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1. Introduction

The dynamo theory is relatively young: the ability of a flow of conducting fluid to
maintain magnetic field was conjectured 90 years ago [23], but the first example
of self-sustained dynamo is only 50 years old [17]. Both physical and mathemat-
ical aspects of the theory are often complicated and may seem unnatural to an
excessively sceptical observer. However, the need for dynamo action to maintain
magnetic fields of the Earth and the Sun is so evident (in particular because the
global magnetic fields of these objects exhibit time variation that is inconsistent
with any other viable option) that the paradigm of dynamo theory has been very
widely accepted for planets and stars. The situation is different with other astro-
physical objects—accretion discs, galaxies and galaxy clusters. Firstly, magnetic
fields in these remote objects are more difficult to detect and explore. Secondly,
the size of the parent objects is almost invariably so large (with the exception of
accretion discs in stellar objects) that we only have information about the spa-
tial structures of astrophysical magnetic fields and, in vast majority of cases, any
time variation can only be hypothesized. Therefore, it is not surprising that, until
recently, astrophysical dynamos appeared to be exotic creatures in the world of
astrophysics, and the idea of primordial magnetic fields was preferred by many,
either explicitly or implicitly. The situation is now changing: more researchers
would be prepared to accept that most astrophysical objects host a dynamo as dy-
namo theory becomes more detailed and capable to provide testable predictions.

Many recent developments in dynamo theory arise from extensive numerical
simulations whose complexity approaches, in many respects, that of the labora-
tory experiment. Therefore, numerical experiments need to be interpreted with
the same care and caution as laboratory experiments or astronomical observa-
tions. We discuss in Section 7 an approach to quantifying the morphology of
(random) structures based on Minkowski functionals. Furthermore, it would be
difficult to understand the outcome of complicated models, experiments or ob-
servations without a range of simplified analytical models. The recent explosive
development of numerical approaches to astrophysical dynamos, based on the
growth in the computing power available, has resulted in a reduced interest in
simplified analytical models. We believe that this hampers proper interpreta-
tion of the numerical results, now often presented in the form of aesthetically
appealing images (perhaps arranged into a time sequence called a movie) ac-
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companied by a subjective qualitative description. We present, in Section 6, a
simple but surprisingly accurate analytical approximate solution of the mean-
field dynamo equations for thin discs and spherical shells; such solutions can be
useful in both interpretations of numerical experiments and in various applica-
tions where a simple analytical structure of magnetic field is needed, rather than
a three-dimensional data cube.

This text preserves the flavour of lecture notes; in particular, we do not at-
tempt to provide extensive references. The depth of the presentation varies. For
example, the reviews of Sections 2–3 only touch upon the observations of astro-
physical magnetic fields and the hydrodynamic modelling of stars and galaxies;
we only represent facts required to construct solutions of dynamo equations dis-
cussed in the second half of the text. We discuss in some detail dynamo models
for the Sun, spiral galaxies and galaxy clusters. A review of dynamo action in
accretion discs can be found in Refs [9, 41], and dynamos in elliptic galaxies are
reviewed in Ref. [41].

We shall be using CGS units in this text, with the unit of magnetic flux density
of 1 G = 10−4 T; in application to galactic magnetic fields, a smaller unit 1 μG =
10−6 G = 0.1 nT is often convenient. In the context of stellar physics, the Solar
radius R� = 7 × 1010 cm is a convenient unit length, whereas 1 pc = 3 ×
1018 cm ≈ 3.26 light years is a suitable length scale in the case of galaxies, with
1 kpc = 103 pc. One parsec is the distance from which the Earth orbit around the
Sun has the angular diameter (parallax) of one second of arc.

2. Observations of astrophysical magnetic fields

2.1. Zeeman splitting

Measuring the splitting of spectral lines in magnetic field is historically the first
method of observation of cosmic magnetic fields. Only twelve years after the
discovery of Zeeman, Hale [16] has succeeded in using it for measuring the mag-
netic field of sunspots. Comparison of intensities of a spectral line wings, pro-
duced by the Zeeman effect, has allowed Babcock [1] to detect it in the emission
of distant peculiar magnetic stars. Ten years later Bolton and Wild [8] proposed
to use the Zeeman splitting of the λ21 cm neutral hydrogen absorption line to
measure magnetic fields in the interstellar medium. Such measurements were
achieved a further ten years later [53, 54].

In the absence of external fields, atomic energy levels do not depend on the
direction of the total angular momentum (orbital L plus spin S) of electrons.
In other words, the energy levels are degenerate with respect to the momen-
tum direction. In the magnetic field B, that distinguishes a certain direction,
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an atom acquires the additional energy −μ(L + 2S) · B which depends on the
orientation of the angular momentum with respect to the magnetic field (here,
μ = eh̄/2mec = 9.3 × 10−21 erg G−1 is the Bohr magneton). The energy levels
split into 2j + 1 equidistant levels, where j is the quantum number of the total
angular momentum J = L + S. The energy levels are given by [21]

EH = E0 ± μgMB, M = 0, 1, . . . , j.

The factor g is called the Lande factor,

g = 1 + j (j + 1) + s(s + 1) − l(l + 1)

2j (j + 1)
,

with l and s the quantum numbers of the orbital and spin momenta. In partic-
ular, the Lande factor appears because the mechanical and magnetic momenta
are related differently for the electron’s orbital motion (Ml, l) and spin (Ms, s):
Ml = −(e/2me)l and Ms = −(e/me)s, where me is the electron mass.

The quantum selection rules only allow transitions between the levels for
which M changes by �M = 0,±1. If the Lande factor is the same for the
upper and lower levels, the spectral line of the basic frequency ν0 is split into a
triplet (νπ , νσ ) (the normal Zeeman effect):

νπ = ν0, νσ = ν0 ± g
e

4πmec
B = ν0 ± 1.4 g

(
B

10−6 G

)
Hz,

where c is the speed of light. In a general case, when the upper and lower lev-
els have different Lande factors the number of components may be larger (the
anomalous Zeeman effect). The component separation is proportional to the dif-
ference in gM between the energy levels involved, �(gM), but remains propor-
tional to magnetic field strength.

The main obstacle in the observations of the Zeeman splitting is the thermal
broadening of the spectral lines which can exceed the separation of the multi-
plet components. For the interstellar λ21 cm line of neutral hydrogen, the Zee-
man splitting in the field 10−5 G is about 30 Hz, while the line half-width due
to the thermal Doppler broadening is �ν = ν0vT /c ≈ 104 Hz for T = 100 K
(where vT is the thermal velocity). Thus, what is often observed in practice is the
broadening of spectral lines by the Zeeman effect rather than their splitting. It
is therefore important that the components of the spectral lines split by the Zee-
man effect are polarized, which helps with their detection because the wings of a
spectral line broadened by the Zeeman effect have different polarizations.

In the Solar atmosphere, the Zeeman splitting is observable where magnetic
field strength exceeds about 1500 G; magnetic field in sunspots can reach 3000 G.
For weaker magnetic fields, polarimetric observations of the Zeeman broadening
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are feasible. Detailed discussion of the Zeeman effect and its applications in solar
physics can be found in the book of Stix [47]. In the interstellar space the normal
Zeeman effect is observed in the λ21 cm neutral hydrogen absorption line, and the
anomalous Zeeman effect, in the λ18 cm OH molecule line. In dense, cold star-
forming regions, with gas number density in excess of n = 105–106 cm−3, where
magnetic field strength exceeds 1 mG, the Zeeman splitting can be detected in the
CO and CN molecular radio lines. At lower densities, the Zeeman broadening of
the spectral lines of neutral hydrogen and the hydroxyl OH is observable, but the
required gas densities and magnetic fields are still rather high, n > 10 cm−3, B >

1 μG. These values should be compared with the typical density n � 0.1 cm−3 in
the diffuse warm interstellar medium and n � 10−3 cm−3 in the hot interstellar
gas. Altogether, the Zeeman effect provides the most important method in the
observational studies of the Solar magnetic fields and plays prominent role in the
observations of magnetic fields of other stars. In the interstellar space, however,
this method is useful only when applied to relatively dense regions with rather
strong magnetic fields. Although interstellar gas clouds are the site of many
important processes (including star formation), they occupy a negligible fraction
of the total volume of the interstellar space.

2.2. Synchrotron emission and Faraday rotation

Estimates of magnetic field strength in the diffuse interstellar medium of the
Milky Way and other galaxies are most efficiently obtained from the intensity
and Faraday rotation of synchrotron emission. The total I and polarized P syn-
chrotron intensities and the Faraday rotation measure RM are weighted integrals
of magnetic field over the path length L from the source to the observer, so they
provide various average measures of magnetic field in the emitting or magneto-
active volume:

I = K

∫
L

ncrB
2⊥ ds, P = K

∫
L

ncrB̄
2⊥ ds, RM = K1

∫
L

neB‖ ds, (2.1)

where ncr and ne are the number densities of relativistic and thermal electrons,
B = B̄ + b is the total magnetic field comprising regular B̄ and random b parts,
with B̄ = 〈B〉, 〈b〉 = 0 and 〈B2〉 = 〈B〉2 + 〈b2〉, where angular brackets
denote averaging, subscripts ⊥ and ‖ refer to magnetic field components per-
pendicular and parallel to the line of sight, and K and K1 = e3/(2πm2

ec
4) =

0.81 rad m−2 cm3 μG−1 pc−1 are certain dimensional constants (an explicit ex-
pression for K is omitted here; it can be found, e.g., in Ref. [27]). The degree of
polarization p is related to the degree of regularity of the magnetic field. In the
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simplest case of ncr = const, an expression often used is

p ≡ P

I
≈ p0

B̄2⊥
〈B2⊥〉 = p0

B̄2⊥
B̄2⊥ + 2

3 〈b2〉 , (2.2)

where the random field b has been assumed to be isotropic in the last equality,
and p0 ≈ 0.75 weakly depends on the spectral index of the emission. This
widely used relation is only approximate. In particular, it does not allow for any
anisotropy of the random magnetic field, for the dependence of ncr on B, and for
depolarization effects; some generalizations are discussed in Ref. [44].

The orientation of the apparent large-scale magnetic field in the sky plane
is given by the observed B-vector of the polarized synchrotron emission. As
polarized radio emission propagates through magnetized plasma, its polarization
plane rotates because of what is known as the Faraday effect (i.e., magnetized
plasma is birefringent). The rotation angle is given by �ψ = RM λ2, where λ

is the emission wavelength. The Faraday rotation measure can be obtained from
measurements of the differences in the polarization angles ψ between several
wavelengths. The special importance of the Faraday rotation measure, RM, is
that this observable is sensitive to the direction of B (the sign of B̄‖) and this
allows one to determine not only the orientation of B̄ but also its direction. Thus,
analysis of Faraday rotation measures can reveal the three-dimensional structure
of the magnetic vector field.

Since ncr is difficult to measure, it is often assumed that magnetic field and
cosmic rays are in pressure equilibrium or energy equipartition; this allows to
express ncr in terms of B. The physical basis of this assumption is the fact that
cosmic rays (charged particles of relativistic energies) are confined by magnetic
fields. The cosmic ray number density ncr in the Milky Way can be determined
independently from the γ -ray emission produced when cosmic ray particles in-
teract with the interstellar gas [48]. Then magnetic field strength can be ob-
tained without assuming equipartition; the results are generally consistent with
the equipartition values.

In the Milky Way, the dispersion measures of pulsars, DM = ∫
L

ne ds provide
information about the mean thermal electron density, but the accuracy is limited
by our uncertain knowledge of distances to pulsars. Estimates of the strength of
the regular magnetic field in the Milky Way are often obtained from the Faraday
rotation measures of pulsars simply as

B̄‖ = RM

K1 DM
. (2.3)

This estimate is meaningful if magnetic field and thermal electron density are sta-
tistically uncorrelated. If the fluctuations in magnetic field and thermal electron
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density are correlated with each other, they will contribute positively to RM and
Eq. (2.3) will yield overestimated B̄‖. In the case of anticorrelated fluctuations,
their contribution is negative and Eq. (2.3) is an underestimate. Physically rea-
sonable assumptions about the statistical relation between magnetic field strength
and electron density can lead to Eq. (2.3) being in error by a factor of 2–3 [5].

