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We present results from particle-in-cell simulations of driven turbulence in magnetized, collisionless,

and relativistic pair plasmas. We find that the fluctuations are consistent with the classical k−5=3⊥ magnetic
energy spectrum at fluid scales and a steeper k−4⊥ spectrum at sub-Larmor scales, where k⊥ is the wave
vector perpendicular to the mean field. We demonstrate the development of a nonthermal, power-law
particle energy distribution fðEÞ ∼ E−α, with an index α that decreases with increasing magnetization and
increases with an increasing system size (relative to the characteristic Larmor radius). Our simulations
indicate that turbulence can be a viable source of energetic particles in high-energy astrophysical systems,
such as pulsar wind nebulae, if scalings asymptotically become insensitive to the system size.
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Introduction.—Nonthermal energetic particles are a
common ingredient in high-energy astrophysics, being
responsible for observable broadband radiation spectra.
However, their origin is often poorly constrained. It is now
widely accepted that nonthermal particle acceleration can
be a consequence of collisionless plasma physics. In
particular, it was demonstrated that relativistic magnetic
reconnection [1–3] and collisionless shocks [4,5] can both
efficiently energize a population of nonthermal particles
with a power-law energy distribution. Since these two
mechanisms require specific large-scale configurations to
initiate, however, it is unclear whether they are sufficiently
versatile to explain all observations.
A third route to particle acceleration, which may be both

versatile and ubiquitous, is turbulence in collisionless plas-
mas. Turbulence is often inevitable in astrophysical flowsdue
to the large separation between driving scales and dissipative
scales, making it an attractive possible source of energetic
particles. In particular, turbulence may power nonthermal
synchrotron and inverse Compton radiation in systems such
as pulsar wind nebulae, coronae of accreting objects, and jets.
Furthermore, intermittent dissipative structures may natu-
rally explain impulsive flares observed in some of these
systems, including GeV flares in the Crab Nebula [6,7].
Turbulent particle acceleration can be associated with a

number of acceleration mechanisms, which are not neces-
sarily independent from those in shocks and magnetic
reconnection. Indeed, large-scale turbulence may intermit-
tently accelerate particles through first-order Fermi accel-
eration in self-consistently formed shocks and reconnection
sites (e.g., [8–11]), while small-scale, instability-driven
turbulence is essential for Fermi acceleration in shocks
and reconnection [12,13]. Particles can also be stochastically

accelerated via wave-particle interactions, generally leading
to second-order Fermi acceleration (e.g., [14–18]). However,
it remains largely unestablished under what circumstances
the turbulent cascade can efficiently accelerate particles
toward a robust nonthermal particle energy distribution.
In this Letter, we utilize particle-in-cell (PIC) simulations

to demonstrate that kinetic turbulence in collisionless,
relativistically hot pair plasmas can efficiently generate a
nonthermal particle population from an initial thermal bath
in closed systems of modest size. The simulations are driven
to develop a classical large-scale magnetohydrodynamic
(MHD) cascade that transitions into a kinetic cascade at sub-
Larmor scales. The late-time particle distributions take the
form of power laws that span a broad range of energies. For a
fixed system size, these power-law distributions become
harder with increasing magnetization (or decreasing plasma
beta) and qualitatively resemble those previously seen in
relativistic magnetic reconnection [2,3,19]. However, the
distributions become steeper with increasing system size,
indicating that asymptotic, system-size-independent scal-
ings either have not yet been reached or do not exist.
Method.—Hydrodynamic and MHD simulations show

that relativistic turbulence broadly resembles the nonrela-
tivistic case [20–25] but can only describe acceleration in the
test particle approximation (e.g., [26,27]). In this work, we
apply kinetic PIC simulations, which, for hot pair plasmas,
can obtain a comparable inertial range [28] while self-
consistently describing particle acceleration. Previously,
PIC simulations were applied to show the emergence of
nonthermal features from decaying turbulence (e.g., [29–
31]) and from the magnetorotational instability [32–34].
In our system, the magnetic field Bðx; tÞ and electric

field Eðx; tÞ are evolved by Maxwell’s equations, while the
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electron and positron particles are evolved via the Lorentz
force. The characteristic kinetic scales are the Larmor
radius ρe ≡ γ̄mc2=eBrms and plasma skin depth de≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ̄mc2=4πn0e2
p

