a.

I.2 Generating stochastic Gaussian fields

The creation of artificial stochastic magnetic fields, and then undertaking numerical

experiments simulating proton-flux images, is a useful way of testing the various an-

alytic theories of proton imaging derived in the chapter. Of the many possibilities,

Gaussian stochastic magnetic fields are particularly convenient, since they are en-

tirely characterised statistically by their magnetic-energy spectrum (Adler 1981). As

mentioned in the main text, it is well known that stochastic magnetic fields in many

situations of interest are not Gaussian (Schekochihin et al. 2004c); nevertheless, for

the purposes of testing spectral extraction methods, assuming Gaussian statistics is

perfectly adequate.

The technique used in the main text to generate stochastic Gaussian fields is a

spectral method based on an approach due to Yamazaki and Shinozuka (1988). For

a scalar stochastic field, it consists of the following steps:

1. Create an array of random uncorrelated Gaussian noise with zero mean, and

transform into Fourier space with a fast Fourier transform (FFT).

2. Calculate the moduli of the Fourier wavemodes, and ‘colour’ these with a term

proportional to [E(knm)]1/2, where E(k) is the desired spectrum, and knm is a

centralised array of wavevectors. This must be done in a way to preserve the
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symmetries of the discrete Fourier transform associated with a real field.

3. Applying the inverse FFT gives a Gaussian, zero-mean field with that spec-

trum.

Generating random field with other types of statistics can be done in a similar

manner (Shinozuka and Deodatis 1996).

For a stochastic magnetic field, we need three such components, but also have

the further requirement that ∇ · B = 0. We enforce this solenoidality condition by

generating three uncorrelated components of a vector potential A, then calculating

B = ∇ × A. To obtain the desired spectrum, we note that for a vector potential

with Fourier-transformed autocorrelation tensor

M̂
(A)
ij (k) =

M̂ (A)(k)

2
δij , (I.1)

the relation B̂n = iεlmnkmÂn implies that

M̂
(B)
ij (k) =

1

V

〈
B̂i(k) B̂∗j (k)

〉
=
k2M̂ (A)(k)

2

(
δij −

kikj
k2

)
. (I.2)

Since this is proportional to the general form of an isotropic Fourier-transformed au-

tocorrelation tensor for a solenoidal vector field (Ensslin and Vogt 2003), we conclude

that taking

M̂ (A)(k) =
M̂ (B)(k)

k2
(I.3)

will give a stochastic magnetic field with the desired properties. When calculating

the curl of the vector potential A for this procedure numerically, it is best done

spectrally, since naive application of a discrete finite-difference operator in real space

without respecting periodic boundary conditions will result in significant spectral

distortion under the curl operation. The desired field-strength normalisation for

a generated magnetic field can be found simply by re-scaling. Similar approaches

can be undertaken to generate two-dimensional perpendicular-deflection fields from
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random 2D Gaussian noise slices in terms of an assumed spectral form for the Monge-

Kantorovich potential.

In many situations, a periodic cube (side length li = l⊥ = lz) of homogeneous

stochastic magnetic field is not sufficient: including some general variation in the

RMS of a magnetic field gives for a more realistic configuration. This can be achieved

by multiplying the vector potential used to generate the magnetic field by the desired

smooth envelope function f(x) which only varies over O(li) length scales:

Ã(x) = f(x) A(x) . (I.4)

Then,

B̃(x) = ∇× Ã(x) = f(x)∇×A(x) +∇f ×A(x) ≈ f(x) B(x) , (I.5)

where the second term is smaller than the first for x < li. Over larger scales, for

appropriately decaying f the second term can often also be ignored for scales x ∼ li:

for example, with a Gaussian envelope

f(x) = exp

(
−4σx2

l2i

)
, (I.6)

it follows that even for x ∼ li

∇f ×A(x)

f(x)∇×A(x)
∼ `B

li
� 1 . (I.7)