Magnetic fields in the Solar corona can also be measured via their rotation
of the polarization plane of the radio emission of background extragalactic ra-
dio sources [46]. At the wavelength of λ21 cm, a magnetic field of 0.03 G in
the corona (thermal electron density of 1.5 × 104 cm−3, path length of ten solar
radii) produces RM � 10 rad m−2, with the corresponding rotation angle of the
polarization plane of 25◦.

2.3. Results of observations

2.3.1. The Sun and stars
The magnetic fields that are most readily observable in the Sun are those in
the sunspots, where magnetic fields of a strength exceeding 1500 G makes the
Zeeman spectral mutliplets observable. Weaker fields are detectable through the
Zeeman broadening. Despite strong local magnetic fluctuations associated with
the granulation, a weaker overall magnetic field of the Sun can be measured;
it is dominated by a dipolar component of a strength 1 G near the poles. The
overall magnetic field is oscillatory with a period of about 22 years, and is de-
scribed as a dynamo wave propagating from latitudes ±(30◦–35◦) towards the
Solar equator down to the latitude of about ±(5◦–10◦) in each hemisphere; an
additional, weaker branch of the dynamo wave propagates polewards from the
mid-latitudes. The strong magnetic field of the sunspots is believed to be a sur-
face manifestation of the strong toroidal magnetic field produced in the Solar
interior. Unlike the dipolar poloidal magnetic field, the overall toroidal mag-
netic field does not penetrate outside the Solar surface (except in the sunspots),
in agreement with the vacuum boundary conditions often employed in modelling
the large-scale magnetic field of the Sun. The overall symmetry of the Solar
magnetic field is approximately dipolar, B̄r (θ) = −B̄r (−θ), B̄θ (θ) = B̄θ (−θ),
B̄φ(θ) = −B̄φ(−θ) in terms of spherical coordinates with θ the latitude (θ = 0
at the equator and θ = ±90◦ at the poles). Although weak, deviations from
the perfect equatorial antisymmetry and axial symmetry are noticeable; these are
described as a quadrupolar component of the magnetic field and ‘active longi-
tudes’.

Magnetic fields in other stars can be detected using various proxies. For exam-
ple, spectral lines of ionized oxygen and calcium, O VI and Ca II are produced in
the magnetically heated plasmas in the chromosphere. The emission flux in these
lines is known to be proportional to the square root of the magnetic field strength.
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Observations in these lines reveal stellar activity cycles in late-type stars G0–K7,
which have an outer convection zone. Magnetic activity cycles result in a cyclic
variation of the area covered by starspots, and hence to cyclic photometric vari-
ations; the techniques of Doppler imaging allow the production of maps of the
stellar surface showing large starspots [29].

2.3.2. Spiral galaxies
The observable quantities (2.1) have provided extensive data on magnetic field
strengths in both the Milky Way and external galaxies. The average total field
strengths in nearby spiral galaxies, obtained from total synchrotron intensity I ,
ranges from B ≈ 4 μG in the galaxy M31 to about 15 μG in M51, with a mean of
B = 9 μG for the sample of 74 galaxies [2]. The typical degree of polarization
of synchrotron emission from galaxies at short radio wavelengths is p = 10–
20%, so Eq. (2.2) gives B̄/B = 0.4–0.5; these are always lower limits due to the
limited resolution of the observations, and B̄/B = 0.6–0.7 is a more plausible
estimate. The total equipartition magnetic field in the Solar neighbourhood is
estimated as B = 6±2 μG from the synchrotron intensity of the diffuse Galactic
radio background. Combined with B̄/B = 0.65, this yields a strength of the
local regular field of B̄ = 4 ± 1 μG. Hence, the typical strength of the local
Galactic random magnetic fields, b = (B2 − B̄2)1/2 = 5 ± 2 μG, exceeds that of
the regular field by a factor b/B̄ = 1.3 ± 0.6. RM data yield similar values for
this ratio.

Meanwhile, the values of B̄ in the Milky Way obtained from Faraday rotation
measures seem to be systematically lower than the above values. RM of pul-
sars and extragalactic radio sources yield B̄ = 1–2 μG in the solar vicinity, a
value about twice smaller than that inferred from the synchrotron intensity and
polarization. The discrepancy can be explained, at least in part, if the meth-
ods described above sample different volumes. The depth probed by the total
synchrotron emission and Faraday rotation measures of pulsars and extragalac-
tic radio sources is of the order of a few kpc. Polarized emission, however, may
emerge from more nearby regions because emission from remote regions is depo-
larized by various propagation effects [44]. However, a more fundamental reason
for the discrepancy can be a partial correlation between fluctuations in magnetic
field and thermal electron density. Such a correlation can arise from statistical
pressure balance in the interstellar medium: if the total pressure is constant on
average, regions with larger gas density (and hence larger gas pressure) usually
have weaker magnetic field (and hence lower magnetic pressure), and vice versa.
The term 〈b‖ne〉 then differs from zero and contributes to the observed RM lead-
ing to underestimated B̄ [5]. In a similar manner, correlation between B and the
cosmic ray number density ncr biases the estimates of magnetic field from syn-
chrotron intensity and polarization [44]. Altogether, B̄ = 4 μG and b = 5 μG
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Fig. 1. A schematic representation of the magnetic lines of the meridional magnetic field (solid) of
(a) dipolar and (b) quadrupolar symmetry in a thin disc (shaded). The direction of the azimuthal
magnetic field on both sides of the slab’s midplane is also shown: �, out of the page and ⊗, into the
page. The symmetry remains unchanged if all the field directions are simultaneously reversed.

seem to be acceptable estimates of magnetic field strengths for a region within
several kiloparsecs from the Sun.

Unlike the Solar magnetic field, which has a dipolar parity, galactic magnetic
fields appear to be quadrupolar [13]; the difference is illustrated in Fig. 1. This
general fact that the global magnetic fields of spherical objects (including starts
and planets) are likely to be predominantly dipolar, whereas those of flat objects
(spiral galaxies) are quadrupolar can be elegantly explained by the dynamo the-
ory (see Sect. 6.1.2).

To summarize, magnetic fields of spiral galaxies have the following typical
parameters. At scales much larger than the turbulent scale of about 100 pc, the
strength of the global magnetic field is B̄ � 3–7 μG. With the total field strength
of B � 5–12 μG, the ratio of energy densities in the random and regular mag-
netic fields is 〈b2〉/B̄2 � 3. The global magnetic field is likely to have a global
quadrupolar parity, but this has been verified observationally only for the Milky
Way. The global magnetic pattern has the form of a spiral trailing with respect
to the galactic rotation (similarly to the galactic spiral arms), with the pitch angle
pB = arctan B̄r/B̄φ = −(10◦–30◦). Galactic magnetic fields exhibit a variety of
complicated spatial structures (e.g., magnetic arms, field reversals between the
disc and the halo, etc.). There is a widespread misconception that the strength of
the regular magnetic field near the Sun, B̄� ≈ 2 μG, is representative of all spiral
galaxies. In fact, the Sun is close to a reversal of the large-scale magnetic field;
magnetic fields at smaller galactocentric radii are significantly stronger than that
in the immediate vicinity of the Sun.

2.3.3. Galaxy clusters
Galaxy clusters are the largest gravitationally bound systems in the universe, hav-
ing masses of order 1014–1015M�. Observations of clusters in X-rays reveal that
they have an atmosphere of hot gas with temperatures T � 107–108 K, extend-
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ing over scales of order 1 Mpc = 106 pc. Succinct reviews of the observational
data on cluster magnetic fields can be found in Refs [10, 15]. The central parts
of a relatively small fraction of galaxy clusters emit radio synchrotron emission
(i.e., possess radio halos) which directly indicates the presence of magnetic fields
and relativistic electrons in their intergalactic medium. Cluster magnetic fields
can also be probed using Faraday rotation studies of both cluster radio galaxies
and background radio sources seen through the cluster. Clear contribution of the
intracluster medium to the Faraday rotation has been detected in many clusters,
so that it seems plausible that magnetic fields (unlike relativistic electrons) are
common in clusters of galaxies.

Typical number density and temperature of the interstellar gas of such rich
galaxy clusters as Coma are n = 10−3 cm−3 and T = 106 K. The radius of
the synchrotron halo in Coma is L � 500 kpc. Under the assumption of en-
ergy equipartition between the cosmic rays and magnetic fields, magnetic field
strength is of order 2 μG. Over the path length L = 500 kpc, such a field would
produce RM � 103 rad m−2. However, the observed RM is ten times smaller be-
ing of order 100 rad m−2 [11]. The difference is explained by the fact that mag-
netic field is random. To justify this, we consider the autocorrelation function of
the Faraday rotation measure in a random magnetic field. For this purpose, we
introduce coordinates (x, y, z) with the z-axis directed towards the observer, and
those in the plane of the sky, X = (X, Y ). We assume the magnetic field to be
an isotropic, homogeneous, random field with zero mean value. Then its equal-
time, two-point correlation tensor has the form 〈Bi(x, t)Bj (y, t)〉 = Mij (r, t),
where

Mij =
(
δij − rirj

r2

)
MN(r, t) + rirj

r2
ML(r, t).

Here r = |x − y|, ri = xi − yi ; ML(r, t) and MN(r, t) are known as the lon-
gitudinal and transverse correlation functions of the magnetic field, respectively
([26]; Section 34 of [22]). Since ∇ · B = 0,

MN = 1

2r

∂

∂r

(
r2ML

)
.

We further assume for simplicity that the electron density is constant. This is
consistent with the fact that random gas motions in galaxy clusters are quite sub-
sonic. The correlation function of RM is then

C(R) = 〈RM(X1)RM(X2)〉
= K2

1 n2
e

∫ L

0

∫ L

0
Bz(X1, z1)Bz(X2, z2) dz1 dz2
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= K2
1n2

eL

∫ L

−L

Mzz(R, ζ )dζ

= K2
1n2

eL

∫ L

−L

(
MN

R2

R2 + ζ 2
+ ML

ζ 2

R2 + ζ 2

)
dζ

= K2
1n2

eL

∫ L

−L

(
ML + R2

2r

dML

dr

)
dζ. (2.4)

Here we have assumed that L is much larger than the correlation length of the
magnetic field, ζ = z1 − z2, R = |X1 − X2| and r2 = R2 + ζ 2.

For the sake of illustration, consider the longitudinal correlation function of
the form

ML = 1
3b2 exp

(
− r2

2l2
B

)
,

which corresponds to the one-dimensional magnetic spectrum of the form Mk ∝
k4 exp (−k2l2

B/2) [26]; here b2 = 〈B2〉. We note that Mk attains maximum at
a wavenumber km = 2/lB (or a scale 2π/km = πlB ), whereas the longitudinal
correlation scale is given by lL = [ML(0)]−1

∫ ∞
0 ML(r) dr = lB

√
π/2.