, given the mean particle Lorentz factor
γ̄ ≫ 1, electron rest mass m, elementary charge e, speed of
light c, mean total particle density n0, and characteristic
(rms) magnetic field Brms. The two free dimensionless
parameters (ignoring driving parameters) are the system
size relative to Larmor radius L=ρe and nominal magneti-
zation σ ≡ B2

rms=4πn0γ̄mc2 ¼ ðde=ρeÞ2 (inversely propor-
tional to plasma beta). We denote the initial values by
σ0 ≡ σðt ¼ 0Þ and ρe0 ≡ ρeðt ¼ 0Þ.
We performed our simulations using the explicit electro-

magnetic PIC code Zeltron [35]. The domain is a periodic
cubic box of size L3 with uniform background magnetic
field B0 ¼ B0ẑ. We initialize simulations with zero electro-
magnetic fluctuations (δB ¼ E ¼ 0) and particles with a
uniform nondrifting Maxwell-Jüttner distribution [36] and
ultrarelativistic mean Lorentz factor γ̄ðt ¼ 0Þ ≈ 300. This
stable thermal equilibrium is disrupted by external driving.
To drive strong, critically balanced turbulence at large
scales in a way that mimics energy transfer from a MHD
cascade [37], we apply a fluctuating external current
density Jext in the form of an oscillating Langevin antenna
[38]. We drive Jext;z at eight modes, k0L=2π ∈
fð1; 0;�1Þ; ð0; 1;�1Þ; ð−1; 0;�1Þ; ð0;−1;�1Þg, and each
of Jext;x and Jext;y in four modes to enforce∇ · Jext ¼ 0. We
choose driving frequency ω0 ¼ 0.6 · 2πvA0=

ffiffiffi

3
p

L and
decorrelation rate Γ0 ¼ 0.5 · 2πvA0=

ffiffiffi

3
p

L, where vA0 ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ0=ðσ0 þ 4=3Þp

is the initial relativistic Alfvén velocity
in our simulations [39,40]. We tune the driving amplitude
such that rms fluctuations satisfy δBrms ∼ B0.
Since there is no energy sink in our numerical setup,

injected energy will increase the fluid internal energy
linearly in time at a heating rate (per unit volume)
comparable to ϵ ∼ B2

0c=8πL. This heating will cause
ρeðtÞ to increase in time and σðtÞ to decrease in time, with
the dimensionless parameter ξ≡ σρe=L being statistically
constant in time. The parameter ξ can be expressed as
ξ ¼ Emag=Emax, where Emag ¼ B2

rms=8πn0 is the magnetic
energy per particle and Emax ¼ LeBrms=2c is the maximum
energy of particles for a given system size (i.e., with the
Larmor radius equal to half the system size). All simu-
lations with fixed ξ but varying σ nominally represent
different stages of evolution for a single run. Fully
developed turbulence begins after a few light crossing
times (once the cascade reaches kinetic scales) and ends
when the fluid inertial range is suppressed by heating
(ρe ∼ L=2π). A rough estimate for the duration of turbu-
lence, assuming ρeðtÞ ∼ ρe0 þ tϵ=n0eBrms, is tc=L∼
L=2πρe0σ0 ∼ 1=2πξðt ¼ 0Þ.
Results.—Weperformed a series of simulations on lattices

of N3 cells with varying parameters σ0 and L=ρe0.
For simulations with N ∈ f256; 384; 512; 768; 1024g, we

