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ABSTRACT
Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields,
are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical
origin is still not well understood. Here, we employ a suite of large-scale 2D particle-in-cell
simulations in electron–positron plasmas to demonstrate that relativistic magnetic reconnection
can naturally account for the formation of quasi-spherical plasmoids filled with high-energy
particles and magnetic fields. Our simulations extend to unprecedentedly long temporal and
spatial scales, so we can capture the asymptotic physics independently of the initial setup. We
characterize the properties of the plasmoids, continuously generated as a self-consistent by-
product of the reconnection process: they are in rough energy equipartition between particles
and magnetic fields; the upper energy cutoff of the plasmoid particle spectrum is proportional
to the plasmoid width w, corresponding to a Larmor radius ∼0.2 w; the plasmoids grow in
size at ∼0.1 of the speed of light, with most of the growth happening while they are still
non-relativistic (‘first they grow’); their growth is suppressed once they get accelerated to
relativistic speeds by the field line tension, up to the Alfvén speed (‘then they go’). The largest
plasmoids reach a width wmax ∼ 0.2 L independently of the system length L, they have nearly
isotropic particle distributions and contain the highest energy particles, whose Larmor radius
is ∼0.03 L. The latter can be regarded as the Hillas criterion for relativistic reconnection. We
briefly discuss the implications of our results for the high-energy emission from relativistic
jets and pulsar winds.

Key words: magnetic reconnection – MHD – radiation mechanisms: non-thermal – gamma-
ray burst: general – pulsars: general – galaxies: jets.

1 IN T RO D U C T I O N

It is generally thought that pulsar winds and the relativistic jets of
blazars and gamma-ray bursts (GRBs) are launched hydromagneti-
cally (Spruit 2010). The strong magnetic fields threading a rotating
compact object or the associated accretion disc serve to convert the
rotational energy of the central engine into the power of the rela-
tivistic outflow. Since the energy is carried initially in the form of
Poynting flux, it is a fundamental question how and where the en-
ergy in the fields is transferred to the plasma, and then radiated away
to power the observed emission. Because of their tightly wound-up
magnetic fields, jets may be susceptible to magnetohydrodynamic
(MHD) kink instabilities. At their non-linear stages, these MHD
instabilities introduce small-scale magnetic field reversals that lead
to dissipation of magnetic energy through magnetic reconnection
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(Begelman 1998; Spruit, Daigne & Drenkhahn 2001). Alternatively,
the outflow may contain current sheets from its base, as it is the case
in pulsar winds, if the pulsar rotational and magnetic axes are not
aligned (Lyubarsky & Kirk 2001). In either case, field dissipation via
magnetic reconnection has been often invoked to explain the non-
thermal signatures of pulsar wind nebulae (PWNe; e.g. Lyubarsky
& Kirk 2001; Kirk & Skjæraasen 2003; Lyubarsky 2003; Pétri
& Lyubarsky 2007; Sironi & Spitkovsky 2011b), jets from active
galactic nuclei (AGNs; e.g. Romanova & Lovelace 1992; Giannios,
Uzdensky & Begelman 2009, 2010; Giannios 2013) and GRBs (e.g.
Thompson 1994, 2006; Usov 1994; Spruit et al. 2001; Drenkhahn
& Spruit 2002; Lyutikov & Blandford 2003; Giannios 2008). De-
spite decades of research, we have no reliable theory built from first
principles for the particle distribution, geometry and magnetic field
to be expected in the radiating regions of a reconnection-dominated
system.