Straightforward calculation then yields

C(R) =
√

2π

3
K2

1 n2
eb

2LlB

(
1 − R2

2l2
B

)
exp

(
− R2

2l2
B

)
. (2.5)

The root-mean-square value of RM can be obtained from Eq. (2.4) or (2.5) at
R = 0:

σ 2
RM = K2

1n2
eL

∫ L

−L

ML(R, ζ )|R=0 dζ =
√

2π

3
K2

1 n2
eb

2LlB. (2.6)

Thus, the standard deviation of RM grows with the square root of the path length
L, σRM ∝ L1/2. This happens because the polarization angle ψ of the radio emis-
sion propagating through the random magnetic field experiences random walk
because of the Faraday rotation, and hence the amount of rotation accumulated
is proportional to N1/2, where N � L/lB is the number of correlation cells on
the path length. Since RM ∝ �ψ , where �ψ is the difference in ψ between two
wavelengths, the resulting standard deviation of RM is also proportional to N1/2.
If the value of RM produced in a single correlation cell is RM0 � K1neblB , we
obtain σRM � RM0N

1/2, which agrees with Eq. (2.6).
Using b = 2 μG, ne = 10−3 cm−3, L = 500 kpc and σRM = 100 rad m−2

in Eq. (2.6), we obtain the magnetic correlation length as lB � 10 kpc. Thus,
the correlation length of magnetic fields in the intracluster gas of galaxy clusters
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is much smaller than the size of a cluster (but is rather comparable to the size
of a galaxy). An estimate of the field strength in galaxy clusters obtained from
Faraday rotation measurements is [11]

b � 5(lB/10 kpc)−1/2 μG.

In conclusion, there is considerable evidence that galaxy clusters are magne-
tized with the field root-mean-square strength ranging from a few μG to several
tens of μG in the central parts of some clusters, and with coherence scales of
order 10 kpc. These fields, if not maintained by some mechanism, will evolve
as decaying MHD turbulence, and perhaps decay on the appropriate Alfvén time
scale of about 108 yr, much shorter than the age of the cluster. Even though the
scale of the magnetic field is comparable to the size of a galaxy, these magnetic
fields cannot result from stripping of the interstellar gas together with its mag-
netic field: the strength of any magnetic field stripped from a galaxy decreases
by a factor of order ten as the gas expands from the interstellar densities of order
0.1 cm−3 to the intergalactic densities of about 10−3 cm−3: B ∝ n2/3 if magnetic
field is frozen into the gas and the expansion is spherically symmetric. Thus, even
under optimistic assumptions the stripping could account for at most 0.1 of the
observed intergalactic magnetic field strength. Magnetic fields in galaxy clusters
need dynamo action to be produced [32, 50].

3. Astrophysical flows

As discussed elsewhere in this volume, the generation of a magnetic field at a
scale comparable to the size of the parent object is a rather subtle process: since
the regular magnetic field is not mirror symmetric, its generation is a symmetry-
breaking process. (If the magnetic field is of a small scale, the system remains
mirror-symmetric on the average, and no systematic deviations from the mirror
symmetry are required to maintain a small-scale magnetic field—see Sect. 7.)
To appreciate the significance of mirror symmetry, look at the face of a clock
through a mirror. The numbers on the dial’s reflection look differently from
the original. However, the sense of rotation of the hands is the same in the
clock and in its mirror image. Under a mirror reflection of the Cartesian refer-
ence frame, (x, y, z) → (x, y,−z), the velocity components transform similarly,
(vx, vy, vz) → (vx, vy,−vz), and so the linear velocity v is a true vector. But
the angular velocity or vorticity ω = ∇ × v change differently under the reflec-
tion, (ωx, ωy, ωz) → (−ωx,−ωy, ωz), and so these vector fields are not mirror-
symmetric. [Write out the vorticity components in terms of the partial derivatives
of vx, vy, vz to obtain the above symmetry relations from those for r and v.] The
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angular velocity is a pseudo-vector. Magnetic field is a pseudo-vector too: con-
sider the reflections of a linear electric current j and the associated magnetic
field B, with j = ∇ × B. Similarly, helicity of motion v · ω is a pseudo-scalar
as it changes sign upon mirror reflection (indeed, the reflection of a right-handed
screw is a left-handed screw).

The mirror asymmetry of the magnetic field has far-reaching physical con-
sequences: a system that is perfectly mirror symmetric (i.e., lacks any pseudo-
vectorial or pseudo-scalar properties) cannot generate magnetic field at its own
scale. A pseudo-vectorial property ubiquitous in astrophysical systems is rota-
tion, resulting in the intrinsic connection of regular magnetic fields and rotation.

Another feature of electrically conducting flows important for magnetic fields
is the randomness or Lagrangian chaos: the trajectories of elementary volumes
in a random or chaotic flows diverge exponentially. In a fluid of high electric
conductivity, magnetic field is (almost) frozen into the flow, and the divergence of
the trajectories can lead to the exponential stretching and, therefore, exponential
amplification of magnetic field embedded into the flow. A type of randomness
widespread in nature is turbulence; hence, the importance of turbulent dynamos.

In this section we briefly discuss the properties of plasma motions in the
Sun, spiral galaxies and galaxy clusters important for the generation of magnetic
fields. Our focus will be on differential rotation, the α parameter of small-scale
random motions (a measure of their deviation from mirror symmetry) and turbu-
lent magnetic diffusivity.

3.1. Solar convection zone

The Sun’s magnetic field is maintained by convective motions in its part known
as the convection zone which extends from a radius of 0.7R� to about 0.95R�
(almost the Solar surface). The angular velocity of rotation in the convection zone
has been determined using methods of helioseismology. The angular velocity
slightly increases with the radius within about 30◦ of the equator and decreases
closer to the poles. With the mean angular velocity of � � 4.6 × 10−6 s−1, the
magnitude of the differential rotation across the convection zone is �� � 0.1�.
A thin region between the convection zone and the radiative zone, known as
the tachocline, is a site of especially strong differential rotation; this makes this
region especially important for the solar dynamo [18].

The scale and velocity of the convective motions associated with the gran-
ulation are l � 103 km and v � 1 km s−1, respectively. With the granula-
tion time scale τ � 500 s ≈ 10 min, the Rossby number of these motions is
Ro = (2�τ)−1 � 300. Convective structures of a larger scale, mesogran-
ules, have l � 3.5 × 104 km, v � 0.5 km s−1, τ � 5 × 104 s and Ro � 3.
For the deep convection zone, the relevant parameters are: the pressure scale
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height h � 5 × 109 cm, the gas density ρ � 0.2 g cm−3, and the convection
velocity v � 20 m s−1 and scale l � 2 × 109 cm. Magnetic field strength cor-
responding to energy equipartition with the kinetic energy of the convection is
B = (4πρv2)1/2 � 3000 G, and the Rossby number is Ro � 0.6. The relatively
small value of the Rossby number indicates that convective motions deep in the
convection zone are significantly modified by rotation; in particular, they acquire
significant helicity.

3.2. Spiral galaxies

3.2.1. Turbulence and multi-phase structure
The interstellar medium (ISM) is much more inhomogeneous and active than
stellar and planetary interiors. The reason for that is ongoing star formation:
massive young stars evolve rapidly (in about 106 yr) and then explode as super-
nova stars (SN) releasing large amounts of energy (ESN � 1051 erg per event).
These explosions control the structure of the ISM.

SN remnants are filled with hot, overpressured gas that starts by expanding
supersonically; at this stage the gas surrounding the blast wave is not perturbed.
When pressure inside a SN remnant reduces to values comparable to that in the
surrounding gas, the remnant disintegrates and merges with the ISM—at this
stage the expanding SN remnant drives motions in the surrounding gas, and its
energy is partially converted into the kinetic energy of the ISM. Since SN occur
at (almost) random times and positions, the result is a random force that drives
random motions in the ISM, which eventually become turbulent. The size of an
SN remnant when it has reached pressure balance, determines the energy-range
turbulent scale,

l � 0.05–0.1 kpc.

A fraction f = 0.07 of the SN energy is converted into the ISM’s kinetic energy.
With the SN frequency of νSN ∼ (30 yr)−1 in the Milky Way (i.e., one SN per
30 yr), the kinetic energy supply rate per unit mass is ėSN = f νSNESNM−1

gas ∼
10−2 erg g−1 s−1, where Mgas = 4 × 109 M� is the total mass of gas in the
galaxy. This energy supply can drive turbulent motions at a speed v such that
2v3/l = ėSN (where the factor 2 allows for equal contributions of kinetic and
magnetic turbulent energies), which yields

v � 10–30 km s−1,

a value similar to the speed of sound at a temperature T = 104 K or higher. The
corresponding turbulent diffusivity follows as

ηt � 1
3 lv � (0.5–3) × 1026 cm2 s−1. (3.1)
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Supernovae are the main source of turbulence in the ISM. Stellar winds is another
significant source, contributing about 25% of the total energy supply.

The time interval between supernova shocks passing through a given point is
about [24]

τ = (0.5–5) × 106 yr.

After this period of time, the velocity field at a given position completely ren-
ovates to become independent of its previous form. Therefore, this time can be
identified with the correlation time of interstellar turbulence. The renovation time
is 2–20 times shorter than the ‘eddy turnover’ time l/v � 107 yr. This means that
the short-correlated (or δ-correlated) approximation, so often employed in turbu-
lence and dynamo theory, can be quite accurate in application to the ISM—this
is a unique feature of the interstellar turbulence. Note that the standard estimate
(3.1) is valid if the correlation time is l/v. If the renovation time was used instead,
the result would be ηt � l2/τ � 1027 cm2 s−1, a value an order of magnitude
larger than the standard estimate.

Another important result of supernova activity is a large amount of gas heated
to a temperature T = 106 K. The gas is so tenuous that the collision rate of the
gas particles is low, and so its radiative cooling time is very long and exceeds τ :
the hot bubbles produced by supernovae can merge before they cool. The result is
a network of hot tunnels that form the hot component of the ISM. Altogether, the
interstellar gas is found in several distinct states, known as ‘phases’ (this usage
may be misleading as most of them are not proper thermodynamic phases) whose
parameters are presented in Table 1. Some of the parameters (especially the vol-
ume filling factors) are not known confidently, so estimates of Table 1 should be
approached with healthy caution. The warm diffuse gas can be considered as a
background against which the ISM dynamics evolves; this is the primary phase
that occupies a connected (percolating) region in the disc, whereas the hot gas

Table 1

The multi-phase ISM. The origin and parameters of the most important phases of interstellar gas:
n, the mid-plane number density in hydrogen atoms per cm3; T , the temperature in K; cs, the speed
of sound in km s−1; h, the scale height in kpc; and fV , the volume filling factor in the disc of the
Milky Way, in percent

Phase Origin n T cs h fV

Warm 0.1 104 10 0.5 60–80
Hot Supernovae 10−3 106 100 3 20–40
Hydrogen clouds Compression 20 102 1 0.1 2
Molecular clouds Self-gravity, 103 10 0.3 0.075 0.1

thermal instability
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may or may not fill a connected region. The warm gas is ionized by the stellar
ultraviolet radiation and cosmic rays; its degree of ionization is about 30% at the
Galactic midplane. The hot gas is so hot that it is fully ionized by gas particle
collisions.

The locations of SN stars are not entirely random: 70% of them cluster in re-
gions of intense star formation (known as OB associations as they contain large
numbers of young, bright stars of spectral classes O and B) where gas density
is larger than on average in the galaxy. Collective energy input from a few tens
(typically, 50) of SN within a region about 0.5–1 kpc in size produces a super-
bubble that can break through the galactic disc. This removes the hot gas into
the galactic halo and significantly reduces its filling factor in the disc (from about
70% to 10–20%). This also gives rise to a systematic outflow of the hot gas to
large heights where the gas eventually cools, condenses and returns to the disc
after about 109 yr in the form of cold, dense clouds of neutral hydrogen. This
convection-type flow is known as the galactic fountain, and it can plausibly sup-
port a mean-field dynamo of its own [45]. The local vertical velocity of the hot
gas at the base of the fountain flow is 100–200 km s−1. Thus, galactic discs are
open systems that exchange matter and magnetic fields with the galactic halos
(cf. [20]). This exchange can be important for the magnetic helicity balance and
galactic dynamo action [42].