Since the strength of the field is much reduced at the edges anyway (where field

strengths are weak), the approximation is a good one. In terms of affecting the

spectrum, the impact of multiplying by a envelope function in real space is to apply

a convolution in Fourier space, with the subsequent result of slight resolution loss. For

li � `B this effect on spectral shape is very small; however, the overall normalisation

of the field is altered. In particular, the RMS field strengths of the two fields are
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related by 〈
B̃2
〉

=
1

V

∫
dV f(x)2 |B|2 . (I.8)

Again invoking separation of scales, we find
〈
B̃2
〉
≈ 〈B2〉 〈f 2〉. For a Gaussian

envelope of the form (I.6), this gives

〈
B̃2
〉

B2
rms

≈ 1

16

√
π3

2σ3

[
erf
(√

2σ
)]3

. (I.9)

If the RMS magnetic field strength of the enveloped field B̃ is renormalised to match

that of its parent field B, this gives a ‘maximum’ RMS 〈B2〉max (localised at the

centre of the envelope) with value

〈
B2
〉
max

= B2
rms

{
1

16

√
π3

2σ3

[
erf
(√

2σ
)]}−1

. (I.10)

However, from the perspective of an imaging proton beam, this is not the effec-

tive increase in the RMS magnetic field strength observed – since the proton beam

experiences a path-integrated magnetic field along the z-coordinate direction. De-

noting the effective RMS magnetic field strength along the perperpendicular origin

x⊥0 = (0, 0) resulting from a enveloping procedure combined with renormalisation

by Brms,0, we find

Brms,0 = Brms

[
1

l2i

∫
d2x⊥0 f(x⊥0)2

]−1/2

= Brms

[ π
8σ

erf
(√

2σ
)]−1/2

, (I.11)

which is equation (2.23) in the main text. Substituting σ = 3 gives

Brms,0 ≈ 2.7Brms . (I.12)

The validity of such estimates can be checked numerically with simulated fields, and

estimate (I.11) is usually accurate for σ > 1.

Applying an envelope to numerically generated stochastic fields is also a con-
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venient way of avoiding edges effects when performing analysis on flux samples in

testing. One such example is the loss of periodicity of flux samples generated from

a periodic magnetic field sample as µ increases from small to moderate; another

comes when applying a field reconstruction algorithm to a sample whose edges do

not strictly satisfy the required boundary conditions due to loss of proton flux from

the detector. The latter results in a loss of accuracy in the field reconstruction

algorithm in an edge region of size similar to screen displacement magnitude; the

former can lead to global spectral distortion if sufficiently strong. For the purposes

of analysis of actual samples (where non-periodic boundaries cannot be avoided),

additional techniques have to be applied, such as sample windowing or ∆-variance

methods (Arévalo et al. 2012).

I.3 Generating proton-flux images from perpendicular-

deflection fields

For general EM particle configurations, synthetic proton-flux images can be created

as just described in Appendix I.1. However, for three-dimensional magnetic fields

defined on a refined grid, this can quickly become quite computationally expensive –

for example, the (non-optimised) MATLAB ray-tracing code used to create synthetic

images for this work on a 32 processor parallelised system took 8 hours to propagate

two million particles through a 2013 grid. This can be improved by a more efficient

implementation; however, various alternatives based on the analytic theory of proton

imaging derived in Appendix D of Bott et al. (2017) can be used to achieve order of

magnitude improvements.

As a first step, perpendicular-deflection fields can be used numerically to create

proton images. This process involves assigning a random collection of proton posi-

tions on the imaging side of the array containing the desired magnetic field configu-

ration, and then calculating the perpendicular-deflection field for that configuration.



I.3 Generating proton-flux images from perpendicular-deflection fields 232

This latter procedure can be carried out without making any asymptotic approxima-

tions at all by sending a selection of test protons though the field configuration, then

using a scattered interpolation algorithm to determine the perpendicular-deflection

field. Provided the correlation length of the perpendicular-deflection field is much

greater than the pixel size, this numerically determined perpendicular-deflection field

will accurately represent the actual perpendicular deflection experienced by protons.