In relativistic astrophysical outflows, reconnection proceeds in
the ‘relativistic’ regime in which the magnetic energy per particle
can exceed the rest mass energy (or equivalently, the magnetization
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σ is larger than unity). The flow dynamics in relativistic recon-
nection has been satisfactorily described by analytical studies (e.g.
Lyutikov & Uzdensky 2003; Lyubarsky 2005), even though analyti-
cal models still have to make assumptions on the resistive processes
at work, that critically affect the geometry of the layer. However, the
acceleration process of the emitting particles can only be captured
from first principles by means of fully-kinetic particle-in-cell (PIC)
simulations. Energization of particles in relativistic reconnection
of pair plasmas has been investigated in a number of PIC studies,
both in two dimensions (2D; e.g. Zenitani & Hoshino 2001, 2007;
Jaroschek, Lesch & Treumann 2004; Bessho & Bhattacharjee 2005,
2007, 2010, 2012; Daughton & Karimabadi 2007; Hesse & Zeni-
tani 2007; Lyubarsky & Liverts 2008; Cerutti et al. 2012; Sironi &
Spitkovsky 2014; Guo et al. 2014, 2015; Liu et al. 2015; Nalewajko
et al. 2015; Sironi, Petropoulou & Giannios 2015; Kagan, Nakar &
Piran 2016; Werner et al. 2016) and three dimensions (3D; e.g. Zen-
itani & Hoshino 2005, 2008; Yin et al. 2008; Liu et al. 2011; Sironi
& Spitkovsky 2011b, 2012; Kagan, Milosavljević & Spitkovsky
2013; Cerutti et al. 2014; Sironi & Spitkovsky 2014; Guo et al.
2015). Recently, 2D PIC simulations have started to tackle the dy-
namics and acceleration capabilities of relativistic reconnection in
electron–ion plasmas (e.g. Melzani et al. 2014; Sironi et al. 2015;
Guo et al. 2016).

PIC simulations can now reliably simulate the reconnection re-
gion, measure the reconnection speed and identify the mechanisms
of particle acceleration (see Kagan et al. 2015 for a review). Yet,
the separation between the microscopic plasma scales that PIC sim-
ulations need to resolve and the large astrophysical scales where
the emission takes place is often precluding a direct application
of PIC findings to astrophysical observations. It is only when PIC
studies are performed with a domain much larger than the micro-
scopic plasma scales, that the results can be properly employed to
model astrophysical sources. With large-scale simulations, Sironi
& Spitkovsky (2014, hereafter SS14) have shown that non-thermal
particle acceleration is a generic by-product of the long-term evo-
lution of relativistic reconnection, in both 2D and 3D, and that the
accelerated particles populate a power law whose slope is harder
than −2 for magnetizations σ � 10. With large-scale PIC sim-
ulations, we have demonstrated that reconnection can satisfy all
the basic conditions for the high-energy emission from blazar jets
(Sironi et al. 2015, hereafter SPG15): efficient dissipation, extended
particle distributions and rough equipartition between particles and
magnetic field in the emitting region.

In this work, we employ a suite of large-scale 2D PIC simulations
in electron–positron plasmas to follow the evolution of the recon-
nection layer to unprecedentedly long temporal and spatial scales,
so we can capture the asymptotic physics independently of the ini-
tial setup of the current sheet. Earlier works were often limited to
small domains, nearly one order of magnitude smaller than what
we employ here. As a result, transient effects that depended on the
initialization of the current sheet were artificially overemphasized,
while particle distributions did not have sufficient time to isotropize
(e.g. Cerutti et al. 2013), or particle acceleration to the highest en-
ergies was artificially inhibited (e.g. Werner et al. 2016). Also, the
common choice of periodic boundary conditions in the outflow di-
rection (as opposed to the absorbing/outflow boundary conditions
that we employ here) limited the time that these simulations could
run before the reconnection process was choked, which resulted
in underestimating the terminal speed of the reconnection outflow
(e.g. Guo et al. 2015).

With our large-scale simulations, we investigate the properties
of the chain of plasmoids/magnetic islands that are constantly

generated in the reconnection layer by the secondary tearing in-
stability (Uzdensky, Loureiro & Schekochihin 2010), as a self-
consistent by-product of the system evolution. We argue that such
plasmoids play the role of the ‘blobs’ that are commonly invoked
in phenomenological models of relativistic astrophysical jets, i.e.
quasi-spherical emission regions containing relativistic particles
and magnetic fields. We show that the plasmoids are indeed in
rough energy equipartition between particles and magnetic fields
(with kinetic and magnetic energy densities proportional to the
magnetization σ ), and that the upper energy cutoff of the plasmoid
particle spectrum is proportional to the plasmoid width w, corre-
sponding to a Larmor radius ∼0.2 w.

