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Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interrup-
tion” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption
involves a self-generated pressure anisotropy removing the restoring force of a linearly
polarized Alfvénic perturbation, and occurs for wave amplitudes δB⊥/B0 & β −1/2

(where β is the ratio of thermal to magnetic pressure). We use highly elongated domains
to obtain maximal scale separation between the wave and the ion gyroscale. We find
that the dynamics of both standing and traveling waves are strongly affected by the
excitation of oblique firehose modes, which decay into long-lived parallel fluctuations at
the ion gyroscale that cause significant particle scattering. These parallel fluctuations
are shown to arise generically through the free decay of oblique firehose fluctuations as
the plasma becomes firehose stable, and survive over very long time periods due to a
nonlinear stabilization of the cyclotron damping mechanism. Our results demonstrate
that collisionless plasmas cannot support linearly polarized Alfvén waves above the
amplitude δB⊥/B0 ∼ β −1/2. They also provide a vivid illustration of two key aspects
of low-collisionality plasma dynamics: (i) the importance of velocity space instabilities
in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes
can transfer mechanical energy directly from the largest scales into thermal energy and
microscale fluctuations, without requiring a scale-by-scale turbulent cascade.

1. Introduction

Shear-Alfvén fluctuations are fundamenal to magnetized plasma dynamics (Alfvén
1942; Cramer 2011; Ogilvie 2016). They are routinely observed in laboratory plasmas
(Gekelman et al. 2011), and are ubiquitous in the solar wind above the ion gyroscale
(Bruno & Carbone 2013). As the basis for modern theories of magnetohydrodynamic
(MHD) turbulence (Goldreich & Sridhar 1995; Boldyrev 2006; Schekochihin et al. 2009;
Mallet & Schekochihin 2017), their physics plays a crucial role in the transfer of energy
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from large to small scales, and they underlie some core differences between neutral
and magnetized fluid dynamics. Shear-Alfvén waves are also the most robust plasma
oscillation: linearly, they are weakly damped by kinetic effects in collisionless regimes
(Foote & Kulsrud 1979) and survive in both kinetic and fluid plasma models (Cramer
2011).

In these proceedings, we study, using hybrid-kinetic simulations, a notable exception
to this robustness, which was first examined in Squire et al. (2016). In a collisionless
plasma, a linearly polarized shear-Alfvén (SA) wave above the amplitude

δB⊥
B0

& β −1/2, (1.1)

is strongly nonlinearly modified, or “interrupted.” In Eq. (1.1), β ≡ 8πp0/B
2 is the

ratio of thermal pressure (p0) to magnetic pressure (B is the field strength), B0 is a
background magnetic field, and δB⊥ is an Alfvénically polarized field perturbation. In
this work, we explore the fate of standing and traveling SA waves above the interruption
limit (1.1). We find that such waves dissipate rapidly (in approximately one Alfvén time
or less), heating the plasma and creating microscale fluctuations without developing into
a turbulent cascade. These results are relevant to variety of astrophysical environments
with hot, low-density, high-β plasmas; for example, the intracluster medium (Sparke
& Gallagher 2007; Kunz et al. 2010; Zhuravleva et al. 2014), low-luminosity black-hole
accretion flows (Quataert 1998; Yuan & Narayan 2014; Kunz et al. 2016), and large-scale
fluctuations in the solar wind (Bale et al. 2009; Bruno & Carbone 2013; Chen 2016).

1.1. Shear-Alfvén wave interruption

Before continuing, let us briefly explain the origin of the limit (1.1) (see Squire
et al. 2017 for details). The effect depends on the generation of pressure anisotropy,
viz., a pressure tensor that differs in the directions perpendicular and parallel to the
magnetic field (we denote these p⊥ and p‖, respectively). In a magnetized weakly
collisional plasma where the collision frequency νc is less than the ion gyrofrequency
Ωi, a pressure anisotropy develops whenever the magnetic field strength changes in
time. This anisotropy, ∆p ≡ p⊥ − p‖, causes an additional stress in the momentum
equation ∇ · (∆p/B2BB), and if β > 1, the anisotropic stress can be as important
as, or even dominate over, the magnetic tension ∇ · (BB)/4π = B · ∇B/4π. This
suggests that collisionless dynamics can differ significantly from MHD predictions, even
for perturbations on large spatial (λ � ρi) or temporal (τ � Ω−1i ) scales (here ρi is
the ion gyroradius). Further, if ∆p grows too large in either the positive or negative
direction, the plasma becomes unstable to to fast-growing microinstabilities, which grow
and saturate on scales approaching ρi. For β > 1 the most important of these are
the firehose instability, which plays a prominent role in this work and is unstable for
∆p . −B2/4π (Rosenbluth 1956; Chandrasekhar et al. 1958; Parker 1958; Yoon et al.
1993), and the mirror instability, which is unstable for positive anisotropies ∆p & B2/8π.

Consider now the fate of an Alfvénic magnetic perturbation, with a large enough
amplitude such that as the magnetic field decreases due to the Lorentz force, it generates
a pressure anisotropy that is sufficiently large to destabilize the firehose instability. At
this point, ∆p = −B2/4π, the anisotropic stress exactly offsets the Lorentz force, which
is the restoring force for the wave. The development of the wave is thus “interrupted”—a
nonlinear effect that is not captured in linear models of SA waves. Because the wave
perturbs the field magnitude by δB2

⊥, a wave amplitude above the limit (1.1) is sufficient
to generate such a ∆p in a collisionless plasma with νc � ωA � Ωi (where ωA is the
Alfvén frequency). Similarly, in the weakly collisional (Braginskii) regime (Braginskii
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1965), where ωA � νc � Ωi and collisions balance the generation of pressure anisotropy,
SA waves of amplitude

δB⊥
B0

&

√
νc
ωA

β −1/2, (1.2)

are interrupted and unable to oscillate. Although we will not explicitly add particle
collisions in this work, the limit (1.2) is relevant when SA wave dynamics are influenced
by scattering from microscale fluctuations.

1.2. The purpose and organization of this article

The purpose of these proceedings is to explore SA-wave interruption in a collisionless
plasma, using the simplest model that might be expected to provide a qualitatively
accurate representation of reality: hybrid kinetics (kinetic ions, fluid electrons) in two
spatial and three velocity dimensions. The use of two spatial dimensions is necessary
to correctly capture the oblique firehose instability (Yoon et al. 1993; Hellinger &
Matsumoto 2000), even though we study long-wavelength standing and traveling SA
waves that vary only in the field-parallel direction. We focus on maximizing the scale
separation between the large-scale SA wave and the ion gyroscale, a limit that is relevant
to many astrophysical environments. This setup is designed to address the role of finite-
Larmor-radius (FLR) effects and particle scattering from microscale fluctuations after the
nonlinear interruption of the wave. More generally, our results highlight the importance of
microinstabilities in controlling large-scale dynamics in high-β weakly collisional plasmas.

The remainder of the article is organized as follows. In §2 we explain the hybrid method
and detail the initial conditions and numerical parameters used for our simulations. We
also explain (in §2.2.1 and §2.2.2) our reasons for focusing primarily on the case of a
standing wave initialized with an Alfvénic magnetic perturbation. Then, in §3 and §4,
we explore the dynamics of standing waves and traveling waves respectively, in each
case explaining the observed large-scale dynamics based on simple arguments in previous
works (Squire et al. 2017) and measurements of the particle scattering rate. In all our
simulations, we see that particle scattering is dominated by short-wavelength parallel
fluctuations (k⊥ ∼ 0, k‖ρi ∼ 1) that evolve from oblique firehose modes §5 is devoted to
examining the creation and evolution of these fluctuations in simplified settings, with an
eye towards the eventual goal of constructing a theory for how microscale fluctuations
influence the large-scale dynamics in different scenarios. We finish with conclusions and
discussion in §6. For the reader with little time (for example, a conference attendee with
an imposing collection of other papers to get through), §2.2, §3 and 3.1, and §6 give a
flavor of the study and its key results.

2. Numerical method and simulation setup

In this section, we describe the hybrid-kinetic method and the Pegasus code, which
is used for all simulations presented here. We then explain our numerical setup and the
motivation for using this (§2.2.1 and §2.2.2), and briefly describe numerical tests used to
ensure simulation accuracy (we give a fuller description of these tests in App. A).

2.1. Hybrid-kinetic simulation

The hybrid-kinetic approximation involves treating the electrons as an isothermal,
massless, neutralizing fluid. By removing, light waves, plasma oscillations, and electron
kinetic scales from the problem, the hybrid method reduces simulation cost dramatically,
while still retaining fully kinetic ion dynamics. The hybrid approximation may be
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motivated—or derived, in the limit of collisional electrons—using a mass-ratio expansion,
viz., an expansion in (me/mi)

1/2 ≈ 1/42) (see, e.g., App. A of Rosin et al. 2011). The
method may also be extended to include more complex electron physics (see, e.g., Cheng
et al. (2013)), but we do not consider this here.