Once this perpendicular-deflection field is obtained, the full collection of protons

positioned on the initial coordinate grid can be allocated perpendicular velocities

according to the perpendicular-deflection field, and then the resulting proton-flux

image created. Since only O(N2) particles need to propagated through a N3 array

to give a reasonable description of the perpendicular-deflection field, and the process

of random particle position allocation is typically much less demanding, this enables

the same number of particle (indeed, far more) to be used in a fraction O(1/N) of

the time for a full ray-tracing set-up. This whole process removes a redundancy

implicit in a full ray-tracing implementation associated with randomly generated

protons travelling along similar trajectories.

A further extension of this technique allows for the generation of extremely

high resolution proton-flux images. Noting that the spectrum of the perpendicular-

deflection field has the simple relation (2.11) to the magnetic-energy spectrum –

and by the central limit theorem, is likely to be Gaussian at small-scales – a good

approximation to an actual perpendicular-deflection field can be obtained simply

by generating a Gaussian perpendicular-deflection field with an appropriate spectral

curve. Since this latter quantity is two-dimensional, the computational difficulty of

the problem is greatly reduced. For large grids (N ≥ 1000), this enables proton-flux

images to be created on a single processor which otherwise could only be conceivably

attempted with hundreds. The only exception to this rule arises when proton tra-

jectories cross inside the plasma – which occurs if and only if the diffusive regime is

reached. In this case, a full ray-tracing scheme is needed to obtain a truly accurate

proton-flux image.
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I.4 Nonlinear field reconstruction algorithm for

perpendicular-deflection field

There are various approaches for solving the Monge-Ampère equation numerically,

using finite-element methods, or converting the problem to its Monge-Kantorovich

equivalent and implementing an optimatisation (Dean and Glowinski 2006). Indeed,

the latter approach has recently been used in the very context of proton imag-

ing (Kasim et al. 2017). However, for this chapter, we use a particularly simple

alternative based on the treating the deflection-field potential as the steady-state

solution of the logarithmic parabolic Monge-Ampère equation:

∂Φ

∂t
= log

Ψ[∇⊥0Φ(x⊥)] det∇⊥0∇⊥0Φ(x⊥0)

Ψ0(x⊥0)
. (I.13)

This in turn is solved on a square grid using a finite-difference scheme (first order

in time, second order in space) combined with interpolation methods. The imposed

boundary conditions are the same Neumann condition we wish to impose for the

Monge-Ampère equation:

∇⊥0Φ(x⊥0) · n̂ = x⊥ · n̂ . (I.14)

A more detailed outline of this field reconstruction algorithm is given by Sulman

et al. (2011), where existence and uniqueness of the solution of the parabolic Monge-

Ampère equation (along with its convergence to the solution to the Monge-Ampère

equation) is proven.

The field reconstruction algorithm seems to be faster than previous approaches –

a single processor can usually reconstruct a perpendicular-deflection field for a 2012

proton-flux image in under an hour. The nonlinear field reconstruction algorithm

is publicly available in the Python code ‘PROBLEM’. PROBLEM is open source

software and is hosted on GitHub at https://github.com/flash-center/PROBLEM.
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Further modifications can be made to deal with non-rectangular boundaries.

First, any given image-flux distribution can be embedded in a image-flux distri-

bution defined on a larger rectangular region, with the exterior region filled with a

small ‘shadow’ image-flux. The field reconstruction algorithm can then be applied

using the initial flux distribution embedded in the same larger rectangular region,

but also with the exterior region filled with a shadow initial flux whose sum is equal

to that of the shadow image-flux. The calculated perpendicular-deflection field in

the interior region should be a close match to the true perpendicular-deflection field,

by conservation of particle number in the interior and exterior regions respectively.

Alternatively, the image-flux distribution can be extended to a boundary, and then

a window function used. Since the field reconstruction algorithm becomes linear

(and local) for small image-flux deviations, the external flux region will not distort

calculated internal perpendicular-deflection fields significantly. In both cases, the

result can be tested by forward-propagating particles with the desired perpendicular-

deflection field. It is acknowledged that both approaches are approximate.
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