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The properties of a non-relativistic low-beta magnetised electron-positron plasma in slab
geometry are investigated. The two species are taken to be drift-kinetic while we retain
Larmor radius effects in quasi-neutrality, and inertia in Ohm’s law. It is shown that
the system supports collisionless dispersive waves, which can greatly impact nonlinear
magnetic reconnection, but only for large β, the ratio of kinetic and plasma pressure.
It is found that the drift wave is not present in such plasma. Tearing modes can be
driven unstable by equilibrium current density gradients. When the ordering of the fields’
amplitudes is made consistent with those of Zocco & Schekochihin (2011), an improved
set of nonlinear fluid-like equations is derived where magnetic compressibility must be
included, and drift waves contributions do not cancel.

1. Introduction

Electron-positron plasmas have played a crucial role in the theory of magnetic recon-
nection. By exploiting the similarities of a simple fluid model and electron magnetohy-
drodynamics (EMHD) with electron inertia (Zocco et al. 2008a, 2009), Chacón et al.

(2008) have shown that dispersive waves are not the cause of fast magnetic reconnection.
This result came as a confirmation of earlier particle-in-cell simulation results (Bessho
& Bhattacharjee 2005; Daughton & Karimabadi 2007). Non-relativistic electron-positron
plasmas, however, are not only pathological models which are useful to settle controver-
sies among theoreticians. There is now great excitement about the creation of a labora-
tory electron-positron plasma (Pedersen et al. 2012; Saitoh et al. 2014) which, by itself,
justifies new investigations in this field.

In this article we revisit some fluid equations similar to those of Chacón et al. (2008),
but in the framework of gyrokinetics for magnetic reconnection of Zocco & Schekochihin
(2011). One new aspect here introduced is in the quasineutrality equation. It is proposed
that charge neutralizes above the Larmor scale, ρe = vthe/Ωc, which is assumed to be
much smaller than the inertial scale de = ρe/

√
β, where β is the ratio of kinetic to plasma

pressure, Ωc = eB/(mc) is the cyclotron frequency, and vthe is the thermal speed of both
species. The inclusion of the Debye length (Helander 2014; Helander & Connor 2016),
is avoided as this would require an electromagnetic relativistic treatment. Linear waves
and reconnecting instabilities are first investigated adopting a simple drift-kinetic model,
without ordering fields’ amplitudes. In this case, the effect of drift waves cancels exactly,
dispersive waves frequency does not diverge at short wavelengths, reconnecting instabil-
ities proceeds as in a one-fluid electron-ion plasma, where the Alfvén speed is replaced
by the electron Alfvén speed. An improved set of nonlinear fluid-like equations is then
derived. Here the relative amplitudes of fields are made consistent with the orderings of
Zocco & Schekochihin (2011), where the nonlinear E × B frequency is comparable to
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the electron passing frequency, and the spatial variation of all quantities along the total
magnetic field is retained. In this new model, diamagnetic effects enter through tempera-
ture fluctuations and magnetic compressibility, and do not always cancel. Equations are
presented in Sec. (2). Linear waves are discussed in Sec. (3). Current-driven instabilities
are studied in Sec. (4). The new improved model is derived in Sec. (5).

2. Equations

Following Helander Helander (2014), Poisson’s equation for the electrostatic potential,
ϕ, is written in the following way,

T0

2e

(

δne+

n0

− δne−

n0

)

= −ρ2
e∇2ϕ, (2.1)

where we are assuming

δne+

n0

− δne−

n0

∼ β
eϕ

T0

≪ eϕ

T0

, (2.2)

which, for k⊥de ∼ 1, with de = c/ωpl, β = 8πn0T0/B
2 ≪ 1, and

de ≫ ρe ≫ λD, (2.3)

guarantees balance in Eq. (2.1).
Density fluctuations are calculated by taking the zeroth moment of perturbed distri-

bution function δfe∓ = −e±ϕF0/T0 + he∓ , where the non-adiabatic part of δf satisfies
the electromagnetic drift-kinetic equation [the k⊥ρ → 0 limit of Frieman & Chen (1982)
nonlinear gyrokinetic equation] (i)

dhe∓

dt
+ v‖b̂ · ∇he∓ =

e∓F0

T0

∂

∂t

(

ϕ− v‖

c
A‖

)

− c

B0

ez · ∇
(

ϕ− v‖

c
A‖

)