chose a corresponding ratio of driving scale to
initial Larmor radius no greater than L=2πρe0 ∈
f27.2; 40.7; 54.3; 81.5; 108.6g. For simulations with
N ≤ 512, we performed a full scan of σ0 ∈ f0.25;
0.5; 1; 2; 4g; for N ¼ 768, we did σ0 ∈ f0.25; 0.5; 1; 2g;
and for N ¼ 1024, we did σ0 ∈ f0.5; 2g. Unless otherwise
noted, we describe results from our fiducial 7683 simu-
lation with σ0 ¼ 0.25 and L=2πρe0 ≈ 61.1 (with ∼1011
particles). For all runs, we chose ρe0 ≥ 1.5Δx (where Δx is
the lattice cell size), at least 128 particles per cell [41], and a
duration≥ 10L=c (including∼22L=c for the fiducial case);
note that the Alfvén crossing time is longer than L=c and
slowly increases in time. In most of our cases, the total
energy (accounting for injection) is conserved to approx-
imately 1% or better. We show a snapshot of Jz=Jz;rms, the
normalized electric current density alongB0, in Fig. 1. The
formation of intermittent current sheets, with thicknesses
near the kinetic scale and lengths spanning a range of scales
up to the driving scale, is evident, as previously seen in
MHD turbulence (e.g., [42]) and in nonrelativistic kinetic
turbulence (e.g., [28,43]).
We first show the evolution of the energy contributions

in Fig. 2. We decompose total particle kinetic
energy EkinðtÞ ¼

R

d3xEfðx; tÞ into internal fluid energy

FIG. 1. 3D and 2D threshold plots of Jz=Jz;rms (normalized
electric current density parallel to B0).
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EintðtÞ ¼
R

d3x½E2
fðx; tÞ − p2

fðx; tÞc2�1=2 and bulk fluid
kinetic energy EbulkðtÞ¼EkinðtÞ−EintðtÞ, where Efðx; tÞ ¼
R

d3pðm2c4 þ p2c2Þ1=2fðp; x; tÞ is the fluid energy density,
pfðx; tÞ ¼

R

d3ppfðp; x; tÞ is the fluid momentum density,
and fðp; x; tÞ is the particle distribution function at time t.
Bulk fluid energy can also be expressed as EbulkðtÞ ¼
R

d3xw2ðx; tÞ, where w≡ pfc=½Ef þ ðE2
f − p2

fc
2Þ1=2�1=2 is

the fluid four-velocity weighted by an effective mass.
We find that turbulent energy saturates after a few light
crossing times. The turbulent magnetic energy EmagðtÞ ¼
R

d3x½δBðx; tÞ�2=8π and Ebulk come into equipartition with
background magnetic energy Emean ¼

R

d3xB2
0=8π, as dic-

tated by our driving, while electric energy EelecðtÞ ¼
R

d3x½Eðx; tÞ�2=8π is a few times smaller. For σ0 ≤ 1,
turbulence energies are significantly below Eint, which sets
fluid inertia, so turbulent motions are effectively nonrela-
tivistic. To a good approximation, the internal energy
increases linearly in time, as expected from a constant
energy injection rate. For the fiducial case,ρe andde increase
by less than a factor of 2 over the given duration.
We next consider Fourier power spectra for turbulent

fluctuations. For simplicity, we consider themagnetic energy
spectrum EmagðkÞ ¼ j ~BðkÞj2=8π, electric energy spectrum
EelecðkÞ ¼ j ~EðkÞj2=8π, solenoidal fluid energy spectrum
Ebulk;solðkÞ ¼ jk̂ × ~wðkÞj2, and compressive fluid energy
spectrum Ebulk;compðkÞ ¼ jk̂ · ~wðkÞj2, where ~yðkÞ denotes
the Fourier transform of yðxÞ. The decomposition of fluid
energy into solenoidal and compressive parts is customary in
compressible turbulence (e.g., [44,45]). Each spectrum
integrates into the corresponding contribution to total energy.
In Fig. 3, we show (ring-averaged) spectra Emagðk⊥Þ,