By following each individual plasmoid over time, we find that
their life can be separated into two phases: first they grow, then
they go. The plasmoids grow in size at ∼0.1 of the speed of light
(roughly half of the reconnection inflow rate), with most of the
growth happening while they are still non-relativistic; their growth
is suppressed once they get accelerated to relativistic speeds by the
field line tension, up to the terminal four-velocity ∼√

σ c expected
from analytical models (Lyubarsky 2005). The largest plasmoids,
occurring every ∼2.5 L/c, reach a characteristic size wmax ∼ 0.2 L
independently of the system length L, they have nearly isotropic
particle distributions and they contain the highest energy particles,
whose Larmor radius is ∼0.03 L. The latter can be regarded as the
Hillas criterion (Hillas 1984) for relativistic reconnection.

This paper is organized as follows. In Section 2, we describe the
simulation setup and our method for identifying and tracking the
plasmoids. In Section 3, we discuss the overall structure of the re-
connection layer, whereas Section 4 is devoted to the investigation
of the plasmoid properties (i.e. their fluid properties, the particle
population that they contain, the plasmoid growth and bulk accel-
eration). In Section 5, we show how our conclusions depend on
the system size L and emphasize the artificial constraints imposed
by small computational domains. This will allow us to extrapolate
our results from our large-scale PIC simulations to the macroscopic
scales relevant for the blazar emission (Petropoulou, Giannios and
Sironi 2016). In Section 6, we summarize our findings and describe
their astrophysical implications.

2 SI M U L AT I O N SE T U P

We use the 3D electromagnetic PIC code TRISTAN-MP (Buneman
1993; Spitkovsky 2005) to study relativistic reconnection in pair
plasmas. Our simulations employ a 2D spatial domain, but we track
all three components of the velocity and of the electromagnetic
fields. We investigate the case of antiparallel reconnection, i.e. in
the absence of a guide field perpendicular to the alternating fields.
The reconnection layer is set up in Harris equilibrium, with the
initial magnetic field Bin = −B0 x̂ tanh (2πy/�) reversing at y = 0
over a thickness � that will be specified below.1 The field strength is
parametrized by the magnetization σ = B2

0 /4πmn0c
2 = (ωc/ωp)2,

where ωc = eB0/mc is the Larmor frequency and ωp =
√

4πn0e2/m

is the plasma frequency for the cold electron–positron plasma out-
side the layer (which is initialized with a small thermal spread
of kBT/mc2 = 10−4). The Alfvén speed is related to the magne-
tization as vA/c = √

σ/(σ + 1). We focus on the regime σ � 1

1 In this work, we focus on the commonly-studied plane-parallel setup in
which the initial field lies in the x–z plane. For more complicated geometries,
and in particular for the case of explosive relativistic reconnection driven by
large-scale magnetic stresses, see Lyutikov et al. (2016).
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Table 1. Physical parameters of the simulations.

σ L/ c/ωp L/ r0,hot Duration (L/c)

3 1229 720 3.6
10 413 127 14.0
10 826 257 3.6
10 1651 518 3.6
10 3584 1130 3.6
50 3584 505 3.6

We provide the system half-length L in units of both the skin
depth c/ωp (second column), which is resolved with 10 cells,
and of the Larmor radius of particles heated/accelerated by re-
connection r0,hot = √

σ c/ωp (third column).

(i.e. vA/c ∼ 1) of relativistic reconnection, investigating three val-
ues of the magnetization: σ = 3, 10 and 50 (see Table 1). The
magnetic pressure outside the current sheet is balanced by the parti-
cle pressure in the sheet, by adding a component of hot plasma with
overdensity η = 3 relative to the number density n0 of cold particles
outside the layer. From pressure equilibrium, the temperature of the
hot plasma in the sheet is kBTh/mc2 = σ/2η. The hot particles in the
sheet are also initialized with a small drift speed along z (electrons
and positrons drifting in opposite directions), so that their electric
current compensates the curl of the magnetic field.