3.2.2. Galactic rotation
Spiral galaxies have conspicuous flat components because they rotate rapidly
enough. The Sun moves in the Milky Way at a velocity of about V� = r��� =
220 km s−1, to complete one orbit of a radius r� ≈ 8.5 kpc in 2π/�� = 2.4 ×
108 yr. These values are representative for spiral galaxies in general. The Rossby
number is estimated as

Ro = v

l��
∼ 4.

Ro = 1 at a scale 0.4 kpc in the warm gas, which is similar to the scale height
of the gas layer. This implies that rotation significantly affects turbulent gas
motions, making them helical on average, so that they are capable of produc-
ing large-scale magnetic fields via the α-effect of the mean-field dynamo theory.
A convenient estimate of the α-effect can be obtained from Krause’s formula,

α0 � l2�

h
≈ 0.5 km s−1, (3.2)

where � is the angular velocity, and the numerical estimate refers to the Solar
neighbourhood of the Milky Way. Thus, α0 � 0.05v near the Sun and increases
in the inner Galaxy together with �. This estimate of α0 will be used to calculate
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the dynamo number and, hence, to assess the efficiency of dynamo action in the
Galaxy.

The spatial distribution of galactic rotation is known for thousands galaxies
[43] from systematic Doppler shifts of various spectral lines emitted by stars and
gas. In this respect, galaxies are much better explored than any star or planet
(including the Sun and the Earth) where reliable data on the angular velocity in
the interior are much less detailed and reliable or even unavailable. The radial
profile of the galactic rotational velocity is called the rotation curve. Rotation
curves of most galaxies are flat beyond a certain distance from the axis, so � ∝
r−1 is a good approximation for r >∼ 5 kpc.

3.3. Galaxy clusters

Clusters of galaxies do not exhibit any rotation. Correspondingly, magnetic field
in the intracluster gas is random, without any mean component. Theoretical mod-
els strongly suggest that the intracluster gas is turbulent [12, 50]. The turbulence
is mainly driven by the recent or ongoing merger events where large clumps of
matter merge to form the cluster. The scale and velocity of the turbulent mo-
tions are estimated as l � 250–150 kpc and v � 300–150 km s−1; the latter is
useful to compare with the speed of sound (or the thermal velocity) in the gas,
cs ≈ 1000 km s−1. Since the turbulent Mach number is as small as 0.3 or even
less, the compressibility effects are relatively weak and the turbulent fluctuations
in the gas density can be neglected. The intracluster plasma is so tenuous that the
mean free path is of order 10 kpc. Nevertheless, magnetohydrodynamic descrip-
tion remains meaningful because, in a magnetized plasma, the role of the mean
free path is played by the Larmor radius which is very small even in magnetic
fields much weaker than those observed in galaxy clusters. However, the corre-
sponding effective pressure becomes anisotropic, and this can lead to interesting
(and largely unexplored) effects [35].

4. The necessity of dynamo action

The necessity of dynamo action in the Earth and the Sun is practically obvious,
in part because of the time variation of the magnetic fields of these objects: the
geomagnetic magnetic field is known to change its polarity at irregular time in-
tervals, whereas the solar magnetic field drives the 11-year activity cycle and
changes its polarity every 22 years. Even without any other arguments in favour
of planetary and stellar dynamos, the time variation would be sufficient to treat
seriously applications of dynamo theory to planets and stars.

The situation is different with galaxies where the time scales involved are
by far too long to be useful for this purpose and the only clues to the origin of
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galactic magnetic fields come from their spatial structures. Nevertheless, there
are several lines of evidence that consistently indicate that the large-scale galac-
tic magnetic fields need to be maintained by ongoing dynamo action [41] (see,
however, [20]).

It is sometimes claimed that magnetic field does not need any support if the
electric resistivity of the medium is small enough, i.e., the magnetic Reynolds
number is large enough. In the case of the interstellar gas, the magnetic diffu-
sivity of a fully ionized gas, η = 107(T /104 K)−3/2 cm2 s−1, is so small that
the magnetic Reynolds number at the scale equal to the scale height of the warm
gas h = 500 pc is as large as Rm � 1020, and the decay time of the large-
scale magnetic field would seem to follow as 1027 yr. However, this estimate is
hardly useful because the ISM is turbulent, and the corresponding decay time
of the large-scale magnetic field is only h2/ηt � 5 × 108 yr. More generally,
since magnetic energy in any three-dimensional turbulent flow rapidly cascades
towards small scales where it dissipates, any three-dimensional, turbulent, mag-
netized system needs some form of dynamo action to maintain its magnetic field
in a steady state.

Another argument in favour of dynamo action is related to the fact that the
large-scale magnetic fields of spiral galaxies are only mildly wrapped up by the
differential rotation, with the pitch angle pB = arctan B̄r/B̄φ = −(10◦–30◦),
where the negative sign means that the magnetic spiral is trailing with respect
to the galactic rotation. Near the Sun, the Milky Way galaxy gas made about
N = 30 (differential) rotations during its lifetime. If the galactic large-scale mag-
netic field was primordial and its spiral shape was produced by the differential
rotation, its pitch angle would be of the order of pB � −1/N � −2◦. This
suggests that the large-scale magnetic field observed in the Milky Way and in
spiral galaxies in general cannot be just a primordial magnetic field twisted by
differential rotation.

If an external, quasi-uniform magnetic field is to have quadrupolar symmetry
with the respect to the disc’s midplane, as appropriate to spiral galaxies, it has
to be in the plane of the galaxy. Then an initially (quasi-)uniform magnetic field
would be twisted into a nonaxisymmetric configuration with the azimuthal wave
number m = 1 (a bisymmetric structure). Meanwhile, dynamo models in a thin
disc consistently favour axially symmetric magnetic structures, m = 0. Early
observations of galactic magnetic fields seemed to indicate that the global mag-
netic structures are predominantly bisymmetric, in contradiction with the galactic
dynamo theory. However, the improved quality of observations and their inter-
pretation since the 1990’s have unexpectedly revealed that magnetic structures in
most (if not all) spiral galaxies can be described as variously distorted axisym-
metric magnetic fields [4]: what seemed to be a weakness of the dynamo theory
turned out to be its strength!



Author’s personal copy

272 A. Shukurov and D. Sokoloff

The recently discovered magnetic arms in the spiral galaxy NGC 6946
(see [3]), where the large-scale magnetic field (unlike the total field) is stronger
between the gaseous spiral arms, i.e., where the gas density is lower, directly in-
dicates that the regular magnetic field is not frozen into the ISM and therefore
must be maintained against turbulent diffusion.

The complicated magnetic structure in the spiral galaxy M51, where the large-
scale magnetic fields in the disc and the halo are almost oppositely directed [7]
also requires an explanation more complicated than just a quasi-uniform primor-
dial magnetic field twisted by the galactic differential rotation.

5. Dynamo parameters

Using the parameters of the solar convection zone presented in Sect. 3.1, one
obtains α � l2�/h � 2×103 cm s−1 (which is close to the convection velocity),
and ηt � 1

3 lv � 1012 cm2 s−1. This yields the following crude estimates of the
dimensionless numbers that controls the mean-field dynamo action:

Rα = αH

ηt
, Rω = ��H 2

ηt
, D = RαRω � 4000,

where H = 0.3R� is the thickness of the convection zone. Here Rα and Rω

are the turbulent magnetic Reynolds numbers that characterize the intensities of
helical small-scale motions and differential rotation, respectively. Their product,
the dynamo number D, quantifies the efficiency of the mean-field dynamo action
in systems with strong differential rotation, |Rω| � |Rα|. Here we assume that
the solar dynamo acts in the bulk of the convection zone. Dynamo models that
explicitly include the tachocline are reviewed in Ref. [51].

For spiral galaxies, assuming a flat rotation curve, V0 = r� = const, we
similarly obtain the following estimates:

Rω � −3
V0

v

h2

lR0
� −15, Rα � 3

V0

v

l

R0
� 0.5,

where V0 = 200 km s−1 is the typical rotational velocity, v = 10 km s−1, l =
0.1 kpc, h = 0.5 kpc and R0 = 10 kpc. Similarly,

D = RαRω � 10
h2

v2
r�

d�

dr
≈ −10

(
h

R0

)2 (
V0

v

)2

� −10. (5.1)

Note that the dynamo number is independent of the turbulent scale and only
depends on parameters reasonably well known from observations.
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In the case of galaxies, it is useful to define the local dynamo parameters Rα

and Rω, as functions of the galactocentric radius r . These are obtained when the
r-dependent, local values of the parameters are used instead of the characteristic
ones, for example α can be replaced by l2(r)�(r)/h(r). Then the local dynamo
number is given by

DL = α(r)G(r)h3(r)

η2
t (r)

� −10

(
�h

v

)2

, (5.2)

where G = rd�(r)/dr (G = −� for � ∝ r−1). The local dynamo number
rapidly grows towards the galactic centre (roughly as r−1) mainly due to the
increase in �. The estimate (5.1) is based on parameter values typical of the
Solar vicinity of the Milky Way. In other galaxies and in other parts of our
Galaxy, this can be a poor measure of the dynamo activity; unfortunately, this is
often forgotten and the single estimate (5.1) is used to represent the whole diverse
world of galactic dynamos.

6. Perturbation solutions for mean-field dynamos

6.1. Disc dynamos

In this section we shall develop an approximate solution of the mean-field dy-
namo equation

∂B̄

∂t
= ∇ × (V̄ × B̄) + ∇ × (αB̄) − ∇ × ηt∇ × B̄. (6.1)

It is convenient to introduce cylindrical polar coordinates (r, φ, z) with the z-axis
parallel to the angular velocity vector �. In a thin disc, all spatial derivatives can
be neglected in comparison with those in z, ∂/∂z � ∂/∂r, ∂/r∂φ. Then the lo-
cal dynamo equations, written in the αω-approximation, reduce to the following
dimensionless form (for ηt = const):

∂B̄r

∂t
= −Rα

∂

∂z
(αB̄φ) + ∂2B̄r

∂z2
, (6.2)

∂B̄φ

∂t
= RωB̄r + ∂2B̄φ

∂z2
, (6.3)

∂B̄z

∂t
= ∂2B̄φ

∂z2
, (6.4)

where the units of z and t are h and h2/ηt, respectively (see [4, 41] for details).
Equation for B̄z splits from the system and Eqs. (6.2) and (6.3) can be solved
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separately. The vertical magnetic field in a thin disc is supported through the
radial and azimuthal components via their radial derivatives which are neglected
in Eqs (6.2)–(6.4). These equations are supplemented with the vacuum boundary
conditions

B̄φ = 0, B̄r ≈ 0,
∂B̄z

∂z
= 0 at z = ±1, (6.5)

and the symmetry conditions at the disc midplane z = 0:

∂B̄r

∂z
= ∂B̄φ

∂z
= B̄z = 0 at z = 0 (quadrupolar), (6.6)

and

B̄r = B̄φ = ∂B̄z

∂z
= 0 at z = 0 (dipolar). (6.7)

At the kinematic stage of the dynamo, when the velocity field remains unaf-
fected by the growing magnetic field, we have

B̄ = B exp(γ t).

We further rescale the radial magnetic field B̄r → RαB̄r to obtain the following
boundary value problem involving the dynamo number D = RαRω:

γBr = − ∂

∂z
(αBφ) + ∂2Br

∂z2
,

γBφ = DBr + ∂2Bφ

∂z2
, (6.8)

Br (1) = Bφ(1) = 0,

together with (6.6) and (6.7). Thus, we have formulated a one-dimensional
boundary value problem with the eigenvalue γ and vectorial eigenfunction B(z).