The hybrid equations consist of (i) the collisionless Vlasov equation for the ion
distribution function fi(x,v, t),

∂fi
∂t

+ v · ∂fi
∂x

+
qi
mi

(
E +

1

c
v ×B

)
· ∂fi
∂v

= 0; (2.1)

(ii) Faraday’s law for the magnetic field,

∂B

∂t
= −c∇×E; (2.2)

and (iii), a generalized Ohm’s law for the electric field,

E +
1

c
ui ×B − η

c
∇×B = −Te∇ni

eni
+

(∇×B)×B

4πqini
. (2.3)

In Eqs. (2.1)–(2.3), qi and mi are the ion’s charge and mass, E is the electric field, c is
the speed of light, η is the plasma resistivity, and Te is the electron temperature (this is
an arbitrary parameter within the hybrid model). The ion density ni and bulk velocity
ui specified as moments of fi,

ni(x, t) =

∫
dvfi(x,v, t), (2.4)

and bulk flow velocity

ui(x, t) =

∫
dv vfi(x,v, t), (2.5)

thus closing the system.

We use the Pegasus code (Kunz et al. 2014b) to solve Eqs. (2.1)-(2.3). Pegasus employs
the particle-in-cell (PIC) method to evolve the ion distribution function and constrained
transport (Evans & Hawley 1988) to maintain ∇ · B = 0. Second-order particle shape
functions are used for particle deposits (Birdsall & Langdon 1991), along with a predictor-
corrector time integrator based on the Boris algorithm Boris (1970). We use the δf
method (Chen & Parker 2003), which evolves only perturbations to the ion distribution
function, δf = f − f0, where f0 is a reference distribution, which we take to be an
isotropic Maxwellian. The method reduces discrete-particle noise by ∼ (δf/f0)2. This
makes it highly beneficial for simulation of high-β plasmas, where it is necessary to
resolve very small (� 1/β) deviations from a Maxwellian distribution.

2.2. Simulation setup

Our simulation setup is designed to probe SA wave interruption under the simplest
possible conditions. Accordingly, in these proceedings, focus on two specific initial con-
ditions, which have variation only on scales very large compared to the ion gyroradius
(λA � ρi, where λA is the SA wavelength). These are (i) a parallel standing SA wave,
initialized with an out-of-plane magnetic perturbation, viz., initial conditions

δBz
B0

= −δb cos

(
2π

λA
x

)
, δuz = 0; (2.6)
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and (ii) a traveling SA wave, viz., initial conditions

δBz
B0

= −δb cos

(
2π

λA
x

)
,

δuz
vA

= δb cos

(
2π

λA
x

)
. (2.7)

Here δb is the wave amplitude, λA is the wavelength, and the 2-D spatial domain spans
the x and y dimensions. We focus on the SA standing wave in this work, for reasons
discussed below (§2.2.1). Due to the larger computational domains required, we leave
study of the important case of an initial Alfvénic velocity perturbation to future work
(see §2.2.2 for further discussion).

In all simulations, we initialize using an isotropic Maxwellian ion distribution with
Te = Ti, and set η = 0.† We impose a background magnetic field B = B0x̂, with
βi = 8πniTi/B

2
0 . Each domain is of width 50ρi in the y direction and highly elongated

(up to Lx = 1000ρi) in the x direction (with λA = Lx), so as to enable maximal scale
separation between the SA wave and the oblique firehose instability (which produces
perturbations with kρi ∼ 0.5). We use a spatial resolution of ∆x = 0.3125ρi and Nppc =
4096 particles per cell (ppc). We take βi = 100 and δb = 0.5, which is well above the
interruption limit δbmax ≈ 2β −1/2 (Squire et al. 2016). Within the MHD model, the
initial conditions (2.6) or (2.7) with these parameters would create continuing sinusoidal
SA oscillations (deviations due to compressibility are very small because β � 1; see Squire
et al. 2017). For future reference, the SA wave period and gyrofrequency are related by
τA = 2π/ωA =

√
βi(λA/ρi)Ω

−1
i . Throughout the text we shall use angle brackets 〈·〉 to

denote a spatial average, and 〈·〉y to denote an average across the perpendicular, in-plane

direction (y). We will also use a tilde (e.g., δB̃) to heuristically indicate that a quantity
varies on the microscales (i.e., with kρi ∼ 1).

Due to the very large separation of space and time scales involved in this problem,
careful numerical tests are important to ensure confidence in the observed results. In
addition to previous tests of the Pegasus code (Kunz et al. 2014b), we have run a variety
of low-amplitude wave tests and scaling studies that specifically concern the evolution
of long-wavelength SA waves. These are detailed in App. A. Most importantly, these
tests indicate that a SA wave below the limit (1.1) can propagate/oscillate normally in
Pegasus, for the same numerical parameters used for the nonlinear SA wave simulations.

2.2.1. Standing waves and traveling waves

Throughout this work, we focus primarily on the SA standing wave, as opposed to
the traveling wave. Our reason for this choice is that the types of physical effects seen
in standing SA waves are more likely to be generally applicable to Alfvénic turbulence
(although both setups are of course highly idealized). In particular, the standing wave
is relevant to SA waves where a large-scale dB/dt 6= 0 causes a large region of the
plasma to become firehose unstable at once, while the traveling wave setup specifically
probes initial conditions where 〈dB/dt〉 = 0 initially, and the wave must be damped (by
Landau damping and pressure anisotropy damping; Hollweg 1971; Squire et al. 2017)
before reaching the firehose limit. Thus a “mixed” SA wave, which is both traveling
and oscillating, or a wave with a range of wavelengths, will be better described by the
standing-wave phenomenology so long there is a globally oscillating component of δB⊥
that causes ∆p to reach the firehose limit. It thus seems likely that the dynamics of the
standing wave are more generically relevant to Alfvénic turbulence. In any case, once
the ∆p has reached the firehose limit, we shall see that the dynamics of standing and

† In the hot, low density plasmas of interest, the resistivity due to electron-ion collisions is
very small.
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traveling SA waves are broadly similar, with similar sources particle scattering that cause
the large-scale SA wave to decay.

2.2.2. Initial Alfvénic velocity perturbation

The present study has an important omission—a standing SA wave initialized with
a velocity perturbation. Such initial conditions are likely very relevant for Alfvénic
turbulence, since it is hard to envisage how an isolated Alfvénic magnetic perturbation
(e.g., initial conditions (2.6)) might arise, if not through a velocity perturbation of some
sort. It is, however, reasonable to expect that such a fluctuation should behave similarly to
the initial magnetic perturbation studied here. In particular, even though∆p > 0 initially,
the mirror instability grows when ∆p & B2/8π and acts to limit ∆p (Schekochihin et al.
2008; Rincon et al. 2015; Melville et al. 2016; Squire et al. 2017), likely allowing ∆p to
decrease and reach the firehose limit (∆p . B2/4π) after magnetic tension reverses dB/dt
as the SA wave oscillates. However, kinetic simulations are certainly needed to address
this physically relevant situation more confidently. We have delayed these studies to
future work for computational reasons: the mirror instability depends more significantly
on scale separation (λA/ρi � 1) than the firehose instability (Kunz et al. 2014a), and
even larger simulation domains will be required.

2.2.3. The oblique and parallel firehose instabilities

The standard firehose instability threshold quoted above, ∆p = −B2/4π, is only truly
valid in the long-wavelength limit (the “MHD firehose”). As is well documented for
β ∼ 1 in a bi-Maxwellian plasma (e.g., Hellinger & Matsumoto 2000; Klein & Howes
2015), kinetic effects and resonances shift the instability boundary to ∆p > −B2/4π
for small-scale modes (kρi ∼ 1). So far as we are aware, there is no detailed study of
the β � 1 limit, but preliminary investigations (not shown) have indicated that the
oblique firehose instability can be unstable at ∆p > −B2/4π when β � 1.† The parallel
firehose instability is slower growing (due to its larger scale) and is only unstable for
∆p 6 −B2/4π when β � 1 (Schekochihin et al. 2010). For simplicity, throughout this
work, we shall base our discussion on the long-wavelength parallel firehose threshold,
because of its key importance for long-wavelength SA wave dynamics. Issues relating to
the behavior of oblique firehose modes at ∆p > −B2/4π will be considered in more detail
in future work.

3. Standing shear-Alfvén wave

In this section, we discuss the evolution of standing SA waves. The discussion is
centered around our largest simulation, with scale separation λA/ρi = 1000 and initial
condition (2.6). We describe the evolution of the large-scale δBz, δuz, and ∆p, and how
this is related to the detailed evolution of the oblique firehose modes that are initially
excited. We then discuss how the wave heats the plasma in §3.1, and the scaling of SA
wave behavior with λA/ρi = 1000 in §3.2.