×∇F0 +

(

dhe∓

dt

)

coll

,

(2.4)

where d/dt = ∂t + B−1

0
{ϕ, }, b̂ · ∇ = ∂z − B−1

0
{A‖, }, v‖ is the particles velocity in the

direction parallel to the guide field of modulus B0, and F0 is the Maxwellian equilibrium.
The result is the familiar continuity equation

d

dt

δne∓

n0

= −b̂ · ∇u‖e∓ − iω∗e∓
e∓φ

T0

, (2.5)

where we are using the local approximation

vE · ∇n0

n0

= −iω∗e∓
e∓φ

T0

(2.6)

for the background density gradient, which introduces effects associate with the diamag-
netic frequency ω∗e∓ = −ivthe/(2Ln)ρe∂y, where ∇n0/n0 ≈ −L−1

n . Equation (2.5), if we
take into account Eq. (2.1), implies that

ω ∼ k‖vA,e and
vthe
c

A‖ ∼
√

βϕ, (2.7)

where vA,e = B/
√
4πmen0 is the Alfvén speed based on the electron mass.

(i) but see also Zocco & Schekochihin (2011); Zocco et al. (2015); Loureiro et al. (2016)
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We calculate the v‖−moment of Eq. (2.4), to obtain

d

dt

(

A‖ +
mc

e∓
u‖e∓

)

= −c
∂ϕ

∂z
− T0c

e∓
b̂ · ∇

(

δne∓

n0

+
δT‖e∓

T0

)

+ iω∗e∓ (1 + ηe)A‖ +
mc

e
ν
(

u‖e− − u‖e+
)

,

(2.8)

where ηe = n0∇T0/(T0∇n0), ν is the collision frequency, and a simple collision model
operator has been used (Zocco & Schekochihin 2011). Parallel Ampère’s law gives

e

mc
d2e∇2A‖ = u‖e− − u‖e+ . (2.9)

The system is closed with an equation for the temperature fluctuations, derived using a
highly collisional fluid closure for the flux of energy (Zocco & Schekochihin 2011; Zocco
et al. 2015)

d

dt

δT‖e∓

T0

=
v2the
2ν

(

b̂ · ∇
)2 δT‖e∓

T0

− i
v2the
2ν

b̂ · ∇ηe∓ω∗e∓
e∓A‖

T0

− iηe∓ω∗e∓
e∓ϕ

T0

− 2b̂ · ∇u‖e∓ .

(2.10)

This is just a choice that facilitates the forthcoming discussion. The system could easily be
left completely kinetic, then Eq. (2.10) would couple to higher order moments. However,
each of these moments would follow a universal equation when projected on the basis
of Hermite polynomials which allow for an efficient treatment of the non-isothermal
case δT‖ 6= 0 [(Zocco & Schekochihin 2011; Zocco et al. 2015; Zocco 2015; Schekochihin
et al. 2016)]. In the truly collisionless case the hierarchy of Hermite moments generates a
plasma response which was proven to be equivalent to the collisionless response evaluated
via Landau contour integration (Zocco 2015). The isothermal approximation instead,
δT‖ ≡ 0, would be described by the electron response of the nonlinear model of Schep
et al. (1994). In the context of linear magnetic reconnection, the presence of temperature
fluctuations is a technicality that has an impact on the transition from collisional to
collisionless regimes, but it is irrelevant when one wants to estimate reconnection rates
at very low and very high collisionality. The inclusion of the resonant electron response
(i.e. Landau resonance) is also not necessary to obtain correct reconnection rates in the
collisionless limit, since such regime is really entered as soon as the inertial scale exceeds
the resistive one, and this can happen even when the amount of collisions is finite. For
this reasons, we are justified to use Eq. (2.10) and yet consider a collisionless limit for
linear magnetic reconnection. Nonlinearly, the role of high order moments that couple to
the equation for temperature fluctuations is very important, as it was shown by Loureiro
et al. (2013) for electron-ion plasmas.