6.1.1. Free decay modes
Equations (6.8) can easily be solved in the absence of sources, α = D = 0. The
resulting solutions, known as free decay modes, are doubly degenerate since two
distinct eigenfunctions Bn and B′

n correspond to each eigenvalue. The pairs of
odd modes are given by

B(d)
n =

(√
2 sin(πnz)

0

)
, B(d)′

n =
(

0√
2 sin(πnz)

)
,

γ (d)
n = −π2n2, n = 1, 2, . . . ,
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whereas the free decay modes of even parity are

B(q)
n =

(√
2 cos

[
π

(
n + 1

2

)
z
]

0

)
, B(q)′

n =
(

0√
2 cos

[
π

(
n + 1

2

)
z
]) ,

γ
(q)
n = −π2(n + 1

2

)2
, n = 0, 1, 2, . . . .

The eigenfunctions Bn = (Brn,Bφn) have been normalized to have
∫ 1

0 B2
n dz =

1 for both dipolar and quadrupolar cases. The free-decay eigenfunctions form an
orthonormal set of basis functions which are used below to develop a perturbation
solution for α,D �= 0.

The dipolar mode with n = 0 is trivial as the horizontal magnetic field of the
corresponding eigenfunction is identically zero, (B̄

(d)
r , B̄

(d)
φ ) = 0 even for α �= 0

and D �= 0. The trivial dipolar solution consists of a uniform vertical magnetic
field Bz = const which is not affected by magnetic diffusion and therefore neither
grows nor decays in this approximation.

The lowest quadrupolar mode decays four times as weakly as the lowest non-
trivial dipolar one. This fact is closely associated with the property of the low-
est quadrupolar mode to be generated preferentially (at a larger growth rate for
a given dynamo number) than the dipolar ones. Therefore, large-scale mag-
netic fields of even parity dominate in spiral galaxies. The preference of even,
quadrupolar modes is a specific feature of the disc geometry; in spherical bodies,
such as the Sun and the Earth, the dipolar mode is preferred, in agreement with
observations.

6.1.2. The perturbation expansion
For |D| � 1, terms containg α and D on the right-hand sides of equations (6.8)
can be treated as a small perturbation, and an approximate solution can be ob-
tained by perturbing the free-decay modes obtained for α = D = 0. To isolate
the perturbation operator, we introduce a new variable B̃φ = |D|−1/2Bφ , so that
Br and B̃φ are of the same order of magnitude in D. Preserving the original no-
tation for the renormalized azimuthal field component, we rewrite the dynamo
equations in the matrix-operator form

γB = (
Ŵ + |D|1/2V̂

)
B, (6.9)

where

Ŵ =

⎛⎜⎜⎝
d2

dz2
0

0
d2

dz2

⎞⎟⎟⎠ , V̂ B =
⎛⎝ 0 − d

dz
(αBr )

Bφ sign D 0

⎞⎠ ,
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are the unperturbed (free-decay) and perturbation operators, respectively. The
perturbed solution is represented as a superposition of free decay modes. Since
each free-decay eigenvalue is doubly degenerate, the perturbation εV̂ first re-
moves the degeneracy, giving an O(ε) correction to the eigenvalue but and O(1)

correction to the eigenfunction (Sect. 33 of [21]). Thus, to the first order, the
perturbed leading eigenfunction and eigenvalue have the form

B ≈ C0B0 + C′
0B′

0, γ ≈ γ0 + εγ1, (6.10)

where C0, C′
0, γ0 and γ1 are constants of order unity in ε, and the lowest (quadru-

polar) free-decay modes B0 and B′
0 are given in Section 6.1.1 [we have dropped

the superscript (q) to simplify the notation]. To calculate the expansion coeffi-
cients, these forms are substituted into Eq. (6.9); to the zeroth order in ε, this
yields γ0 = λ0. Terms of order ε are then isolated, their dot product is taken
with B0 and then with B′

0, and the results are integrated over z from 0 to 1. This
brings us to a system of two homogeneous algebraic equations for C0 and C′

0:

(γ1 − V00)C0 − V00′C′
0 = 0, −V0′0C0 + (γ1 − V0′0′)C′

0 = 0,

where Vnm = ∫ 1
0 Bn · V̂ Bm dz (and likewise for Vn′m, but with Bn replaced by

B′
n, etc.) are the matrix elements (note that Vnn = Vn′n′ = 0). The solvability

condition of this system (vanishing of the determinant) yields γ1:

γ1 = ±√
V0′0V00′ , and C′

0 = ±C0

√
V0′0
V00′

. (6.11)

Since we are interested in solutions that decay slower as |D| increases, and then
grow when |D| is large enough, we select the upper sign in these relations to have
γ1 > 0.

A similar solution can be obtained for the dipolar mode, B ≈ C1B(d)
1 +

C′
1B1

(d)′.
Having calculated the matrix elements for α = z, we obtain

γ (d) ≈ −π2 +
√

− 1
2D, (6.12)

γ (q) ≈ − 1
4π2 +

√
− 1

2D (6.13)

for solutions of dipolar and quadrupolar symmetry, respectively, where we have
chosen the sign in front of the square root corresponding to solutions growing for
D < 0.
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The solutions are non-oscillatory, Im γ = 0, and they grow if |D| > |Dc|
(note that D,Dc < 0 in galactic discs), where

D(d)
c ≈ −2π4 ≈ −195, D

(q)
c ≈ − 1

8π4 ≈ −12,

for the dipolar and quadrupolar modes, respectively. The preference of the quad-
rupolar modes in a thin disc is now obvious: |D(q)

c | � |D(d)
c |.

Strictly speaking, this approximate solution should not be extended to esti-
mate Dc because |Dc| is not small. However, such bold extensions of asymptotic
solutions often yield useful results. In particular, the above estimates are rather
close to those obtained from numerical solutions of the dynamo equations (see
below). The reason for that is that the dependence of the growth rate on D has
the same form for both |D| � 1 and |D| � 1, namely γ = const + |D|1/2,
where the constant can be neglected for |D| � 1 [31]. Thus the dependence of
γ on D is reasonably approximated by our perturbation solution even for those
values of |D| were it is not formally applicable.

Of course, the critical dynamo number depends on the form of α(z). A per-
turbation solution similar to that given above, but now for α = sin πz, gives
D

(q)
cr ≈ − 1

4π3 ≈ −8. Numerical solutions show that the critical dynamo number
for the lowest quadrupolar mode lies between approximately −4 and −12 for
various forms of α(z). The rather low generation threshold D

(q)
cr ≈ −4 is ob-

tained if the α-effect is concentrated at halfway between the symmetry plane and
the surface of the slab, α = δ(z − 1

2 ) − δ(z + 1
2 ). Smooth distributions of α(z)

give higher generation thresholds. For α = sin πz, the critical dynamo number
obtained numerically is very close to the above approximate value, D

(q)
cr ≈ −8,

while D
(q)
cr ≈ −11 for α = z (again in good agreement with the approximate

solution). If α(z) is piecewise constant, α = θ(z) − θ(−z), D
(q)
cr ≈ −6.

Given the above results for the eigenvalues, the coefficients of the expansion
in free-decay modes are related by

C′
0 = −√

2C0, for α = z,

for both the quadrupolar and dipolar modes. Restoring the original scaling of the
field components (Br → RαBr and Bφ → |D|1/2Bφ), the lowest-order eigen-
functions are obtained as(

Br

Bφ

)
≈ C0

√
2

(
Rα

−√
2|D|1/2

)
×

{
sin πz (odd modes),

cos 1
2πz (even modes),

(6.14)

for α = z, where C0 remains an arbitrary constant. This results in the following
estimate of the pitch angle of magnetic lines in the growing (kinematic) solution,



Author’s personal copy

278 A. Shukurov and D. Sokoloff

the same for both dipolar and quadrupolar solutions:

pB = arctan
B̄r

B̄φ

≈ − arctan
1√
2

√
Rα

|Rω| . (6.15)

For Rα = 1 and Rω = −20, this yields pB ≈ −10◦ in a good agreement with
the pitch angles observed in spiral galaxies. For α = sin πz, a similar estimate
differs insignificantly from the above (prefactor

√
π/2 instead of 1/

√
2 in the

estimate of pB ).
The accuracy of the perturbation solutions developed here is quite satisfactory

even for D � Dc, so it is worth considering the next approximation in ε. In
particular, we show in Sect. 6.3 that the radial component, B̄r , of any growing
eigenfunction must change sign near the disc surface (given the vacuum boundary
conditions). Since this detail of the eigenfunction appears to be essential for the
dynamo action, it is useful to develop a solution that captures this feature. To
provide more examples, we present the second-order results for a different choice
of the α-coefficient, α = sin πz. The second-order quadrupolar solution has the
form

B ≈ B̃0 + ε

∞∑
n=1

(
CnBn + C′

nB′
n

)
,

γ ≈ γ0 + εγ1 + ε2γ2,

which is useful to compare with Eq. (6.10). Here B̃0 = C0B0 + C′
0B′

0 is the

properly normalized first-order eigenfunction,
∫ 1

0 B̃2
0 dz = 1:

B̃0 =
√

2

1 + 4/π

(
1

−2/
√

π

)
cos

πz

2
for α = sin πz.

As before, these expansions are substituted into the dynamo equations, terms of
order ε2 are isolated, dot products with Bk and B′

k (with k �= 0) are evaluated
and then integrated over z from 0 to 1. This leads to algebraic equations for Cn

and C′
n, which yield

Cn = V
n0̃

λ0 − λn

, C′
n = V

n′0̃
λ0 − λn

,

and, from the solvability condition,

γ2 =
∞∑

n=1

V
n0̃V0̃n

+ V
n′0̃V0̃n′

λ0 − λn

,
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where V
n′0̃ denotes the matrix element involving B′

n and B̃′
0 and similarly for the

other matrix elements. Direct calculation yields

V
n0̃ = 1

2

√
π

1 + 4/π
×

⎧⎨⎩1, n = 0,

3, n = 1,

0, n �= 0, 1,

V
n′0̃ = − 1√

1 + 4/π
×

{
1, n = 0,

0, n �= 0,

V0̃n
= 2√

π + 4
×

{
1, n = 0,

0, n �= 0.

Thus it can be shown that γ2 = 0 for any form of α(z), whereas, for α =
sin πz,

Cn = C′
n = 0 for n �= 1, C1 = 3

4π3/2
√

1 + 4/π
.

For D < 0 and α = sin πz, to the second order in ε = |D|1/2, the corresponding
quadrupolar solution written in terms of the physical variables follows as

Br = RαC0

(
cos

πz

2
+ 3

4π3/2

√−D cos
3πz

2

)
+ O(D), (6.16)

Bφ = −2C0

√
−D

π
cos

3πz

2
+ O(D), (6.17)

γ = −π2

4
+ 1

2

√−πD + O(|D|3/2). (6.18)

This solution is remarkably accurate even for D close to the critical value; in par-
ticular, it yields Dc ≈ −7.8, as compared with the numerically obtained value of
−8, and the eigenfunction shown in Fig. 2 for |D| <∼ 20 is practically indistin-
guishable from the numerical solution.

6.2. Spherical shell dynamos

Perturbation solutions similar to those developed in Sect. 6.1 can be obtained for
other dynamo systems. Here we illustrate the techniques using Parker’s model of
the mean-field dynamo in a thin spherical shell, where the dominant modes are
oscillatory, and the unperturbed state is not degenerate. In terms of the (scaled)
azimuthal components of the vector potential, Āφ = A exp γ t , and magnetic
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Fig. 2. The approximate eigenfunctions Br (dashed) and Bφ (solid) for α = sin πz from Eqs (6.16)–
(6.17) for D = −8, −20, −30 (with Dc ≈ −8), C0 = 1 and Rα = 1.

field, B̄φ = B exp γ t , the αω-dynamo equations in a thin shell can be written
as [28]

γA = α(θ)B + ∂2A
∂θ2

, (6.19)

γB = −D cos θ
∂A
∂θ

+ ∂2B
∂θ2

, (6.20)

where θ is the latitude, D (< 0) is the dynamo number, the angular velocity is
assumed to depend on the spherical radius alone, and we consider axially sym-
metric solutions. The simplest model assumes that α = sin θ , and we shall be
adopting this form in what follows.