Figure 1 shows the spatiotemporal evolution of the out-of-plane magnetic perturbation
δBz for the SA standing wave with λA/ρi = 1000. It is helpful, for the sake of discussion,
to divide the evolution of the wave into four distinct phases of nonlinear evolution. These
are:

† The character of the instability changes at the long-wavelength threshold ∆p = −B2/4π,
and it appears to be less effective at suppressing the growth of pressure anisotropy when
∆p > −B2/4π. This observation heuristically agrees with previous studies at lower β (e.g.,
Hellinger & Trávńıček 2008), and solar wind observations (Chen et al. 2016).
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Figure 1. The evolution of δBz(x, t) in a SA standing wave with λA/ρi = 1000, τA = 10000Ω−1
i .

Following the decrease in B due to the Lorentz force (t = 0; panel (a)), which causes
∆p < −B2/4π, the wave erupts into oblique firehose modes (t = 0.08τA; panel(b)). In the
least unstable regions around the wave nodes (where 4π∆p/B2 ≈ −0.7), the oblique firehose
modes transition into k‖ρi ∼ 1 Alfvénic fluctuations that scatter particles (these are visible from
t/τA ≈ 0.2 onwards). This causes the large-scale SA wave to decay (panels (c)–(f)) by t/τA ≈ 0.6
(panel (g)) in a manner that closely resembles SA wave dynamics in the Braginskii regime.

(i) The initial field decrease, which occurs between t = 0 and t/τA ≈ 0.08. At the end
of this phase, the changing B has created a negative anisotropy ∆p < −B2/4π that is
large enough to nullify the magnetic tension and trigger the firehose instability.

(ii) The eruption of oblique firehose modes (Yoon et al. 1993; Hellinger & Matsumoto
2000; see Fig. 1(b)), which push the plasma back above ∆p > −B2/4π due to the fast-
growing small-scale magnetic field perturbations (Schekochihin et al. 2008; Rosin et al.
2011; Kunz et al. 2014a).

(iii) The transition of the oblique firehose modes into parallel (k⊥ ∼ 0), small-scale
(k‖ρi ∼ 1) Alfvénic fluctuations, which scatter particles at a relatively high rate and
allow the wave to decay (Fig. 1(c)–(f)).

(iv) The dissolution of the large-scale SA wave into low-amplitude (but still large-scale)
SA waves, which can oscillate freely without causing the plasma to reach the firehose limit
(Fig. 1(g))

Out of these stages, (iii) provides a crucial point of difference compared to the
predictions of 1-D Landau-fluid (LF) models (Snyder et al. 1997; Squire et al. 2016;
Squire et al. 2017). In particular, the high particle scattering rate, which occurs due to
the k‖ρi ∼ 1 Alfvénic modes that evolve from decaying oblique firehose modes, causes
fast decay of the large-scale SA wave in a manner that strongly resembles waves in the
weakly collisional Braginskii regime (Braginskii 1965; Squire et al. 2017). We now explain
the physics of these stages in more detail, focusing in particular on the consequences of
particle scattering in stage (iii).

Initial field decrease and interruption: stages (i) and (ii).

A more quantitative illustration of the wave decay process is given in Figs. 2 and
3, which show the 1-D (y-averaged) wave profiles and the magnetic-energy spectrum,
respectively. The initial sinusoidal δBz is shown with the black line in Fig. 2(a), along
with δuz/vA (blue dot-dashed line) and the firehose parameter 4π∆p/B2 (red line),
which is −1 at the parallel firehose instability threshold. As magnetic tension causes
δBz (and thus B) to decrease, ∆p decreases also, reaching the firehose limit at t ≈
0.07τA when 〈δBz(x, t = 0)2 − δBz(x, t)2〉/B2

0 ≈ 4/3β−1 (Squire et al. 2017). Because
δBz/B0 = 0.5 > β −1/2, the plasma reaches the firehose instability threshold with only a
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Figure 2. Evolution of the standing wave from Fig. 1. Each panel shows the y-averaged magnetic
perturbation δBz/B0 (black line, left-hand axis), δuz/vA (blue dot-dashed line, left-hand axis),
and firehose parameter 4π∆p/B2 (red, right-hand axis; the dotted line shows the parallel firehose
instability threshold), for some of the times illustrated in Fig. 1. In panels (b)-(d), the background
color (see top for color scale) illustrates the collisionality νc/ωA caused by particle scattering
from microscale fluctuations, measured over the time intervals t/τA ∈ [0.07, 0.15] (panel (b)),
t/τA ∈ [0.2, 0.4] (panel (c)), and t/τA ∈ [0.55, 0.65] (panel (d)). In panel (c) we additionally
show (with dashed lines) δBz/B0, δuz/vA (this is almost identical to the simulation result and
hard to see), and 4π∆p/B2 for a decaying SA standing wave in the Braginskii model at β = 100,
νc/ωA ≈ 10, and t/τA = 0.3, illustrating the qualitative similarity to the collisionless dynamics.

small (∼%3) change in δBz (Fig. 2(b)). During this process, heat fluxes rapidly smooth
pressure perturbations along field lines (Squire et al. 2017), causing ∆p(x, t) to be nearly
homogeneous in space (Fig. 2(b)) and leading to the sudden eruption of oblique firehose
modes (Yoon et al. 1993; Hellinger & Matsumoto 2000; Kunz et al. 2014a) across the
entire wave at once (see Fig. 1(b)). At this point, with 4π∆p ≈ −B2, the large-scale
wave has no restoring force because magnetic tension is exactly nullified by the pressure-
anisotropic stress. However, with B now increasing due to the fast-growing firehose
modes, ∆p is quickly (by t ≈ 0.085τA) pushed back above ∆p > −B2/4π, where it
stays for the remainder of the wave’s evolution.

Towards the end of stage (ii), the evolution of the oblique firehose modes (now in a
plasma with ∆p > −B2/4π) is key for the subsequent large-scale SA wave dynamics. If
these modes evolve to scatter particles sufficiently fast, over sufficiently long time periods,
δBz can decay with the anisotropy at or near ∆p = −B2/4π; if they do not (e.g., if they
decay quickly due to transit-time damping†), δBz will be unable to decrease, as suggested
by LF calculations (Squire et al. 2016). Because the anisotropy varies across the wave, and
strongly influences the firehose dynamics, it is helpful to conceptually split the wave into
two regions: the first around the wave nodes where there is no velocity shear S = |∇u|
and δBz ≈ 0, the second around the wave antinodes where S ∼ β −1/2ωA ≈ 6×10−5Ωi ‡
and δBz ≈ δBz(t = 0). In the wave node region, the anisotropy is not driven by a large-
scale dB/dt and the firehoses freely decay¶ (Quest & Shapiro 1996; Seough et al. 2015;

† Linearly, small-scale oblique modes k⊥ρi & k‖ρi ∼ 1 are strongly transit-time damped in a
high-β plasmas; see Foote & Kulsrud (1979); Quataert (1998); Gary (2004).
‡ This estimate arises from solution of the wave equation for the amplitude of the k = 2π/λA

SA wave mode, ∂2
t δb = −v2A(δb + (3/8)β(δb2 − δb(0)2) (Squire et al. 2017), at the time that

∆ = −2/β (see Fig. 2(b)).
¶ In fact, the anisotropy at the nodes is being driven (to some degree) by the heat fluxes,
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Figure 3. Energy spectrum of the magnetic field in the standing SA wave, at the times shown
in Fig. 2 (Fig. 1(a), (b), (d), and (g)). The shift of firehose modes to smaller scales as they decay
above the firehose limit is very clear if we compare the spectrum at t = 0.08τA with those at
t = 0.3τA and t = 0.6τA. The strong fluctuations at kρi ∼ 1 at these later times are responsible
for the fast decay of the large-scale wave.

Melville et al. 2016) from early in their secular growth phase (Schekochihin et al. 2008).
In the antinode regions, the situation, at least initially, is more similar to a continuously
driven anisotropy (Matteini et al. 2006; Hellinger & Trávńıček 2008; Kunz et al. 2014a;
Melville et al. 2016; Riquelme et al. 2016) due to the shear flow set up by the initial
decay of the wave (see δuz/vA in Fig. 2(b), for x/ρi ∈ [250, 750]).

Large-scale SA wave decay: stages (iii) and (iv).