Eelecðk⊥Þ, Ebulk;solðk⊥Þ, and Ebulk;compðk⊥Þ for wave vectors
k⊥ perpendicular to B0, averaged over times
11L=c≲ t≲ 22L=c. We find that the magnetic energy
and solenoidal fluid energy are in excellent equipartition
across the fluid inertial range, with Emagðk⊥Þ having a
scaling close to k−5=3⊥ while Ebulk;solðk⊥Þ has a somewhat

steeper scaling closer to k−2⊥ . The electric energy and
compressive fluid energy are subdominant, as expected
in the subrelativistic, weakly compressible turbulence
regime; in particular, Ebulk;compðk⊥Þ decreases very rapidly
with k⊥ (i.e., steeper than k−3⊥ ). There is a spectral break for
Emagðk⊥Þ at k⊥ρe ∼ 1, in the vicinity of which there is an
excess of magnetic energy over fluid energy, possibly due
to the energy exchange associated with kinetic instabilities
of anisotropic, nonthermal particle distributions. Beyond
the spectral break, Emagðk⊥Þ steepens into a power law k−4⊥ ,
implying that the cascade may continue as a kinetic cascade
[46,47]. At even higher k⊥, spectra flatten due to particle
noise. To better characterize the inertial range, we show the
compensated magnetic energy spectrum Emagðk⊥Þk5=3⊥ in
the second panel in Fig. 3 and compare to simulations of
smaller L=ρe0 (and fixed σ0 ¼ 0.25). The magnetic energy
spectrum approaches a scaling consistent with k−5=3⊥ for
increasing L=ρe0, as predicted for incompressible MHD
turbulence [37] and for highly relativistic MHD turbulence
[48]; kinetic energy spectra steeper than k−5=3⊥ are

FIG. 2. Evolution of turbulent magnetic energy Emag (red
curve), electric energy Eelec (green curve), internal energy Eint
(magenta curve), and bulk fluid energy Ebulk (blue curve), all
normalized to background magnetic energy Emean
(black, dashed line).

FIG. 3. Top panel: Spectra of magnetic energy Emagðk⊥Þ (blue
curve), electric energy Eelecðk⊥Þ (red curve), solenoidal fluid
kinetic energy Ebulk;solðk⊥Þ (black curve), and compressive fluid
kinetic energy Ebulk;compðk⊥Þ (magenta curve) during fully

developed turbulence. Green dashed lines indicate k−5=3⊥ and
k−2⊥ in the inertial range (k⊥ρe < 1) and k−4⊥ in the sub-Larmor
range (k⊥ρe > 1). Bottom panel: Compensated magnetic energy
spectrum Emagðk⊥Þk5=3⊥ for simulations of varying system size
L=2πρe0 ∈ f27.2; 40.7; 54.3; 81.5g and fixed σ0 ¼ 0.25, with
k−5=3⊥ and k−4⊥ scalings (green, dashed line).
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anticipated in both compressive [49] and relativistic [22]
turbulence.
We now turn to our main result: the production of a

nonthermal population of energetic particles by turbulence.

We demonstrate in Fig. 4 that the particle energy distri-
bution converges to a power law after several dynamical
times (t≳ 5L=vA0): fðγÞ ∼ γ−α, where γ ¼ E=mc2 is the
particle Lorentz factor. In the second panel in Fig. 4, we
show that α decreases with increasing σ0 for a fixed system
size and α < 2 for sufficiently large σ0. A qualitatively
similar dependence of α on σ was previously found in
relativistic magnetic reconnection [2,3,19]. In all of our
cases, the upper cutoff for the power law is set by the
system size, i.e., γmax ¼ LeB0=2mc2. Since particles are
unable to significantly exceed γmax, a bump forms near γmax
at late times but does not strongly influence the power law.
The lower cutoff grows on the heating time scale and
therefore shortens the power law for high σ0. In addition to
the σ0 dependence, we find that the power-law distributions
become steeper with increasing L=ρe0. We show the
measured values of α for all of our simulations, each taken
from the time with the longest fitted power-law segment,
versus ξ0 ¼ σ0ρe0=L in the third panel in Fig. 4. We find
that the index can be estimated, in all of our simulations, by
the empirical formula α ∼ 1þ C0ξ

−1=2
0 , where C0 ≈ 0.075.