The boundary conditions at the equator,

B(0) = 0,
∂A
∂θ

(0) = 0,

isolate dipolar modes as appropriate for the Sun. Obviously,

B(π/2) = 0,
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but the boundary condition for A at the pole is more difficult to establish. We are
interested here in modelling the main branch of the dynamo wave that propagates
from mid-latitudes towards the equator. It is launched away from the pole, at
about θ = 30◦, and there is another branch that propagates from the mid-latitudes
to the pole. Thus, the solution we are interested in does not reach the pole,
and the boundary condition for it could be posed at some intermediate latitude
not known in advance. To simplify the model, we still pose it at θ = π/2 but
select it as to obtain a desired migratory wave solution. Our experimentation with
different forms of this boundary condition suggests that the perturbation solution
is oscillatory for(

∂A
∂θ

+ iξA
)∣∣∣∣

θ=π/2
= 0,

where ξ is an arbitrary real constant.
As in Sect. 6.1, we renormalize B = B′√|D| to recast Eqs (6.19) and (6.20)

in the form (we drop prime at B′)

γ

(
A
B

)
= Ŵ

(
A
B

)
+ εV̂

(
A
B

)
,

where

ε = |D|1/2, Ŵ =
⎛⎜⎝ ∂2

∂θ2
0

0
∂2

∂θ2

⎞⎟⎠ , V̂ =
(

0 α

cos θ
∂

∂θ
0

)
.

For ε = 0, Eqs. (6.19) and (6.20) decouple and the free-decay modes can
easily be found. One of them is given by(

Am

Bm

)
=

(
0

2π−1/2 sin 2mθ

)
, λ′

m = −4m2, m = 0, 1, . . . ,

and the other is(
An

Bn

)
= C

(
cos(

√−λnθ)

0

)
,

√−λn tan
(
π

√−λn/2
)

= iξ,

where C is the normalization constant. The transcendental equation for λn can
be solved in approximate manner for |ξ | � 1 with the ansatz

√−λn = 1 − x

with |x| � 1 to yield
√−λn ≈ 1 + 2i/(πξ) + 4n, or

λn ≈ −(1 + 4n)2 − 4i

πξ
(1 + 4n), n = 0, 1, . . . .

The normalization
∫ π/2

0 |An|2 dθ = 1 then yields C ≈ 2/
√

π .
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To lowest order, the perturbed solution that contains both azimuthal and me-
ridional components has the form(

A
B

)
= C0

(
A0
0

)
+ C1

(
0
B1

)
,

which yields, for the leading eigenfunction,

γ ≈ λ0 − ε2 V01V10

(λ0 − λ′
1)

2
,

where

V01 ≈ 1
2 , V10 ≈ − 2

π

(
1 + 2i

πξ

)
.

Thus,

γ ≈ −1 − 4i

πξ
− 1

9π
D,

so that the critical value of the dynamo number, corresponding to Re γ = 0, is
Dc ≈ −9π . The cycle frequency of this solution, ω = 4/(πξ), is controlled by
the magnitude of ξ . In terms of dimensional variables, to obtain the cycle period
T = 22 yr, we need ξ = 2T ηt/(πH)2 ≈ 0.3, where ηt = 1012 cm2 s−1 is the
turbulent magnetic diffusivity in the Solar convection zone and H = 0.2R� is
the thickness of the convection zone. We note that the value of ξ required to fit
the period of the dynamo cycle is not much larger than one as assumed when
deriving the above solution.

6.3. Diffusion in mean-field dynamos

Integrating the thin-disc dynamo equations (6.2) and (6.3), written in the dimen-
sional form, over the interval 0 < z < h for a smooth function α(z) gives:

∂

∂t

∫ h

0
B̄r dz = ηt

∂B̄r

∂z
(h), (6.21)

∂

∂t

∫ h

0
B̄φ dz = G

∫ h

0
B̄r dz + ηt

∂B̄φ

∂z
(h), (6.22)

where G = r d�/dr and we have used the quadrupolar symmetry conditions
(6.6). It is notable that α does not enter the integrated equations because α(0) = 0
and B̄φ(1) = 0.

The integral form of the dynamo equations (6.21) and (6.22) highlights the
role of magnetic diffusivity in the dynamo mechanism. It would seem at first
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glance that magnetic diffusion can be neglected for the growing solutions. How-
ever, setting ηt = 0 in (6.21) (more precisely, supposing that both the turbulent
and Ohmic diffusivities vanish), results in

∫ h

0 B̄r dz = const, and then (6.22)

shows that
∫ h

0 B̄φ dz can grow only linearly in time. In other words, the solution
cannot grow exponentially if ηt = 0 (and thus the dynamo action is impossible).
In the more general case where ηt varies with z, the dynamo action requires that
ηt(h) �= 0.

Consider a function B̄φ(z) that has no zeros and, say, B̄φ > 0 for 0 < z < h.
It is expected that such a function corresponds to the lowest excited mode. Since
B̄φ(h) = 0, this implies that

∂B̄φ

∂z
(h) < 0.

Then Eqs (6.21) and (6.22) imply, for G < 0, that any growing even solution
must satisfy the following inequalities:∫ h

0
B̄r dz < 0, ηt

∂B̄r

∂z
(h) < 0. (6.23)

Hence, the radial component of a growing magnetic field must change its sign
near the disc surface.

The second inequality of (6.23) shows that the dynamo action requires non-
vanishing flux of the radial magnetic field across the disc surface. The role of
diffusion can also be seen directly from the dynamo equations. For definiteness,
assume again that G < 0, B̄φ > 0, and, near the symmetry plane, B̄r < 0.
The α-effect generates, via the term −∂(αB̄φ)/∂z, a positive radial field, i.e.,
a radial field opposite to that of the growing solution near the symmetry plane.
The positive B̄r near the surface produces, through differential rotation −|G|B̄r ,
a negative contribution to ∂B̄φ/∂t , which can be compensated only by the viscous
term, ηt∂

2B̄φ/∂z2. In order to provide such a compensation, the latter term must
be positive near the disc surface, i.e., the field must be transported outwards. It
also becomes clear that, in addition to conditions (6.23), B̄φ(z) must have an
inflection point at somewhat smaller z than the zero of B̄r .

On the other hand, the diffusivity should not be excessively large, otherwise
the field would rapidly decay within the main part of the disc and would be car-
ried out toward the disc surface.

The discussion above referred to the growing solutions. In the stationary case
(∂/∂t = 0), we have

ηt
∂B̄r

∂z
= 0, ηt

∂2B̄φ

∂z2
= 0 at z = h,
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i.e., both horizontal (parallel to the disc midplane) field components have fixed
(and opposite) signs within the disc.

The forms of B̄r (z) and B̄φ shown in Fig. 2 for a large, moderate and critical
value of |D| illustrate these properties of the growing and marginal solutions of
the dynamo equations.

7. Turbulent magnetic fields in galaxies and galaxy clusters

7.1. The fluctuation dynamo

The evolution of a magnetic field embedded into a flow of conducting fluid is
controlled by the magnetic Reynolds number,

Rm = v0l0

η
,

where v0 and l0 are the representative velocity and scale in the flow and η is
the turbulent magnetic diffusivity. In turbulent flows without any mean velocity,
it is convenient to choose l0 and v0 as the integral scale and velocity at that
scale (these quantities were denoted l and v above; in this section, we label them
with subscript zero). The larger is Rm, the better is the magnetic flux freezing
approximation, i.e., the better magnetic lines follow the fluid particles.

The generation of a random magnetic field by a random flow, called the fluc-
tuation dynamo, is a result of a random stretching of magnetic field by the local
velocity shear (see reviews in [9,38,56]).1 This type of dynamo does not require
any mean flow, rotation or helicity, but only needs a random flow. Magnetic
field produced by the fluctuation dynamo is purely random, i.e., its mean value
vanishes. The root-mean-square magnetic field (or, equivalently, mean magnetic
energy density) can grow under a fairly weak condition Rm > Rmc � 30–100
(where the variation within the range depends on the form of the velocity corre-
lation function).

A turbulent flow consists of a broad spectrum of motions, with vl the velocity
at a scale l. The e-folding time for the magnetic field is roughly equal to the
‘eddy turnover time’ l/vl . In the Kolmogorov turbulence, where vl ∝ l1/3, the
e-folding time is shorter at smaller scales, l/vl ∝ l2/3, and so smaller eddies
amplify the field faster. As a result, most of the magnetic energy produced by the
fluctuation dynamo at its kinematic stage (i.e., the stage of exponential growth)
is at small scales comparable to the magnetic dissipation scale of order R

−1/2
m .

At the kinematic stage, the root-mean-square magnetic field grows as b ∝ exp σ t

1This type of dynamo is also called the small-scale dynamo, with reference to the fact that the
scale of the magnetic field does not exceed l0.
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with σ � 2
3 (v0/l0) ln(Rm/Rmc) for Rm � 1 [30]; numerical results show that

this form is quite accurate for Rm of the order of or even smaller than Rmc [55].
Since η � ν in rarefied astrophysical plasmas, where ν is the kinematic vis-

cosity (see, e.g., [9]), we have Rm � Re, where Re = v0l0/ν is the kinematic
Reynolds number. Therefore, Rm > Rmc if Re is large enough. Turbulent sys-
tems necessarily have large Re, and random motions in galaxies and galaxy clus-
ters will be a fluctuation dynamo for any Reynolds number which is large enough
to make them turbulent.

The fluctuation dynamo is sensitive to the value of the magnetic Prandtl num-
ber, Prm = ν/η = Rm/Re [36]. For Prm > 1 (intergalactic and interstellar gas)
magnetic spectrum extends to smaller scales than the kinetic energy spectrum,
whereas for Prm < 1 the Ohmic dissipation scale is larger than the viscous scale.
The dynamo action for Prm ≥ 1 has been demonstrated convincingly with var-
ious analytical and numerical models. For Prm < 1, the dynamo action is also
possible but requires larger values of Rm than for Prm > 1 [19]. The situation at
very small values of Prm remains unclear, but asymptotic results obtained for a
δ-correlated velocity field suggest that Rmc → 400 for Prm → 0 [30].

In the kinematic regime, the fluctuation dynamo produces intermittent mag-
netic field: the size of the magnetic structures is, in at least one dimension, as
small as the resistive scale

lη = l0R
−1/2
m (7.1)

in a single-scale flow [56]. We note that magnetic field at the small Ohmic dif-
fusion scale lη is produced by the shear of the flow at a larger scale l0. In a
turbulent flow, where a broad spectrum of motions is present, flow at each scale
l would produce magnetic structures at scales down to the corresponding Ohmic
scale. In the kinematic regime this would correspond to a set of eigenfunctions,
each with a distinct growth rate vl/ l. The fastest growing eigenfunction is due
to stretching by the smallest eddies with scale l such that Rm(l) > Rmc, where
Rm(l) = Rm(l/ l0)

3/4 for the Kolmogorov spectrum. These are the viscous scale
eddies, with l = lν = l0Re−3/4, provided Rm/Re > Rmc. However in the nonlin-
ear regime, when the fastest growing mode saturates, magnetic modes of larger
scales still can grow. Since most of the kinetic energy is contained at the scale
l0, the dominant magnetic scale could still be determined by dynamo action due
to eddies of scale l0 and, especially, by the subtle details of the dynamo satu-
ration. An estimate of the scale of magnetic structures similar to (7.1) but now
with allowance for a broad flow spectrum can be obtained from the balance of the
stretching and dissipation terms in the induction equation. With lB the scale of
magnetic field, this balance yields |(B ·∇)v| � |η∇2B|, or lBv(lB) � η provided
lB > lν (this inequality may hold also for Prm > 1 in the nonlinear state). In a
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flow with kinetic energy spectrum

E(k) ∝ k−s (7.2)

(with s = 5/3 corresponding to the Kolmogorov spectrum), we have v2(l) =
k−1E(k), so that v(l) = v0(l/ l0)

(s−1)/2. This leads to

lB � l0R
−2/(s+1)
m . (7.3)

Nonlinear effects can modify the resulting magnetic structures, although it
is as yet not clear in what way [9, 38]). A simple model of Subramanian [49]
suggests that the smallest scale of the magnetic structures will be renormalized
in the saturated state to become

lB � l0Rm
−2/(s+1)
c , (7.4)

instead of the resistive scale lη.