It appears—at least for the values of λA/ρi accessible so far—that it is the nodes
of the wave that cause the strongest particle scattering and allow the wave to decay.
This is surprising, given that these regions of space are the least firehose unstable, with
4π∆p/B2 ≈ −0.7 throughout the decay (see, e.g., Fig. 2(c)). The cause for this behavior
is a strong preference for firehose modes to decay into parallel Alfvnic modes. These
modes, which can be seen clearly from t/τA = 0.2 to t/τA = 0.6 in Fig. 1, as well as in
a comparison of the magnetic spectra between t/τA = 0.08 and t/τA > 0.3 in Fig. 3, are
efficient particle scatterers due to their small scale k‖ρi ∼ 1 (compared to oblique firehose
modes, which grow at kρi ∼ 0.5; see Fig. 3). This scattering is illustrated directly by
the background color scale in Fig. 2, which shows the effective ion collisionality νc/ωA
as a function of space (this is measured by tracking sample ions; see App. B). We see
that during the initial excitation of oblique firehose modes (from t/τA = 0.07 to 0.15;
Fig. 2(b)), the scattering is relatively weak (the modest variation in space here is simply
noise due to the small time bin used for this phase). However, by t = 0.3τA, the scattering
is stronger and concentrated at the wave nodes, where the firehose modes have already
decayed into parallel fluctuations. The parallel modes evolve and decay very slowly, as
can be seen by their presence at the wave nodes in Fig. 1 throughout the wave decay
(t/τA > 0.2; see also Fig. 3), as well as the relatively high collisionality even after the
large-scale δBz has decayed (Fig. 2(d)). More discussion of these parallel modes—why
they occur, and why they survive over such long time periods—is given in §5.

Surprisingly, the oblique firehose fluctuations at the wave antinodes contribute much
less to the scattering, even though they are continuously driven by the shear S ∼
β −1/2ωA throughout the decay. Measurements and scalings in Melville et al. (2016)
suggest that such a shear should create secularly growing fluctuations that saturate and
scatter particles at an amplitude 〈(δB̃/B0)2〉 ∼ (Sβ/Ωi)

1/2 ∼ 0.08 after a timescale
t ∼ (Ωiβ/S)1/2Ω−1i ∼ 1250Ω−1i = 0.125τA. It appears that this scenario does not

so the oblique firehose mode do not strictly decay freely. To our knowledge, anisotropy driving
through heat fluxes has not been studied in previous literature.
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occur because the anisotropy driving at the antinodes, d∆p/dt ∼ −|S|p0, is balanced
by scattering from parallel modes at the SA wave nodes (through the heat fluxes), rather
than the secular growth of small-scale fluctuations at the antinodes. This illustrates the
interesting nonlocality of high-β collisionless dynamics, which arises to the high thermal
speed of ions, vth,i ∼ β1/2vA (i.e., the heat fluxes; Squire et al. 2017). Evidently, care
must be taken when applying results obtained in homogenous settings (e.g., Kunz et al.
2014a; Melville et al. 2016) to situations where plasma parameters (e.g., ∆p or B) vary
in space.

With this known source of particle scattering, the subsequent evolution of the large-
scale SA wave is relatively easily understood: because ωA � νc � Ωi, the plasma is
in a regime that resembles the Braginskii collisional limit (Braginskii 1965) and the SA
wave behaves as discussed in Squire et al. (2017), Sec. 4.1. We illustrate the qualitative
similarity to Braginskii dynamics in Fig. 2(c), which also shows δBz, δuz, and 4π∆p/B2

(dashed lines) for a Braginskii wave at β = 100 νc ≈ 10.† We include heat fluxes in
the Braginskii model, as appropriate at these parameters (more specifically, we solve
Eq. (B15) of Squire et al. 2017). The “humped” shape of the SA wave occurs because the
plasma must maintain dB/dt < 0 in order to overcome isotropization by collisions and
stay at the firehose threshold. This causes the perturbation to split into regions where
4π∆p ≈ −B2 and dδBz/dt < 0 (around the antinodes), and regions where 4π∆p > −B2

and δBz = 0 (these spread outwards from the nodes; see Fig. 1(c)–(f)). The wave decay
time tdecay is determined by νc (through ωAtdecay ∼ β(δB⊥/B0)2/(νc/ωA)), because νc
controls the relationship between ∆p and dB/dt (specifically ∆p ≈ ν−1c p0B

−1dB/dt;
Squire et al. 2017). In the simulation of Fig. 1, the νc that arises through scattering
from microscale flucations is sufficiently large that the wave decays within one Alfvén
time, viz., the wave is approximately at the Braginskii interruption limit (1.2), with
νc/ωA ∼ β(δB⊥/B0)2 (Squire et al. 2017). Note, however, that this does not imply that
the wave is well-described by the Braginskii model all through its evolution: scattering
from microscale fluctuations occurs only after the excitation of firehose instabilities, so
any wave above the collisionless interruption limit (1.1) will be nonlinearly modified (i.e.,
the Braginskii model is relevant only after interruption).

Finally, it is worth noting that the wave decay generates a δBy perturbation (this
can be seen in Fig. 1 for t/τA & 0.4). Unfortunately, at the scale separations (λA/ρi)
currently accessible, it is unclear whether this effect is appreciably stronger than the δBy
generation that occurs in a linear standing SA wave due to FLR effects.

3.1. Plasma heating

As the large-scale SA wave decays, it heats the plasma. This process does not involve
a turbulent cascade, but rather a direct transfer of large-scale mechanical energy,

Emech =
1

2

∫
dxminiu

2
i +

1

8π

∫
dxB2, (3.1)

into thermal energy,

Eth =
1

2

∫
dx
∑
r

Πrr, (3.2)

† Although this scattering rate is not identical to that measured in Fig. 2, it is close enough
(within a factor of∼ 2) to be reasonable, given the vagaries involved in measuring νc(see App. B).
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Figure 4. Plasma heating due to the standing wave in Fig. 1. In panel (a), we compare the rate of
change of thermal energy ∂tEth =

∫
dxni

∑
r ∂t(Πrr/ni)/2 (black line), with mechanical heating

-
∫
dx

∑
rsΠrs∇rus (green dashed line), heating from the large-scale SA wave

∫
dx∆p̄ b̂xb̂z∂xūz

(blue dot-dashed line; here ·̄ denotes a filter that smooths fluctuations with kρi & 0.25),
and the approximate viscous heating (Kunz et al. 2010) from the SA wave after interruption

ν−1
c

∫
dx p̄‖(b̂xb̂z∂xūz)

2 (red dotted line; we use νc/ωA ≈ 10 as in Fig. 2(c)).We normalize heating
rates by Eth and use units of τA (note the small values, which is because β � 1). The initial
∂tEth < 0 is due to the creation of E fluctuations in the (initially quiescent) plasma, due
to particle noise (see App. A). In panel (b), we show how the heating is localized in space,

as illustrated by
∫
dy ∆p̄ b̂xb̂z∂xūz (the color scale is in units of Eth/τA/ρi). As expected, the

heating is localized around the wave antinodes, where the large-scale δBz decays in time (c.f.,
Fig. 1(c)–(f)), and is approximately constant in space and time across the regions.

where Πrs is the ion pressure tensor. Neglecting the creation of electric fields, this occurs
through the heating term

∂tEth = −
∫
dx
∑
rs

Πrs∇rus ≈
∫
dx∆p b̂ · (b̂ · ∇u) ≈

∫
dx∆p

d lnB

dt
, (3.3)

where the last approximations assume gyrotropy and incompressibility. This heating
is essentially the viscous dissipation of the wave. The rate, and total energy budget,
are mediated by particle scattering from microscale fluctuations, because this enables
d lnB/dt 6= 0 (and ∆p 6= 0) throughout the wave decay. The scattering also enables the
thermalization of the energy and makes the process irreversible, returning the system to
an approximately isotropic Maxwellian distribution by t/τA ≈ 0.6 (see Fig. 2(d)).

In Fig. 4(a), we compare the measured ∂tEth with heating due to the SA wave decay.
Although the agreement is not perfect, due to spurious grid heating (see App. A.3 for
discussion), we can clearly see the various stages of wave decay discussed above: during
stage (i), the plasma is heated by the creation of pressure anisotropy (this heating is
reversible); as the firehose fluctuations erupt in stage (ii) (at t/τA ≈ 0.08), there is
a sudden drop in ∂tEth as the thermal energy of the plasma feeds into the oblique
firehose instability; during stages (iii)–(iv), ∂tEth & 0 as δB⊥ decays, which is due to the
(irreversible) heating from the decay of the large-scale SA wave with ∆p ≈ −B2/4π.

In addition to the basic comparison of heating with ∂tEth, Fig. 4 also illustrates the
heating that arises due to the large-scale SA wave only. This is done by computing the
heating rate from ∂xuz (i.e., the SA wave) only, after smoothing all fields over scales
kρi & 0.25. Fig. 4 shows that the overall energetics are well captured by considering only
these large-scale dynamics. We further show that this is well approximated (after the
wave has interrupted) by a (parallel) viscous heating rate

(∂tE)viscous ≈
p0
νc

∫
dx (b̂xb̂z∂xuz)

2 = νBrag

∫
dx (b̂xb̂z∂xuz)

2, (3.4)
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Figure 5. Scattering rate νc from microscale fluctuations excited by the SA wave, as a function
of scale separation λA/ρi, for a suite of standing wave simulations (initial conditions (2.6)).
In each case, the rate is measured using the technique described in App. B, across the entire
domain x ∈ [0, Lx], and over the time interval t/τA ∈ [0.1, 0.5], viz., from just after firehose
excitation until the large-scale δBz has mostly decayed (the results do not depend strongly on
the exact choice of time interval). On the left-hand axis (blue diamonds), we normalize νc by
ωA; on the right-hand axis (red circles), we normalize by Ωi. If the wave decay time tdecay/τA
is to become constant in the λA/ρi →∞ limit, νc/ωA must tend to a constant value also.

with νc/ωA ≈ 10 as in Fig. 2(c), and νBrag the Braginskii “viscosity”. The general
agreement with the SA wave heating rate acts as a consistency check for the Braginskii
comparison made in Fig. 2. In Fig. 4(b) we show how the SA wave heating is localized in
space. During stage (iii), its local value is relatively constant in space and time, because
the rate of field decrease (dB/dt) around the antinodes is approximately constant, so as to
maintain a constant ∆p. However, the spatial extent of the region being heated decreases
in time as the antinode regions (where dB/dt 6= 0 and δBz 6= 0) become smaller (c.f.,
Fig. 1(c)–(f)), causing the total heating rate (Fig. 4(a)) to decrease in time.