A preliminary investigation of particle acceleration
mechanisms via particle tracking indicates that the accel-
eration process is diffusive in momentum space, consistent
with second-order Fermi acceleration. Predicting the late-
time power-law index α analytically is complicated, how-
ever, by the time dependence of physical parameters and
the absence of a cooling mechanism or particle escape.
Conclusions.—In this Letter, we demonstrated efficient

particle acceleration by driven turbulence in magnetized,
collisionless, and relativistically hot plasmas for modestly
large, closed domains. Our PIC simulations successfully
reproduce large-scale MHD turbulence, as implied by the
k−5=3⊥ magnetic energy spectrum. The k−4⊥ spectrum at sub-
Larmor scalesmay indicate a kinetic cascade [46] and is also
purportedly measured in the solar wind at scales below the
electron gyroscale [50,51] [although contested (e.g.,
[52,53])]. The late-time particle energy distributions are
robust power laws that become shallower with increasing
values of ξ ¼ σρe=L. In particular, we proposed an empiri-
cal formula for the power-law index, α ∼ 1þ C0ξ

−1=2,
which fits all of our simulations to a good approximation.
For sufficiently high magnetization, we find that α < 2,
implying that nonthermal particles are energetically dom-
inant and therefore kinetic physics cannot be neglected. This
study provides a first step towards building a self-consistent,
first-principles physical picture of driven kinetic turbulence
in relativistic collisionless plasmas.
For turbulence to be a viable source of energetic particles

in high-energy astrophysical systems such as pulsar wind
nebulae, the late-time power-law index α must asymptoti-
cally become insensitive to the system size L (relative to
ρe). There are no clear signs of α converging with L in our
simulations, and so, if extrapolated to astrophysical system
sizes (L ≫ σρe so that ξ ≪ 1), our empirical formula

FIG. 4. Top panel: Evolution of particle energy distribution
fðγÞ (where γ ¼ E=mc2) from the initial thermal distribution
(black curve) to saturated nonthermal distribution at t ¼ 8.9L=c
(red curve) (for 7683 lattice, σ0 ¼ 1), along with system-size
cutoff γmax (green, dashed line) and power law p−2.68 (black,
dashed line). Middle panel: Late-time fðγÞ for σ0 ∈
f1=4; 1=2; 1; 2; 4g (5123 lattice; renormalized for clarity), with
respective power-law fits p−α, α ∈ f3.44; 3.05; 2.43; 2.04; 1.55g
(dashed lines). Bottom panel: Measured α vs ξ0 ¼ σ0ρe0=L, with
fit 1þ C0ξ

−1=2
0 (black curve) given C0 ¼ 0.075. Data points are

from 2563 (magenta plus), 5123 (blue diamond), 7683 (red cross),
and 10243 (green circle) simulations with nominal
L=2πρe0 ∈ f27; 54; 81; 109g, respectively.
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would rule out efficient turbulent particle acceleration in
many astrophysical systems. However, we believe that it is
reasonable to anticipate that α should approach an L-
independent value for larger sizes, beyond those covered in
our study. In particular, simulations of relativistic magnetic
reconnection do provide evidence for an asymptotic regime
in which power-law particle distributions become univer-
sal, but they approach this regime only for significantly
larger systems than considered in our present work [1–3].
One may therefore expect that a longer inertial range is
needed to properly resolve all of the physical processes,
including instabilities, responsible for turbulent particle
acceleration. In addition, since only our largest simulations
exhibit a convincing inertial range, finite-size corrections to
turbulence statistics may feed into the particle acceleration
properties. Finally, we note that, in many astrophysical
systems, additional processes such as particle escape (due
to open boundaries) and radiative cooling can play an
essential role in saturating the nonthermal distributions.
The absence of such processes in our simulations prevents a
proper steady-state distribution from being achieved and
makes it nontrivial to link the indices in our dynamically
evolving system to those in quasi-steady-state astrophysical
systems. These important, subtle issues of convergence will
await the next generation of turbulence simulations.
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