3. Waves

Let us consider the limit of small electron thermal diffusivity. In this case,

d

dt

δT‖e∓

T0

≈ −iω∗e∓
e∓ϕ

T0

− 2b̂ · ∇u‖e∓ . (3.1)

We use Eq. (3.1) in Eqs. (2.8), we then add the parallel moment equations of the two
species, to notice that diamagnetic effects cancel exactly. Thus, we obtain

A‖ −
k‖c

ω
ϕ =

ν

iω

(

1− i
ω

2ν
− 3

4

k2‖v
2

the

iων

)

k2⊥d
2

eA‖. (3.2)
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On the other hand, Poisson’s equation, after using the continuity equations and Am-
père’s law, becomes

φ =
1

4βe

k‖vthe

ω

vthe
c

A‖. (3.3)

By combining Eq. (3.2) and (3.3), we obtain

ω2 =
1

4

k2‖v
2

A,e

1 +
(

1 + i 2νω
)

k2⊥d
2
e/2

, (3.4)

where we are taking the limit

k2⊥ρ
2

e ∼ β ≪ 1. (3.5)

Thus, we find no drift wave, a result also obtained by Helander Helander (2014). In the
“collisionless” regime (ω ≫ ν) we find the dispersive waves

ω2 =
1

4

k2‖v
2

A,e

1 + k2⊥d
2
e/2

, (3.6)

which, at long wavelengths, becomes a shear Alfvèn wave,

ω2 ≈
k2‖v

2

A,e

4
. (3.7)

In the presence of collisions, electron thermal conduction induces a damping at short
wavelengths

ω ≈ −i
3

4

k2‖v
2

the

ν
. (3.8)

Perhaps not surprisingly, Eq. (3.8) defines the semicollisional scale introduced by Drake
& Lee (1977). In the subsidiary long wavelength limit, we have a shear Alfvén wave based
on the electron mass

ω ≈ ±k‖vA,e

2
. (3.9)

Had we retained the Debye length instead of the Larmor radius in Eq. (2.1) (ρ2e → λ2

D),
we would have found two waves travelling at the speed of light, which we prefer not to
allow for. This would have been true also in the isothermal limit (δT‖ = 0). Then, Eq.
(3.4) would have been ω = ±k‖c/2, which, cannot be accepted. Had one retained the
whole hierarchy of moments coupled to Eq. (2.10), valid for arbitrary collisionality, they
would still have entered the dispersion relation via the k2⊥λ

2

D term and yielded a wave
travelling at the speed of light. We conclude that, within this ordering, a truly collisionless
electromagnetic limit must be relativistic. The reason is more apparent if one ponders
the consequences of allowing the electrostatic potential to vary on the Debye scale, while
letting the current varying on the inertial scale. This implies (i)

λD ∼ de → vthe ∼ c, (3.10)

which demands a covariant description.

(i) An electromagnetic gyrokinetic theory that retains Larmor radius effects seems to suffer
from a similar problem, since in this case λD ∼ ρ → vA ∼ c, where ρ is the Larmor radius and
vA the Alfvén speed.
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4. Reconnecting instabilities

When considering a sheared slab, in the neighbourhood of a resonant surface, we have

k‖ ≈ ky
x

Ls
, (4.1)

where Ls is the shear length. Poisson’s law and Ohm’s law become, respectively

ρ2e
∂2ϕ

∂x2
= −kyvthe

4ω

vthe
c

x

Ls
d2e

∂2A‖

∂x2
, (4.2)

and

A‖ −
kyc

ω

x

Ls
ϕ =

(

i
ν

ω
+

1

2
− 3

4

k2yv
2

the

ω2

x2

L2
s

)

d2e
∂2A‖

∂x2
, (4.3)

which can easily be cast in the form also presented by Zocco & Schekochihin (2011).
Now, we have

−x

δ

(

A‖ −
x

δ
ϕ̃
)

σ
(x

δ

)

= 4ρ2e
∂2ϕ̃

∂x2
, (4.4)

and

−x

δ
d2e

∂2A‖

∂x2
= 4ρ2e

∂2ϕ̃

∂x2
, (4.5)

where δ = Lsω/(kyvthe), ϕ̃ = (c/vthe)ϕ, and

σ
(x

δ

)

=
1

i νω + 1

2
− 3

4

x2

δ2

. (4.6)

Since we are always assuming ρe ≪ de ∼ δ, we are effectively in a one-fluid limit,
the ultralow-beta discussed by the authors. We report on the collisionless case; results
apply to the collisional case in a straightforward manner. The analysis is known but
we reproduce some key steps for the sake of clarity. One can introduce the function
χ(ξ) = ξA′

‖ − A‖, where ξ = x/δin, and δin =
√

8δρ2e, to obtain one equation for

χ̃ = −1 + χ/χ0,

ξ2
d

dξ

[

1

ξ2
+ α2G

]

χ̃′ −
(

ξ2 + λ2
)

χ̃ = λ2, (4.7)

where λ2 = 8δρe/d
2

e, α = 2
√

ρ/δ, G = (δ2/x2)(σ−1 − 2), and χ0 is a constant of
integration. The dispersion relation for the rescaled eigenvalue λ2 is then