Overall, these results are promising for the development of closure models that approx-
imate the effects of microinstabilities on large-scale dynamics without having to explicitly
resolve the microscales.

3.2. The importance of scale separation

A natural question that arises from the discussion above is: how does the SA wave
behave in the limit λ/ρi →∞? In addition to the λA/ρi = 1000 case discussed extensively
above, we have also run a set of identical SA standing wave simulations at λA/ρi = 500,
λA/ρi = 250, and λA/ρi = 125. These simulations have broadly similar dynamics to
the λA/ρi = 1000 SA wave, although the micro- and macro-scale dynamics become
confusingly intertwined for λA/ρi 6 250.

However, it is clear from these simulations that we have not yet reached the true
asymptotic limit, λ/ρi →∞. This is indicated by two observations:

(i) The scattering rate due to microscale fluctuations, averaged over the decay of the
large-scale SA wave, is an increasing function of λA/ρi. Because ωAtdecay ∝ (νc/ωA)−1

this implies that the time required for the wave to decay is a decreasing function of λA/ρi,
which is indeed the case.† The scaling of νc is shown quantitatively in Fig. 5, which plots
the average νc over the wave’s decay for each of the standing-wave simulations (λA/ρi ∈
[125, 1000]). The left and right axes in Fig. 5 show νc/ωA and νc/Ωi = (νc/ωA)(λA/ρi)

−1

respectively, illustrating that while νc/ωA increases with λA, νc/Ωi decreases with λA

† For example, at λA/ρi = 250, the large-scale δBz is completely decayed only after
t/τA ≈ 0.8, while at λA/ρi = 1000 it decays by t/τA ≈ 0.55 (c.f., Figs. 2(c) and 11(b), which
show intermediate times for each case).
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Figure 6. Out-of-plane magnetic perturbation δBz/B0 for a rightwards propagating
shear-Alfvén traveling wave (initial conditions (2.6)) with λA = 250ρi at a succession of times
in its evolution. Note the significant decay of the wave by t = 3τA.

(more specifically νc/ωA ∼ (λA/ρi)
α with α ≈ 0.75 for λA/ρi > 250). If this scaling

continued indefinitely, at yet higher λA/ρi, the wave would reach a point at which the
scattering was so strong that the anisotropy returned to ∆p ∼ 0 before the large-scale
δBz had dissipated. However, this is also not a viable solution in the λA/ρi →∞ limit: it
requires that the microscale fluctuations, which cause the scattering, survive indefinitely
(because the SA wave period τA = (λA/ρi)Ω

−1
i increases with λA).

(ii) The scattering at the latest stages of the SA wave’s decay remains dominated by
microscale fluctuations that were excited in the earliest stages of SA wave interruption.
This is shown by the obvious presence of k‖ρi ∼ 1 modes at the wave nodes in Fig. 1(g),
and the high scattering rate in the same regions in Fig. 2(d). Because the characteristic
timescale of the SA wave increases with λA/ρi, while the timescales associated with the
oblique firehose modes’ evolution do not, the presence of k‖ρi ∼ 1 fluctuations at the
nodes suggests the scale separation is not yet asymptotic.†

We thus conclude that either the scaling shown in Fig. 5, or the wave behavior itself,
must change at yet higher λA/ρi. The details of how this occurs depend directly on how
oblique firehose modes decay into parallel Alfvénic modes and scatter particles, physics
that is currently poorly understood (see §5 for more discussion). This emphasizes how in
some situations, the details of the smallest scales in a high-β plasma control the dynamics
of the largest scales. What occurs at yet higher λA/ρi will be the subject of future work,
using both simplified simulations of firehose decay and SA-wave simulations.

4. Traveling shear-Alfvén wave

In this section, we discuss the evolution of SA traveling waves. The discussion here is
deliberately more concise than that related to the SA standing wave in §3, because it
seems likely that the observed behavior is less generically relevant to Alfvénic turbulence
(see §2.2.1).

Figure 6 illustrates the spatiotemporal evolution of a (rightwards-moving) traveling
wave (initial conditions (2.7)) at λA/ρi = 250. As discussed extensively in Squire et al.
(2017) (see §4 of that paper), traveling-SA-wave dynamics differ from standing-SA-wave
dynamics because 〈dB/dt〉 = 0 in a linear traveling SA wave (B is increasing in some
regions, and decreasing in others). This implies that a global (spatially constant) pressure
anisotropy only develops as the wave decays, meaning it takes longer than the standing

† Unless the are being continuously driven, which does not appear to be the case, because
the plasma is apparently stable in these regions; see Fig. 2(c) and §5.
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Figure 7. Evolution of the traveling wave shown in Fig. 6. In panel (a), we show the y-averaged
δBz/B0 (solid lines) and δuz/vA (dashed lines), at t/τA = 0 (black lines; circle marker),
t/τA = 0.2 (blue lines; square marker), and t/τA = 1 (red lines; triangular marker). The markers
indicate the same positions on the wave as it propagates to the right. In panel (b), we show
the y-averaged firehose parameter 4π∆p/B2 at the same times. The dotted lines in both panels
show the evolution in an equivalent 1-D Landau-fluid simulation at βi = 100.

wave to reach the firehose limit and only does so in isolated regions of space (where ∆p
is most negative).

As in §3, it is helpful to divide the wave evolution into five stages:
(i) The spatially dependent dB/dt creates an anisotropy that varies in space as

∆p(x) ∼ β1/2δB2
z sin(2k‖x), because B changes locally in space as the wave propagates.

The heat fluxes play an important role in determining this form of ∆p, viz., ∆p would
be a factor ∼ β1/2 larger (and exciting firehose and mirror instabilities) if not for heat
fluxes (Squire et al. 2017).

(ii) Due to pressure-anisotropy damping and nonlinear Landau damping (Hollweg
1971; Stoneham 1981; Fl̊a et al. 1989), this ∆p damps the wave at a rate ∼∫
dx∆pd lnB/dt (Squire et al. 2017). This damping causes 〈B〉 to decrease, and

thus also creates a global anisotropy 〈∆p〉 < 0.
(iii) Because the Alfvén speed is modified for ∆p < 0, viz.,

(vA)∆p = vA
√

1 + 4π∆p/B2, (4.1)

the waves slows down, with its velocity perturbation δuz decaying faster than its magnetic
perturbation δBz.

(iv) Around the wavefronts, where dB/dt is largest and ∆p is most negative, the wave
excites oblique firehose modes. These evolve and scatter particles in a similar way to the
standing wave.

(v) The particle scattering allows the magnetic perturbation of the (slowly moving)
SA wave to decay, with ∆p close to the firehose limit.

As for the standing wave, it is the decay of oblique firehose modes into small-scale
parallel (k‖ρi ∼ 1) Alfvénic fluctuations (stages (iv) and(v)) that causes the biggest
differences between the kinetic simulation and 1-D LF predictions (Squire et al. 2017).
However, because the firehose fluctuations are excited only in isolated regions of space
(around the wavefronts), the scattering is weaker than for the standing wave, and the
wave decays correspondingly more slowly.

The stages discussed above can also be seen in Figs. 7 and 8, which show the 1-
D (y-averaged) wave profiles at three times from Fig. 6, and the time evolution of
the scattering rate and wave parameters, respectively. For example, stages (i)–(iii) are
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Figure 8. (a) Scattering rate νc/ωA of the traveling wave in Fig. 6 as a function of x and
t. The grey lines the wave fronts, which is where δBz ≈ 0 and is close to where ∆p is most
negative. (b) Time evolution of the spatially averaged firehose parameter 〈4π∆p/B2〉. The
shaded region indicates the range of 4π∆p/B2 seen across the wave profile (i.e., the range
seen in Fig. 7(b)), which illustrates when the wave can excite firehose modes. (c) Energy of
the magnetic perturbation EδB =

∫
dx δB2

z/8π (blue) and kinetic energy Eδu =
∫
dx ρ δu2

z/2

(red), normalized by E0 =
∫
dxB2

0/8π. In panels (b) and (c), we also plot the results from the
equivalent 1-D Landau-fluid simulation (dashed lines; see also Fig. 7), for comparison.

evident in the δuz and ∆p profiles Fig. 7 at t/τA = 0.2, and also through the globally
averaged parameters shown in Fig. 8(b) and (c). Similarly, the position of the wavefronts
(Fig. 8(a)) illustrates how the wave slows down. Throughout these earlier stages of SA
wave evolution, the dynamics are described well by the predictions of an equivalent 1-D
LF model,† even though finite Larmor radius effects (which were not included in the LF
model) are significant at this scale separation. This comparison is shown in Fig. 7 (dotted
lines) and Fig. 8(b) and (c) (dashed lines). The good agreement with LF predictions for
t/τA . 1 implies that the analytic estimates for the wave evolution and decay rates
derived in Squire et al. 2016 §4.2 should apply to the earlier stages of large-scale SA
wave evolution.