7.2. Shapefinders

Magnetic field produced by a (kinematic) fluctuation dynamo [55] is illustrated
in Fig. 3. The velocity field used in this model has a well defined and controllable
power-law range (7.2) and allows us to test the theoretical predictions, such as
(7.1), (7.3) and (7.4). The structures generated by the fluctuation dynamo are

Fig. 3. Isosurfaces B2 = 3〈B2〉 from a kinematic fluctuation dynamo model [55].
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evidently elongated; they were variously described as magnetic filaments, sheets
or ribbons from the visual inspection of magnetic isosurfaces and application of
heuristic morphology indicators. A mathematically justifiable approach to the
morphology of random magnetic structures based on the Minkowski functionals
was employed in Ref. [55]. This tool has previously been applied to galaxy
distribution and cosmological structure formation [25, 33, 40].

As an example, consider statistical properties of the isosurfaces B2 = const
similar to those shown in Fig. 3. The topological and geometrical properties of
structures in three dimensions can be fully quantified using the four Minkowski
functionals [25]:

V0 =
∫∫∫

dV, V1 = 1
6

∫∫
dS,

V2 = 1

6π

∫∫
(κ1 + κ2) dS, V3 = 1

4π

∫∫
κ1κ2 dS,

(7.5)

where integration is over the volume and surface of the structures, respectively,
and κ1 and κ2 are the principal curvatures of the surface. V0 is the total volume
enclosed by the structures, V1 is their surface area, V2 is the integral mean cur-
vature of their surfaces, and V3 is the integral Gaussian curvature (related to the
Euler characteristic). A simple method to compute the Minkowski functionals for
structures given on a grid is based on the intersection formula of Crofton [39]:

V0 = n3, V1 = 2(n2 − 3n3)

9N
,

V2 = 2(n1 − 2n2 + 3n3)

9N2
, V3 = n0 − n1 + n2 − n3

N3
,

where n0 is the number of grid vertices within the structures, n1 is the number of
complete edges, n2 is the number of complete grid cell faces, n3 is the number
of complete grid cubes within the structures, and N is the total number of grid
points in the domain.

The Minkowski functionals can be used to calculate the typical thickness,
width and length of the structures, as T = V0/2V1, W = 2V1/πV2, and L =
3V2/4V3, respectively. Then, useful dimensionless measures of ‘planarity’ P ,
and ‘filamentarity’ F can be defined as [33]

P = W − T

W + T
, F = L − W

L + W
.

In idealized cases and for convex surfaces, values of P and F lie between zero
and unity. For example, an infinitely thin pancake has (P, F ) = (1, 0), a per-
fect filament has (P, F ) = (0, 1), whereas (P, F ) = (0, 0) for a sphere. We
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note that the unit cube has T = 3/4, W = 2/π , L = 1/2, thus we do not
always have T < W < L. Deviations from this ordering are relatively rare
for random fields studied here, yet to avoid confusion we introduce the notation
l1 = min(T ,W,L), l2 = med(T ,W,L) and l3 = max(T ,W,L).

As discussed in Ref. [55], the filamentarity of magnetic structures produced
by the fluctuation dynamo, F , increases faster than P with Rm, so the struc-
tures are better described as filaments, especially at the larger values of Rm—
see Eq. (7.6) below. Remarkably, velocity field structures of that model are not
filamentary since the velocity field at small scales is nearly isotropic. Corre-
spondingly, the isosurfaces of v2 have negligible planarity and filamentarity. The
isosurface of vorticity � with �2 = 4〈�2〉 has (P, F ) = (0.18, 0.11); sim-
ilarly the isosurface of the total strain (S2 = Sij Sij ) with S2 = 4.5〈S2〉 has
(P, F ) = (0.11, 0.16). Thus, the morphology of the magnetic field is controlled
by the nature of the dynamo action rather than by immediate features of the ve-
locity field. The isosurfaces of the electric current density J = ∇ × B are
ribbon-like, with (P, F ) = (0.57, 0.82) at a level J 2 = 4〈J 2〉 for Rm ≈ 1500.

Using the Minkowski functionals, we can also reliably measure the character-
istic length scales of magnetic structures and explore their scalings with Rm and
s. In the left panel of Fig. 4, we show l1 versus Rm at two instants in time for
a flow with s = 5/3. Whilst the behavior for Rm � Rmc shows variations in
time, we observe for Rm >∼ 200 a time-independent scaling of the thickness of
magnetic structures: l1 ∝ R

−3/4
m in agreement with Eq. (7.3).

The right panel of Fig. 4 shows variation with Rm of the characteristic width
l2 and length l3 of the magnetic structures. For Rm >∼ 200 we observe another

Fig. 4. Average values of the thickness l1 (left panel), width l2 (main frame of the right panel) and
length l3 (inset) of the magnetic isosurfaces versus Rm at two instants in time, from the fluctuation
dynamo model of Ref. [55]. Data marked ‘×’ (‘+’) are results attained when the smallest eddies
have made 25 (50) revolutions. The solid straight line has a slope of −3/4 in the left panel and −0.55
in the right one. The unit length is the size of the computational box. The data were obtained by
averaging over eight isosurface families B2 = q〈B2〉 with q = 1.5, 2, 2.5, . . . , 5.
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time-independent scaling, l2 ∝ R−0.55
m . This distinct behavior of the width of

magnetic structures has not been obtained in earlier analytical or numerical stud-
ies of the fluctuation dynamo. The simultaneous decrease of l2 and l1, coupled
with the approximately Rm-independent behavior of l3 (inset in the right panel
of Fig. 4) supports the notion that the magnetic structures become filamentary as
Rm increases. Indeed, using l1 � 2.4R−0.75

m , l2 � 0.9R−0.55
m and l3 � 0.05R0

m in
the definitions of P and F , we obtain, for s = 5/3,

P � 1 − 2
[
1 + 3

8R0.2
m

]−1
, F ∼ 1 − 2

[
1 + 1

18R0.55
m

]−1
, (7.6)

so that F > P for Rm >∼ 200.
To investigate how the scaling laws identified via the Minkowski function-

als compare with those inferred from other measures, we calculated the inverse
‘integral scale’ of the magnetic field, 2π/lI = ∫

kM(k) dk/
∫

M(k) dk, where
M(k) is the magnetic spectral density defined similarly to E(k). We found that lI
follows a scaling of R−0.42

m , which understandably differs from the scalings of l1,
l2 and l3. The scale lI is a poor measure of the dimension of anisotropic magnetic
structures such as filaments. We note that the above scaling of lI is maintained
for all subcritical and supercritical values of Rm, unlike the results illustrated in
Fig. 4 which display well-defined, time-independent scalings only for Rm >∼ 200.
The scaling (7.3) emerges for s = 5/3, 2, 3 [55]. On the contrary, l2 ∼ R−0.55

m in-
dependently of s. Asymptotic solutions [30] suggest that the small-scale dynamo
(with Prm < 1) is only possible for s > 3/2. The results of Ref. [55] show that,
for high effective Prm, the dynamo action is possible for s = 1 as well, although
a scaling different from Eq. (7.3) is exhibited. It appears that the nature of the

Fig. 5. T , W and L (lines marked with +, × and ∗, respectively) as a function of the isosurface
level, B = q〈B2〉1/2 for a dynamo-generated field (Rm = 1300). Calculations for q < 1 generate
anomalous results, whereas the range 1.5 < q < 5 appears to be acceptable for generating the
averages as we discuss in the text.
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asymptotic solution, rather than the possibility of a dynamo, is different at s = 1
from that at s > 3/2.

7.3. Turbulence in galaxy clusters: three evolutionary stages

7.3.1. The epoch of major mergers
Theories of hierarchical structure formation suggest that clusters of galaxies have
been assembled relatively recently. N -body simulations indicate that the clusters
form at the intersection of dark matter filaments in the large-scale structure, and
result from both major mergers of objects of comparable mass (of order 1015M�)
and the accretion of smaller clumps onto massive protoclusters. It is likely that in-
tense random vortical flows, if not turbulence, are produced in the merger events.
Their plausible properties are summarized in Table 2 (see Ref. [50] for details).
The structure of magnetic field at this stage is illustrated in the left-hand panel of
Fig. 6. What is shown is the statistically steady state of magnetic field produced
by dynamo action in turbulent flow with the Reynolds number about 400 and the
magnetic Prandtl number equal to unity. Similar magnetic structure plausibly
occur in the turbulent wakes of subclusters and galaxies as well.

It is not quite clear whether random flows driven during major merger events
and at later stages of evolution will develop into turbulence. The nature of the
flow depends on the value the Reynolds number which is difficult to estimate
reliably for the collisionless, magnetized plasma of the intracluster space where
plasma instabilities can be responsible for anomalous viscosity and resistivity
[37]. The problem is further complicated by the possibility of dynamo action,
since the magnetic field can affect both viscosity and magnetic diffusivity. This

Table 2

Summary of turbulence and magnetic field parameters at various stages of cluster evolution: duration
of the stage (the last two stages represent steady states), the root-mean-square velocity v0 and scale l0
of turbulence and eddy turnover time t0 = l0/v0 (for the decaying turbulence, values for the middle
of the decay stage are given, 2 Gyr after its start), the equipartition magnetic field Beq = (4πρv2

0)1/2

with ρ the gas density (i.e., maximum field strength within a turbulent cell), thickness of magnetic
filaments and sheets lB for the statistically steady state of the dynamo, the root-mean-square magnetic
field within a turbulent cell Brms, and finally the standard deviation of the Faraday rotation measure
σRM (calculated for the volume filling turbulence along path length of 750 kpc through the central
parts of a cluster in the first two lines, and assuming one transverse wake along the line of sight in the
last two lines). A subcluster mass of 3 × 1013M� has been assumed

Evolution stage Length v0 l0 t0 Beq lB Brms σRM
(Gyr) (km/s) (kpc) (Gyr) (μG) (kpc) (μG) (rad/m2)

Major mergers 4 300 150 0.5 4 25 1.8 200
Decaying turbulence 5 130 260 2.0 2 44 0.8 120
Subcluster wakes 260 200 0.8 4 34 1.6 110
Galactic wakes 300 8 0.03 4 1.4 1.6 5
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Fig. 6. Snapshots of magnetic field in a cross-section through the middle of the computational do-
main in a numerical simulation of turbulence driven by an imposed random force and its dynamo
action [50]. The left-hand panel shows a statistically steady state at a time t/t0i = 0.30 whereas the
right-hand panel illustrates magnetic field structures in turbulence at a late stage of decay, t/t0i ≈ 60.
Here t0i is the eddy turnover time before the start of the turbulence decay (given in Table 2). The
dimensionless energy injection scale in these simulations is about 4 (with the domain size of 2π ), so
each frame contains a few turbulent cells. The strongest magnetic field within the frame is close to
the equipartition value with respect to the turbulent energy. The magnitude of the field component
perpendicular to the plane of the figure is shown color coded (in shades of grey) with black corre-
sponding to field pointing into the figure plane, and lighter shades, to field pointing out of the plane.
The field in the plane of the figure is shown with vectors whose length is proportional to the field
strength.

may lead to the growth of the magnetic diffusivity and reduction of viscosity as
the magnetic field is being amplified by the dynamo, so that the magnetic Prandtl
number tends to unity.