∫ ∞

0

dξ
χ̃′

ξ
= −∆′δin

2
, (4.8)

where ∆′ is the parameter that measures the discontinuity of the derivative of AMHD
‖

across the reconnection layer, and AMHD
‖ is the stable solution found in the ideal MHD

region, x → ∞ s.t. E‖ → 0 (Furth et al. 1963). As already pointed out by Zocco &
Schekochihin (2011), there is no need to solve Eq. (4.7) to derive scaling laws for recon-
nection rates. We can apply to our case Eq. (B47) that the authors suggest, λ2 ∼ δin∆

′,
and obtain

γ

kyvthe
∼ (∆′de)

2 d2e
ρeLs

. (4.9)

This is the equivalent of the collisionless result of Drake & Lee (1977) found in electron-ion
plasmas, where the Alfvén speed is based on the electron mass. The collisional counterpart
is recovered by replacing de →

√

νd2e/γ, to obtain the traditional result of Furth et al.
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(1963) (but based on the electron Alfvén speed). When ∆′δin ≫ 1, the current is limited
by the scale δin, so that ∂2

xA‖ ∼ A‖/δ
2

in. Then the dispersion relation becomes λ2 ∼ 1,
which yields (Basu & Coppi 1981)

γ

kyvthe
∼ d2e

ρeLs
, (4.10)

which gives the (Coppi et al. 1976) scaling γ ∼ (νd2e)
1/3 in the collisional limit. We must

notice that the absence of drift waves renders these modes purely growing, since they lack
the typical diamagnetic stabilisation present in electron-ion plasmas [(Ara et al. 1978;
Connor et al. 2012)].

5. Towards an improved nonlinear model

The inclusion of the Larmor scale in Eq. (2.1), instead of the Debye length, allowed us to
avoid a relativistic treatment. The use of the drift-kinetic model of Zocco & Schekochihin
(2011) helped us, but we did not exploit its full nonlinear potential yet. For this, fields’
amplitudes must be ordered more carefully. Equation (2.4), in fact, is nothing more than a
drift-kinetic equation that one could have cosidered regardless of the results on magnetic
reconnection in gyrokinetics [Zocco & Schekochihin (2011)]. What we already noticed
about the amplitude of the electrostatic potential , togheter with Eq (2.1), implies that

δn

n0

∼
√

βǫGK . (5.1)

So, effectively, if one considers a quasineutrality equation where δne− = δne+ for zero
Larmor radius, density fluctuations are downgraded as compared to electrostatic ones,
when the E×B nonlinearity and the streaming term k‖vthe are kept of the same order.
This also implies that magnetic compressibility now must be retained, since

δB‖

B0

∼ β
eϕ

T0

∼
√

βǫGK . (5.2)

Perpendicular magnetic fluctuations are ordered by balancing the electrostatic and the
vector potential amplitudes of the gyrokinetic potential χ = ϕ− (v‖/c)A‖, then

δB⊥

B0

∼ u⊥

vA,e

1√
β
, (5.3)

where u⊥ ∼ ck⊥ϕ/B0. In many relevant situations, the spatial variation of all quantities
along the exact magnetic field is required, then k⊥δB⊥ ∼ k‖B0, which implies

u⊥

vA,e
∼
√

βǫ → k⊥ρe ∼
√

β, (5.4)

and is naturally consistent with our fundamental ordering k⊥de ∼ 1. We therefore use

δB⊥

B0

∼ǫGK , (5.5)

which is different from what the continuity equation (2.5) would have implied

δB⊥

B0

∼βǫGK . (5.6)

Having completed the amplitues orderings, in order to obtain fluid-like equations, one
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can separate the first two moments of the perturbed distribution function

he∓ =

(

e∓ϕ

T0

− 2
v‖u‖

v2the

)

F0 +
δne∓

n0

F0 + g, (5.7)

where
∫

d3vg ≡
∫

d3vv‖g ≡ 0 to all orders in k2⊥ρ
2

e ∼ β ≪ 1. When magnetic compress-
ibility is taken into account, the gyrokinetic potential on the RHS of Eq. (2.4) becomes

ϕ− v‖

c
A‖ → ϕ− v‖

c
A‖ +

T0

e
v̂2⊥

δB‖

B0

, (5.8)

where
δB‖

B0

= −β
∑

∓

∫

d3vv̂2⊥he∓ . (5.9)