As shown in Fig. 8(b), by t/τA ≈ 0.3, ∆p has reached the parallel firehose limit in
regions of space around the wavefronts (see, e.g., Fig. 7(b) at t/τA = 1 at x/ρi ≈ 120,
or the clear appearance of oblique firehose modes at the same location in Fig. 6(d)).
The preferential excitation of firehose modes around the wavefront regions simply results
from the large dB/dt in these regions (note also the angular shape of δBz in Fig. 7(a),
which minimizes dB/dt over much of the wave). Following the excitation of firehose
modes, Fig. 8(a) shows that the particle scattering is strongest behind the wavefronts.
We interpret this as being due to the time delay required for oblique firehose modes
to transition into smaller-scale k‖ρi ∼ 1 Alfvénic fluctuations that scatter particles, as
occurred for the standing wave (see also §5.2 and Fig. 10). These long-lived parallel
modes are visible in Fig. 6 at later times, and small-scale (although more disordered)
fluctuations are also visible at earlier times between the wavefronts (e.g., Fig. 6(c) and
(d)). Note that the overall scattering rate caused by the traveling wave, νc/ωA ≈ 4 is

† The reader may notice that here we compare to a collisionless LF model, whereas for
the standing wave we compared to a collisional Braginskii one. This is simply because for the
traveling wave, we compare the early stages of evolution (which are nearly collisionless) with
the LF model, while for the standing wave, we compared the later stages of decay (which were
moderately collisional due to microscale scattering) with the Braginskii model.
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significantly lower than for a standing wave at λA/ρi = 250 (νc/ωA ≈ 10, see Fig. 5), and
the traveling wave’s δBz decays correspondingly more slowly. This is likely because the
firehose modes are excited only briefly in isolated regions of space around the wavefronts,
rather than across the whole wave at once. The particle scattering allows the large-scale
δB⊥ to decay (maintaining 〈∆p〉 < 0 requires 〈dB/dt〉 < 0 if νc 6= 0; see Fig. 8(b) and
(c) for t/τA & 1), and the wave’s final stages of decay (e.g., Fig. 6(f)) are similar to the
standing wave.

5. The decay of oblique firehose fluctuations and emergence parallel
Alfvénic fluctuations

As stressed throughout the preceding sections, the evolution of oblique firehose modes
as the plasma becomes firehose stable is of utmost importance for the subsequent
evolution of the large-scale SA wave. In particular, we have seen a ubiquitous occurrence
of small-scale parallel fluctuations (k⊥ ∼ 0, k‖ρi ∼ 1), which apparently emerge through
the decay oblique firehose modes as the anisotropy evolves above ∆p > −B2/4π. We
are left with several questions, the answers to which have a key bearing on the behavior
of SA waves in the λA/ρi → ∞ limit (see §3.2): What causes the emergence of these
fluctuations (as opposed to the behavior seen in driven simulations, e.g., Kunz et al.
2014a)? For how long do they persist and scatter particles? How does their behavior
depend on bulk plasma parameters (e.g., ∆p, heat fluxes)? Here, we illustrate two key
points about their evolution, leaving more detailed investigation to future work. These
are: (i) (§5.1) that they are Alfvénic in character, and persist over long time periods
because they are nonlinearly stabilized against cyclotron damping; and (ii) (§5.2) that
the modes occur as a result of the quasi-linear saturation of oblique firehose modes when
the anisotropy is free to evolve (i.e., ∆p is not forced by a large-scale dB/dt from shear
or compression).

5.1. Linear properties and nonlinear stabilization against cyclotron damping

An obvious starting point, given the relatively coherent appearance of the the parallel
fluctuations in the SA-wave simulations (e.g., Fig. 1(d)–(g)), is to examine the linear
physics of modes with k‖ρi ∼ 1, k⊥ ∼ 0 at βi � 1. Some other relevant properties to
help with their identification include: (i) they are almost completely static in space and
time (i.e., their real frequency ω is almost zero); (ii) there is very little associated velocity
perturbation (this is suggested by (i)); and (iii) they are perpendicular (δB̃ ∼ δB̃⊥), and
likely circularly polarized† δB̃z ∼ δB̃y.

The dispersion relation of Alfvén and whistler branches (i.e., the continuation of the
shear-Alfvén wave to small scales) at k⊥ = 0 and βi = 100, is shown in Fig. 9(a). We
use the HYDROS dispersion solver (Told et al. 2016a,b), which solves the hybrid-kinetic
dispersion relation and so excludes electron kinetic physics‡ (as is also the case in our PIC
simulations). We see that the Alfvén branch modes (solid and dashed lines)—which are
very low frequency (ω ∼ 0.01Ωi), perpendicular, and circularly polarized (not shown)—
appear similar to the observed fluctuations, aside from their very high damping rate for

† The handedness of their polarization is hard to make out: because of property (i) they do
not have an obvious direction of propagation.
‡ Comparison with a fully kinetic dispersion relation (Klein, private communication; Klein

& Howes 2015), has shown that the electron contribution is negligible at these parameters, as
also expected based on previous works (Quataert 1998; Quataert & Gruzinov 1999; Told et al.
2016b).
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Figure 9. Linear and nonlinear properties of k‖ρi ≈ 1, k⊥ = 0 fluctuations in a βi = 100
plasmas. (a) shows the linear dispersion relation (calculated using the HYDROS solver; Told
et al. 2016a) as a function of k‖ρi. The left-hand axis (blue curves) shows the mode damping
rate γ/Ωi, while the right-hand axis (red curves) shows the real part of the wave frequency
ω/Ωi. We show three sets of dispersion relations: the Alfvénic branch at ∆p = 0 (solid lines),
the Alfvénic branch at 4π∆p/B2 = −0.8 (dashed lines), and the whistler branch at ∆p = 0
(dotted lines). Note the very low frequencies of the Alfvénic branch modes (due to the high β),
the near independence of the damping rates on ∆p, and the strong damping of whistler modes.
(b) shows the evolution of nonlinear k‖ρi = 1 fluctuations at a variety of initial amplitudes
(see text for full description). Each curve shows the magnetic perturbation energy, normalized
by its initial value, as a function of time. The dotted curve indicates the expected decay rate,
taken from the linear result γlin in panel (a) (the black circle at k‖ρi = 1). While at very low
amplitude, the PIC simulation results agrees with the linear prediction, there is a clear nonlinear
stabilization against decay. For fluctuation amplitudes seen in Figs. 1 and 6 (δB̃⊥ ∼ 0.1B0), this
would effectively render any linear damping of k‖ρi ∼ 1 fluctuations unnoticeable.

k‖ρi & 0.3 due to cyclotron damping.¶ They are also mostly independent of the imposed
∆p (c.f., solid and dashed lines in Fig. 9(a)). The whistler branch mode (dotted lines) is
also perpendicular and circularly polarized, but its high frequency, ω/Ωi ≈ 0.3, suggests
that this mode is not related to the parallel fluctuations seen in the simulations (it is
also strongly damped for k‖ρi & 0.3). These properties generally match trends seen at
lower β in previous works (Gary 2004; Told et al. 2016a).