7.3.2. Decaying turbulence
Random flows produced by major mergers decay after the end of the merger
event. Unlike a laminar flow that decays exponentially in time due to viscosity,
turbulent kinetic energy decays slower, as a power law [14, 22]. The reason for
this is that kinetic energy mainly decays at small scales, to where it is constantly
supplied by the turbulent cascade. As a result, the energy decay rate depends
nonlinearly on the energy itself, which makes the decay a power law in time.
Our simulations confirm that the power-law decay occurs even for the Reynolds
number as small as Re ≈ 100 [50]. At this stage of evolution, the turbulent scale
l0 grows with time, whereas turbulent energy density E reduces, together with
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the turbulent speed v0, typically as

E � 1
2v2

0 ∝ (t/t0i)
−6/5, l0 ∝ (t/t0i)

2/5 for t/t0i � 1,

where subscript ‘i’ refers to the start of the evolution, t0i is a certain dynamical
time scale, which can be identified with the initial turnover time of the energy-
containing eddies, t0i = l0i/v0i, subscript ‘0’ refers to the energy-range (correla-
tion) scale of the motion. The structure of magnetic field in the decaying flow is
shown in the right-hand panel of Fig. 6, and parameters of the flow and magnetic
field are shown in the second line of Table 2.

7.3.3. Turbulent wakes of subclusters and galaxies
At the final stage of the evolution, when the cluster enters a steady state, tur-
bulence is maintained only in the wakes of galaxies and smaller mass clumps
that continue to accrete onto the cluster. The wakes become weaker as the gas
within the clumps or galaxies is stripped by the ram pressure of intracluster
gas. The radius of a wake at its head is close to the radius within which gas
of the mass clump or galaxy remains intact. We estimate the stripping radius as
R0 � 100 kpc for clumps of a mass 1013M� (which fall into a cluster every 3
Gyr) and R0 = 3–5 kpc for massive elliptical galaxies. If the flow within the
wake becomes turbulent (so that it can be described in terms of Prandtl’s theory
of turbulent wakes [22]), the wake length X is controlled by the magnitude of the
Reynolds number via

X/R0 � (Rei/Rec)
3 ,

where Rec ≈ 400 [52] is the marginal Reynolds number with respect to the
onset of turbulence. This value of Rec was obtained for a flow around a solid
sphere; Rec for gas spheres is not known. The strong dependence of the wake
parameters on the Reynolds number makes the estimates somewhat uncertain.
On the other hand, it implies that galactic wakes can be very sensitive to the
detailed parameters of the galactic motion and intergalactic gas, so that clusters
with very similar parameters can have vastly different wake structures.

The area covering and volume filling factors, fS and fV , respectively, of N =
5 wakes, produced by 1013M� subclusters, within the virial radius r ≈ 3 Mpc,
are estimated as

fS � 0.15
N

5

(
R0

100 kpc

)6 (
Rec

400

)−4
(

λ̃

1 kpc

)−4

,

fV � 0.02
N

5

(
R0

100 kpc

)8 (
Rec

400

)−5
(

λ̃

1kpc

)−5

,
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where N ≈ 5 is consistent with models of hierarchical structure formation, and
λ̃ is an effective mean free path in the intracluster gas (its introduction is an at-
tempt to allow for our insufficient understanding of viscosity mechanisms). The
covering and filling factors strongly depend on λ̃ and Rec. Furthermore, both
fS and fV depend on high powers of another poorly known parameter, the strip-
ping radius R0. Hence, as noted above, properties of the subcluster wakes can be
rather different in apparently similar clusters. In addition, numerical simulations
of turbulent wakes should be treated with caution as otherwise reasonable ap-
proximations, numerical resolution, and numerical viscosities can strongly affect
the results. On the other hand, it is plausible that fS = O(1) but fV � 1, so that
a typical line of sight through the cluster intersects at least one turbulent region
(where our estimate of the r.m.s. turbulent speed is 200–300 km s−1) despite the
fact that turbulence occurs only in a small fraction of the cluster volume. A pos-
sible signature of such spatially intermittent turbulence could be a specific shape
of spectral lines, with a narrow core, produced in quiescent regions, accompanied
by nonthermally broadened wings.

The area covering factor of galactic wakes within the gas core radius, 180 kpc,
is unity if

X/R0 � 30–15, X � 100–70 kpc, (7.7)

and the volume filling factor of such wakes is fV � 0.07. The length of galactic
wakes required to cover the projected cluster area, given by Eq. (7.7), does not
seem to be unrealistic. For example, a wake has been observed behind a massive
elliptical galaxy (mass of order 2 × 1012M�) moving through the intracluster
gas at a speed about vc � 1000 km s−1 [34]. The length of the detectable wake
is about X � 130 kpc (assuming that it lies in the sky plane), and its mean
radius is 40 kpc (obtained from the quoted volume of about 2 × 106 kpc3). The
projected area of the wake is about 104 kpc2, as compared to 103 kpc2 for the
wake parameters derived above. This wake has been detected only because it is
exceptionally strong, and it is not implausible that weaker but more numerous
galactic wakes can cover the projected area of the central parts of galaxy clusters.

We conclude that subcluster wakes are likely to be turbulent, but galactic
wakes can be laminar if the viscosity of the intracluster gas is as large as Spitzer’s
value. Given the uncertainty of the physical nature (and hence, estimates) of the
viscosity of the magnetized intracluster plasma, we suggest that turbulent galac-
tic wakes remain a viable possibility. Both types of wake have low volume filling
factor but can have an area covering factor of order unity. Parameters of turbu-
lence and magnetic fields produced within the wakes are given in the last two
lines of Table 2.
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7.4. Magnetic fields in the intracluster gas

Parameters of magnetic fields produced by the fluctuation dynamo at various
stages of the cluster evolution are presented in Table 2 [50]. This model implies
that the correlation scale of random motions in the intracluster gas, l0, is larger
than that assumed earlier. With l0 � 150 kpc (Table 2), only 5 turbulent cells
occur along a path length of L = 750 kpc. The resulting degree of polariza-
tion of radio emission from clusters with synchrotron halos can be estimated as
p � 1

2p0/n1/2 � 0.2, where p0 ≈ 0.7, n � L/l0 is the number of magnetic
structures along the line of sight (assuming that one magnetic sheet with well-
ordered magnetic field occurs in each turbulent cell and that the linear resolution
is better than l0), and a factor 1/2 allows, in a very approximate manner, for the
volume-filling magnetic field outside the magnetic sheet which only produces
unpolarized emission. Depolarization by Faraday dispersion and beam depo-
larization can reduce the degree of polarization to a fraction of percent at long
wavelengths. However, polarization observations at wavelengths 3–6 cm (where
Faraday depolarization is sufficiently weak) can reveal magnetic structures pro-
duced by the dynamo action if the angular resolution is high enough.

7.5. Interstellar turbulent magnetic fields

Using parameters typical of the warm phase of the ISM, theory of Sect. 7.1
predicts that the small-scale dynamo would produce magnetic flux ropes of the
length (or the curvature radius) of about l0 = 50–100 pc and thickness 3–5 pc
from Eq. (7.4) for Rmc = 50 and s = 5/3. The volume filling factor of the
ropes is f � l0l

2
B/l3

0 � Rm
−3/2
c � 3% assuming that there is one flux rope

per turbulent cell, and 3n% if there are n ropes. The field strength within the
ropes, if at equipartition with the turbulent energy, has to be of order 1.5 μG
in the warm phase (n = 0.1 cm−3, v0 = 10 km s−1) and 0.5 μG in the hot gas
(n = 10−3 cm−3, v0 = 40 km s−1). Note that some heuristic models of the small-
scale dynamo admit solutions with magnetic field strength within the ropes being
significantly above the equipartition level, e.g., because the field configuration
locally approaches a force-free one, |(∇ × B) × B| � B2/lB [6].

The small-scale dynamo is not the only mechanism producing random mag-
netic fields (e.g., §4.1 in Ref. [4], and references therein). Any mean-field dy-
namo action producing magnetic fields at scales exceeding the turbulent scale
also generates small-scale magnetic fields. Similarly to the mean magnetic field,
this component of the turbulent field presumably has a filling factor close to unity
in the warm gas and its strength is expected to be close to equipartition with the
turbulent energy at all scales. This component of the turbulent magnetic field
may be confined to the warm gas, the site of the mean-field dynamo action, so
magnetic field in the hot phase may have a better pronounced ropy structure.
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The overall structure of the interstellar turbulent magnetic field in the warm
gas can be envisaged as a quasi-uniform fluctuating background with one percent
of the volume occupied by flux ropes (filaments) of a length 50–100 pc con-
taining a well-ordered magnetic field. This basic distribution would be further
complicated by compressibility, shock waves, MHD instabilities (such as Parker
instability), the fine structure at subviscous scales, etc.

The site of the mean-field dynamo action is plausibly the warm phase rather
than the other phases of the ISM. The warm gas has a large filling factor (so it
can occupy a percolating global region), it is, on average, in a state of hydrostatic
equilibrium, so it is an ideal site for both the small-scale and mean-field dynamo
action. Molecular clouds and dense clouds of neutral hydrogen have too small
a filling factor to be of global importance. The time scale of the small-scale dy-
namo in the hot phase is l0/v0 � 106 yr for v0 = 40 km s−1 and l0 = 0.04 kpc
(the width of the hot, ‘chimneys’ extended vertically in the disc). This can be
shorter than the advection time due to the vertical streaming of the hot gas in
the galactic fountain flow, h/Uz � 107 yr with h = 1 kpc and Uz = 100 km s−1.
Therefore, the small-scale dynamo action should be possible in the hot gas. How-
ever, the growth time of the mean magnetic field must be significantly longer than
l0/v0, reaching a few hundred Myr. Thus, the hot gas can hardly contribute sig-
nificantly to the mean-field dynamo action in the disc and can drive the dynamo
only in the halo [45]. The main rôle of the fountain flow in the disc dynamo is to
enhance magnetic connection between the disc and the halo.

8. Conclusions

A remarkable property of systems with high electric conductivity (or large mag-
netic Reynolds number Rm) is that the decay time of magnetic field due to Ohmic
resistivity can be very long. Since astrophysical plasmas usually have extremely
large values of Rm, the Ohmic decay time often exceeds the age of the Uni-
verse. Does this make dynamos unnecessary? We believe that the answer to
this question is negative because astrophysical plasmas are most often turbulent.
A fundamental property of turbulence is the energy cascade to small scales (in
three dimensions). If magnetic field is weak and Rm � 1, the turbulent motions
will inevitably tangle magnetic fields and the magnetic energy will be transferred
from the energy-range scale l to small scales, where Ohmic dissipation is rapid.
(In systems with large magnetic Prandtl number, this will be the viscous dissipa-
tion scale, where the magnetic Reynolds number can still be large; however, this
scale is by far smaller than that of observable astrophysical magnetic fields. If the
initial magnetic field has a scale much larger than l, it will be reduced to l at the
relatively short turbulent diffusion time.) The time scale of magnetic field decay
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is then controlled by the cascade time, i.e., eddy turnover time. If, on the other
hand, magnetic field is strong enough, any externally maintained turbulence is
not needed as the Lorentz force will induce motions which will become turbulent
if the magnetic field is non-homogeneous enough. The magnetically-induced tur-
bulence will then drain its parent magnetic field by dissipating its energy in few
eddy turnover times as above. Altogether, any three-dimensional, turbulent, mag-
netized system must host a dynamo (unless its magnetic field is maintained by
external electric currents or decays). Indeed, turbulent flows can drive the large-
and small-scale dynamos, but magnetic fields produced by them are controlled
by the dynamo mechanism rather than by the initial magnetic field. In this sense,
the properties of the initial magnetic field in a turbulent system are unimportant
as long as it can provide a suitable seed for the dynamo. In other words, initial
conditions are forgotten in a dynamo system (as in any other unstable system)
unless the initial magnetic field is strong enough to make the dynamo nonlinear
from the very beginning.
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