We notice that, due to its parity in velocity space, the new δB‖ term enters in the
equation for density fluctuations. Let us evaluate the density moment of Eqs. (2.4) after
using Eq. (5.8), and subtract the two results obtained, one for each species. To leading
order we have

b̂ · ∇d2e∇2A‖ = 0. (5.10)

To next order we find
d

dt
ρ2e∇2

eϕ

2T0

= 0. (5.11)

Magnetic compressibility is

δB‖

B0

= −β

(

δT⊥,e−

T0

+
δT⊥,e+

T0

)

, (5.12)

where

δT⊥,e∓ =
1

n0

∫

d3vv2⊥he∓ , (5.13)

and we are using δn/n0 ≪ δT/T0, and Eq. (2.1). Indeed, density fluctuations cancel
when Larmor radius effects are negligible, and k⊥de ∼ 1.

For high enough collisionality, we expect isotropic temperature fluctuations, that is
δT⊥ = δT‖. This is achieved with the simple collision operator model
(

∂he∓

∂t

)

coll

= ν

{

1

2

∂

∂v̂‖

(

∂

∂v̂‖
+ v̂‖

)

he∓ + 2
v‖u‖,e±

v2the
+
(

1− 2v̂2‖

) δT⊥,e∓

T0

F0

}

. (5.14)

Then, only an equation for either δT‖ of δT⊥ is required. We can multiply Eq. (2.4) by
v̂2‖ [after using Eq. (5.8)] and integrate over velocity space. The result is an equation

coupled to
∫

d3vv3‖he∓ . We then calculate the v̂3‖ moment of Eq. (2.4), neglect higher
order moments, invert the collisional operator, and obtain an explicit expression for
∫

d3vv3‖he∓ to insert in the δT‖ equation. We add the two equations obtained to find

d

dt

(

δT‖e−

T0

+
δT‖e+

T0

)

=
cT0

eB0

∇n0

n0

(1 + ηe) ∂y
eϕ

T0

− b̂ · ∇
(

u‖e− + u‖e+
)

, (5.15)

where the sum of the parallel momenta of both species is given by

d

dt

(

u‖e− + u‖e+
)

= −v2the
2

b̂ · ∇
(

δT‖e−

T0

+
δT‖e+

T0

)

− v2the
∇n0

n0

(1 + ηe)
∂yA‖

B0

, (5.16)

and we used Eq. (5.10). To summarize: Eqs. (5.10)-(5.11)-(5.15) and (5.16) are a closed
nonlinear system for ϕ, A‖, δT‖e− + δT‖e+ , and u‖e+ + u‖e− . Thus, to leading order in
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our low-beta expansion, quasineutrality is determined by setting to zero the divergence
of the electric current [Eq. (5.10)]. Any unbalance of perturbed charge density occurs
below the Larmor scale [Eq. (5.11)]. Magnetic compressibility is driven as a response to
temperature fluctuations in order to keep pressure balance [Eq. (5.12)].

6. Conclusion

We presented a simple study of non-relativistic electron-positron plasmas in a low
beta magnetised sheared slab. The two species were described by using the drift-kinetic
model of Zocco & Schekochihin (2011). A quasineutrality equation is given which provides
charge neutrality above the Larmor scale. Below that, charge unbalance is allowed to be
of the order of the square root of the plasma beta, which is assumed to be very small,
but not explicitly ordered with fields’ amplitudes. The system supports linear dispersive
a dispersive modification of shear Alfvén waves based on the electron mass. It has been
found that the growth rates of subalfenic reconnecting modes are also based on the
electron Alfvén speed and feature scalings similar to those of electron-ion plasmas. In the
low beta ordering here needed, two-fluid effects on non-linear reconnection do not seem
to be important. However, we can expect the non-linear collapse of the electric current
density which provides super-exponential growth of magnetic reconnection instabilities
in the early non-linear stage [(Ottaviani & Porcelli 1995; Zocco et al. 2008b, 2009)].
Drift waves are not present. While, on the one hand, such lack of diamagnetic effects
corresponds to a lack of diamagnetic stabilisation of reconnecting modes, on the other
it implies the absence of density and/or temperature gradient driven modes that can
cause turbulence. However, when the fields’ amplitudes are explicitly ordered so that
spatial variations of all fields along the exact magnetic field are retained and the transit
frequency is comparable to the nonlinear E×B frequency, magnetic compressibility can
balance small density fluctuations, and introduce some drift-wave dynamics.

I want to thank Per Helander, Michael Barnes, and Alex Schekochihin.
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