With these indications that the observed parallel fluctuations are indeed Alfvénic, how
do they survive in the SA wave simulations, given their strong linear damping (γ ∼
0.01Ωi)? The answer appears to lie in a nonlinear saturation of the cyclotron damping
mechanism, which stabilizes the mode decay at even very small amplitudes (a similar
effect also occurs to a lesser degree at low β; Gary & Saito 2003). A simple numerical
experiment to test this is shown in Fig. 9(b). In a square domain, of size Lx = Ly = 50ρi,

we initialize δB̃⊥ fluctuations (in By and Bz, π/2 out of phase), at k‖ρi = 1, k⊥ = 0,

with a variety of initial amplitudes from δB̃⊥(0) = 10−5B0 to δB̃⊥(0) = 10−1B0. The
results, shown in Fig. 9(b), indicate that although very low amplitude fluctuations decay
linearly as expected (c.f., black dotted line), at higher amplitudes the decay is quickly
nonlinearly stabilized. The effect is sufficiently strong that for the small-scale fluctuation
amplitudes seen in the SA wave simulations (δB̃⊥ ∼ 0.1B0; see Fig. 1), the linear phase
of decay would effectively be unobservable. This explains the presence of these modes in

¶ A convincing argument for the importance of the cyclotron resonance in the damping comes
from simple analytic estimates. In particular, Eq. (11-8) in Stix (1992), gives the cyclotron

damping rate for parallel modes, γ/ω ≈ 0.9 (ω/Ωi)β
2(k‖ρi)

−5e−1/(k‖ρi), where we assumed
ω � Ωi and γ � ω. Comparison of this expression with Fig. 9(a) shows that the two agree
when γ � ω.
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Figure 10. Magnetic perturbation δB̃z (top panels) and δB̃y (bottom panels) pictured at
various times in the numerical experiment described in §5.2 (firehose evolution in a homogenous
domain, with an initial anisotropy 4π∆p/B2 = −1.3 that is free to evolve). Panel (a) shows
the perturbations at t = 800Ω−1

i , which is just after the firehose modes have pushed ∆p above
the parallel firehose limit. Panels (b) and (c) show the field at t = 2000Ω−1

i and t = 3000Ω−1
i ,

illustrating the tendency for the oblique modes to move to smaller scale and become parallel.

Figs. 1 and 6, despite the fact that linear Alfvénic fluctuations are strongly damped at
these parameters.

In the context of large-scale SA waves, we are left with some interesting questions.
For example, as λA/ρi → ∞, does the amplitude of the parallel modes ever become
small enough such that they are linearly damped before being stabilized, and they no
longer scatter particles? Unfortunately, a more detailed understanding of the nonlinear
stabilization mechanism (and the initial oblique firehose excitation; see below) is required
to answer this, and we leave further investigation to future work.

5.2. Appearance from oblique firehose decay

In the SA-wave simulations, Figs. 1–6, there are a variety of complicating factors. For
example, the background large-scale plasma parameters (B and ∆p) are inhomogenous
and this creates heat fluxes along the magnetic field. Because such effects could enable
new instabilities (e.g., the gyrothermal instability; Schekochihin et al. 2010), or influence
the evolution of the small-scale firehose modes, it is important understand whether
the observed behavior arises only in specific situations (i.e., in nonlinear SA waves),
or whether it is more generic.

In this section, we explore these issues using a simple numerical experiment. We
find that the prevalence of k‖ρi ∼ 1 fluctuations occurs as a result of the decay of
oblique firehose fluctuations (at amplitudes before they saturate nonlinearly; see Melville
et al. 2016) in a system where the anisotropy is free to evolve, viz., heat fluxes and/or
inhomogeneity do not play a major role. The setup is as follows. In a homogenous
domain, of size Lx = Ly = 50ρi, we initialize with low-amplitude oblique magnetic

perturbations δB̃z with kρi ≈ 0.5, k⊥ = k‖. We also initialize with a homogenous
anisotropy 4π∆p/B2 = −1.3 that is firehose unstable. We use a resolution ∼ 4 times
that used in the SA wave simulations, ∆x ≈ 0.083ρi, to ensure that the scale of the
small-scale modes is not being affected by the grid scale, and use 256 particles per cell
(we have also run at the standard resolution and Nppc = 4096 and see similar behavior).

The results are illustrated in Fig. 10 at several times. The growth of the oblique firehose
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instability first pushes the bulk anisotropy above the firehose limit (to 4π∆p/B2 ≈
−0.9) at t = 800Ω−1i (Fig. 10(a)). The residual firehose fluctuations then evolve to
become smaller scale in the (now stable) plasma, becoming more elongated in the parallel
direction as they do so (Fig. 10(b)). Fluctuations in δB̃y are particularly coherent in

parallel direction, and of about half the amplitude of the δB̃z fluctuations,† which is also
seen in the SA wave simulations (not shown). These k‖ρi ∼ 1 fluctuations continue to
become more coherent and evolve quite slowly in time, as shown in Fig. 10(c).

Overall, this behavior, and the morphology of the fluctuations, is similar that seen
in the SA simulations (Figs. 1 and 6). This leads us to conclude that the decay of
oblique firehose modes into long-lived k⊥ ∼ 0, k‖ρi ∼ 1 Alfvénic fluctuations is a
generic consequence of their evolution in a freely evolving anisotropy—i.e., an anisotropy
that is not driven by a large-scale dB/dt—as occurs in the regions around the nodes of
the SA standing wave (see Fig. 1(c)-(f)). This evolution differs somewhat from that of
firehose fluctuations that have been driven to saturation in a constant shear flow (Kunz
et al. 2014a; Melville et al. 2016),‡ but further investigation and simplified numerical
experiments are needed to better address these issues.

6. Discussion and conclusions

We have presented hybrid-kinetic simulations of large-amplitude, long-wavelength
Alfvénic perturbations in a collisionless plasma. This study is motivated by gaining a bet-
ter understanding of Alfvénic turbulence in high-β low-collisionality plasmas, conditions
that are expected to be common across diverse astrophysical environments (Rosin et al.
2011; Bruno & Carbone 2013; Yuan & Narayan 2014). The single, isolated shear-Alfvén
wave is perhaps the simplest laboratory possible in which to study the self-consistent
interaction between large-scale, MHD dynamics, and the microscale fluctuations that
erupt due to kinetic instabilities. Because of this simplicity, such studies can act as a
bridge between homogenous simulations of high-β microinstabilities (e.g., Matteini et al.
2006; Kunz et al. 2014a; Riquelme et al. 2015; Sironi & Narayan 2015), which are in some
cases too idealized to see certain important effects, and kinetic turbulence simulations
(e.g., Rincon et al. 2016; Franci et al. 2015; Kunz et al. 2016), which suffer from reduced
scale separations and the difficulty of diagnosing their extremely complex dynamics.

Using a realistic method that includes fully kinetic ions, our simulations have demon-
strated four interesting aspects of collisionless high-β dynamics:
• That linearly polarized shear-Alfvénic perturbations do not exist in their linear wave

form in a collisionless plasma, above the amplitude limit δB⊥/B0 ∼ β −1/2 (Squire et al.
2016).
• That the details of microinstability saturation has a crucial influence on the largest-

scales λ � ρi. In particular, we have seen that MHD-scale shear-Alfvén waves (e.g.,
λA = 1000ρi) depend strongly on how oblique firehose fluctuations evolve as the plasma
moves into the stable regime ∆p & −B2/4π.
• That dynamics can be significantly nonlocal, viz., that microscale fluctuations or

plasma parameters in one region of space may affect the dynamics in a nearby region.
This is because the thermal speed is large compared to the Alfvén speed in high-β plasmas
(vth,i ∼ β1/2vA).

† This difference between in-plane and out-of-plane δB̃⊥ fluctuations suggests that the
detailed evolution may be affected by our choice of 2-D geometry, and 3-D simulations will
be needed to address questions about the morphology of the fluctuations with more confidence.
‡ For example, compare the spectrum in Fig. 3 at t/τA = 0.6, which peaks at kρi ≈ 1, with the

magnetic spectrum of saturated firehose turbulence shown in Fig. 8(a) of Kunz et al. (2014a).
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• That energy in large-scale perpendicular perturbations can be directly converted into
thermal energy and microscale fluctuations, without the usual route through a turbulent
cascade.

These points have been illustrated by studying both standing SA waves and traveling
SA waves. We see that standing-wave dynamics (§3) evolve to resemble SA waves in
the Braginskii regime (Squire et al. 2017), because of the strong particle scattering that
occurs as oblique firehose modes evolve into smaller scale, parallel fluctuations (k‖ρi ∼ 1,
k⊥ ∼ 0). Interestingly, this scattering is strongest at the wave nodes, where the plasma
is most stable, but is able to cause the global decay of the large-scale SA wave due to
the nonlocality of high-β dynamics. Traveling-wave dynamics (§4) are nearly collisionless
initially, and are well described by the predictions of a simple 1-D Landau-fluid model
(Snyder et al. 1997; Squire et al. 2017); however, once the wave builds up a global
negative anisotropy, it also excites oblique firehose modes that transition into small-scale
parallel fluctuations, and the final stages of wave decay resemble the standing wave. The
appearance of small-scale parallel fluctuations in both cases prompted us to examine these
in more detail in §5, where we found that the nonlinear stabilization against cyclotron
damping plays a key role in their longevity, and that they evolve naturally from oblique
firehose modes when the pressure anisotropy is not driven by a shear flow or compression.

Unfortunately, as discussed in detail in §3.2, our simulations cannot fully address
what occurs at yet higher λA/ρi. This will depend on how oblique firehose modes
decay into parallel Alfvénic modes and scatter particles. This process is currently poorly
understood despite hints in §5 that this physics is a generic feature of oblique firehose
decay. Nonetheless, it is clear that SA wave interruption provides a robust mechanism for
the dissipation of energy directly from large-scale perturbations into heat and microin-
stabilities. This strong deviation from the predictions of MHD models could significantly
impact the turbulent dynamics of high-β weakly collisional plasmas, in a way reminiscent
of the scenario suggested in Kunz et al. (2010): large-amplitude perturbations (on scales
less than the mean free path) experience a sudden damping into heat and microscale
fluctuations, while small-amplitude perturbations happily undergo a standard Alfvénic
cascade. One concrete way to probe such physics in simplified simulations might be a
Landau-fluid model with pressure-anisotropy limiters (Sharma et al. 2006) that enhance
the collisionality to a rate that is determined by the large-scale Alfvén frequency.
However, further speculation on such models is beyond the scope of this work, and
may require a better understanding of the λA/ρi →∞ limit and/or the fate of Alfvénic
velocity perturbations, if one hopes make confident progress in this endeavor.
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Appendix A. Numerical tests

In this appendix, we outline various numerical tests that we used to ensure the accuracy
of the nonlinear SA wave simulations in the main text. We start by discussing a series of
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Figure 11. (a) Numerical scaling with particles per cell, for linear standing waves (initial
conditions (2.6), with δb = 0.05) in Pegasus at λA/ρi = 250. The lines show the y-averaged
δBz/B0 at t/τA = 0.5 (t = 1250Ω−1

i ) for simulations with the numerical parameters given
in §2.2, using Nppc = 4096 (blue line), Nppc = 1024 (red line), Nppc = 256 (yellow line),
or Nppc = 64 (purple line). The dotted black line shows the initial conditions (2.6). (b)
Numerical scaling with particles per cell for nonlinear standing waves. The setup is identical
to the standing-wave simulation discussed in §3, except that we use λA/ρi = 250. We show
the y-averaged magnetic perturbation δBz/B0 at t/τA = 0.6, for Nppc = 4096 (blue solid line),
Nppc = 1024 (red dashed line), Nppc = 256 (yellow dot-dashed line).

tests to ensure the correct propagation of linear SA waves in Pegasus, then consider the
scaling of nonlinear (δb = 0.5) SA waves with the number of particles per cell, Nppc. We
finish with brief discussion of the unphysical grid heating seen in Fig. 4.

A.1. Linear SA wave tests

In order to be confident in nonlinear results, it is important to ensure that linear long-
wavelength SA waves are accurately propagated by Pegasus. We have run a variety of
such linear tests, for both standing waves (from an initial magnetic perturbation, (2.6),
or an initial velocity perturbation) and for traveling waves (initial conditions 2.7). We use
the same numerical parameters as discussed in §2.2, but vary λA/ρi (between λA/ρi = 50
and λA/ρi = 1000) and Nppc (between Nppc = 16 and Nppc = 4096).†

These tests have shown that large numbers of particles per cell are required for long-
wavelength SA waves, due to the build up of noise over the long simulation times required.
In particular, we see an unphysical damping of linear SA waves at low ppc, with the Nppc

required to accurately propagate a wave at a given λA/ρi increasing linearly with λA/ρi.
For example, a wave with λA/ρi = 250 and Nppc = 256 will develop similar errors to a
wave with λA/ρi = 1000 and Nppc = 1024, by a given t/τA (but recall, τAΩi increases
with λA/ρi). In Fig. 11(a), we show the effect of this unphysical damping on linear SA
standing waves, through the scaling with Nppc at λA/ρi = 250. Clearly, at Nppc = 64,
the simulation is grossly incorrect by t/τA = 0.5, while Nppc = 256 is marginal and with
Nppc & 1024, linear SA waves are propagated relatively accurately. The scaling seen for
traveling waves is very similar. As of yet, it is unclear exactly what causes this unphysical
damping, and work is ongoing to better understand its properties.‡

† Note that for smaller scale separations λA/ρi . 200, the differing phase speeds of the
Alfvénic and whistler branches of the dispersion relation (see Fig. 9(a)) cause linearly polarized
SA waves to differ somewhat from MHD predications, with a δBy perturbation being created
from the initial δBz perturbation.
‡ Two points are worth mentioning: first, that the unphysical damping is more severe in

1-D domains, and second, that it only occurs when using the δf -PIC method. These properties
suggest the damping may be related to a spurious instability that occurs in the δf method. Such
instabilities have been found before in different contexts (Wilkie & Dorland 2016; Sturdevant &
Parker 2016). However, given the high-β, which implies that very small (� β−1) perturbations
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A.2. Nonlinear SA wave tests

We have also checked the convergence of nonlinear-SA-wave dynamics with Nppc at
λA/ρi = 250. In Fig. 11(b), we show the y-averaged δBz/B0 at t/τA = 0.6, for a series
of standing-wave simulations.¶ The results broadly match what would be expected from
linear SA wave calculations (Fig. 11(a)): the solution is effectively converged (there are
no discernible difference in the large-scale wave evolution) for Nppc & 1024, but clear
differences are visible at Nppc & 256.

The number of particles per cell for our fiducial simulations presented in §3 and §4 were
chosen based on the linear and nonlinear scalings discussed in the previous paragraph
and in §A.1. Given that we have also seen qualitatively similar large-scale dynamics for
SA waves with λA/ρi ∈ [125, 1000] (for example, compare Figs. 2(c) and 11(b)), we are
relatively confident that the observed dynamics do not arise due to numerical artifacts. It
is also worth reiterating that the small-scale parallel magnetic fluctuations, which played
an important role in particle scattering, occur independently of the grid resolution (see
Fig. 10) or the alignment of the magnetic field with the grid (not shown).

A.3. Grid heating and density increase

A well-known effect in PIC codes is a spurious heating that occurs due to finite-
particle noise (Birdsall & Langdon 1991). In the δf method, there is also a corresponding
increase in the global density 〈ni〉. Here, we simply note that for the fiducial simulations
presented in the main text, the relative increase in 〈ni〉 is ∼ 0.05% for the λA/ρi =
1000 standing-wave simulation in §3, and ∼ 0.1% for the λA/ρi = 1000 traveling-
wave simulation in §4. We have removed this contribution from ∂tEth in Fig. 4(a) (by
computing

∫
dxni

∑
r ∂t(Πrr/ni)/2 as opposed to

∫
dx
∑
r ∂tΠrr/2) but note that its

contribution to ∂tEth is similar in magnitude to the spurious heating shown in Fig. 4(a)
(i.e., the difference between the heating and ∂tEth). The nonlinear standing wave tests at
λA/ρi = 250 (Fig. 11(b)) have shown that the relative grid heating and density increase
decrease with Nppc and increase with λA/ρi (due to the longer simulation times), as
expected.

Appendix B. Measurement of the particle scattering

In this appendix, we outline the method used to measure particle scattering in Figs. 2,
5, and 8. The method is based on that of Kunz et al. (2014a); Melville et al. (2016), with
some modifications to allow the measurement of the “local” νc as a function of space and
time.

The method works by calculating the time τκ, that it takes µ to change by a factor
κ (i.e., µ → µκ or µ → µ/κ), for a sample of particle tracks saved from the simulation.
For those events that occur within a chosen bin in x and t (i.e., xevent ∈ [x, x + ∆x],
tevent ∈ [t, t + ∆t], where xevent and tevent denote the spatiotemporal location at which
µ changed by a factor of κ from its previous event), we calculate the mean of τκ across
all particles, which is the maximum likelihood estimate for the exponential distribution
e−t/τκ .

Evidently τκ, the average time required for µ to change by a factor of κ, is related to
ν−1c , but also depends on κ. Defining an unambiguous measure of νc is tricky, but based

to fi must be accurately resolved, the use of the full-f method is not feasible for propagating
SA waves for the values of β and scale separations of interest here.
¶ Note that the wave decay is slower compared to at λA/ρi = 1000, as discussed in §3.2 (c.f.,

Fig. 2(d)).



Shear-Alfvén wave interruption 23

on the evolution of the pressure anisotropy in a collisional plasma ∂t∆p ∼ −νc∆p, it
is reasonable to define ν−1c as τexp(1). However, using κ = exp(1) brings problems: with
such a large change in µ there are few events, and one is no longer measuring a local
scattering rate because particles can stream between several bins before each event. We
thus rescale τκ according to

ν−1c = τexp(1) =

(
1

lnκ

)2

τκ, (B 1)

an estimate that arises from assuming that lnµ undergoes a random walk.† For mea-
surements in the text, we choose κ = 1.2 because it is small enough that there are many
“events” (factor κ changes in µ) per bin, but large enough that any recorded change in µ
is indeed due to scattering from microscale fluctuations. For all bins in Fig. 2, and all but
the lowest collisionality bins (for t/τA < 0.2, or t/τA & 2.5) in Fig. 8(a), we have checked
that there are at least 2 events per particle per bin, which ensures that it is indeed a
local value of νc that is being measured using this method. The results in Figs. 2, 5, and
8(a) are broadly unchanged for any κ in the range 1.1 . κ . 2.
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