We trigger reconnection near the centre of the 2D computational
domain, by removing the pressure of the hot particles initialized
in the current sheet.2 This triggers a local collapse of the current
sheet, which generates an X-point at the centre of the domain.
After this initial perturbation, the system evolves spontaneously,
i.e. we study spontaneous reconnection, as opposed to forced (or
driven) reconnection. The initial perturbation results in the forma-
tion of two ‘reconnection fronts’ that propagate away from the
centre along ±x̂ (i.e. along the current layer), at roughly the Alfvén
speed vA = √

σ/(σ + 1) c (see Section 3). We choose the thickness
of the current sheet � large enough such that reconnection does not
get spontaneously triggered anywhere else in the current layer, out-
side of the region in between the two reconnection fronts. Taking
r0,hot = √

σ c/ωp as our unit of length, which corresponds to the
Larmor radius of particles with energy σmc2 in the field B0,3 the
thickness � is chosen to be � � 29 r0,hot for σ = 3, � � 22 r0,hot

for σ = 10 and � � 11 r0,hot for σ = 50. We have tested that our
results are insensitive to the value of � as long as it is apprecia-
bly larger than r0,hot, so that active reconnection stays confined in
between the two reconnection fronts.

After one Alfvénic crossing time, the two reconnection fronts
reach the x boundaries of the computational box (see Section 3).
Here, we have explored two choices of boundary conditions: (i)
periodic boundary conditions in the x-direction, so that the parti-
cles outflowing from the centre accumulate close to the boundaries,
where a large magnetic island is formed; or (ii) absorbing bound-
ary conditions in the x-direction of the reconnection outflow, to
mimic an open boundary in which no information is able to propa-
gate back inward (Daughton, Scudder & Karimabadi 2006; Belyaev
2015; Cerutti et al. 2015). The choice (i) of periodic boundary con-
ditions has two disadvantages: the large island contains the particles

2 In essence, the current sheet particles around x, y ∼ 0 are initialized with
a small temperature, rather than Th.
3 If reconnection were to transfer all of the field energy to the particles,
the mean particle energy would be ∼σmc2/2. So, our definition of r0,hot

corresponds, apart from a factor of 2, to the Larmor radius of the particles
heated/accelerated by reconnection.

that were initialized in the current sheet, so the system still bears
memory of the initial conditions; in addition, as the large island
grows, the central region where reconnection stays active progres-
sively shrinks, which prevents to study the long-term steady-state
evolution of the system. For this reason, we adopt the choice (ii)
of absorbing boundary conditions, as soon as the two reconnection
fronts reach the boundaries of the box (beforehand, periodic bound-
aries are used along the x-direction). Even though we only present
the results from simulations with absorbing boundaries, we have
tested that our main conclusions are the same for both choices of
boundary conditions.

In the case of absorbing boundary conditions in x, particles are
removed from the simulation when they reach the two x boundaries.
In a region of width of 60 cells just inside of the two x boundaries,
the electromagnetic fields are set by hand to their initial values
(i.e. Bin as specified above, and zero electric field). Further in, a
finite width absorbing layer (with thickness �abs = 50 cells) is
implemented, where Maxwell’s equations contain an electric and a
magnetic conductivity term, so that the fields are damped back to
the initial conditions. In the absorbing layer, we solve

∂B
∂t

= −c∇ × E − λ(x)(B − Bin) (1)

∂E
∂t

= c∇ × B − 4π J − λ(x)E, (2)

where the conductivity λ(x) is a function of space within the ab-
sorbing layer. To minimize wave reflections off the inner edge of
the absorbing layer, we gradually increase the conductivity towards
the boundaries: if x1 is the inner edge of the absorbing layer, the
conductivity profile is λ = (4/�absδt)[|x − x1|/�abs]3, where δt is
the simulation timestep. Outside of the absorbing layer, λ = 0.

Along the y-direction of the reconnection inflow, we employ two
moving injectors (receding from y = 0 at the speed of light along
± ŷ) and an expanding simulation box, a technique that we have
extensively employed in our studies of relativistic shocks (Sironi
& Spitkovsky 2009, 2011a; Sironi et al. 2013) and relativistic re-
connection (SS14).4 The two injectors constantly introduce fresh
magnetized plasma into the simulation domain. This permits us to
evolve the system as far as the computational resources allow, re-
taining all the regions that are in causal contact with the initial setup.
Such choice has clear advantages over the fully-periodic setup that
is commonly employed, where the limited amount of particles and
magnetic energy will necessarily inhibit the evolution of the system
to long times, and the establishment of a steady state.

We resolve the plasma skin depth with c/ωp = 10 cells, so that
the Larmor gyration period 2π/ωc = 2π/

√
σ ωp is resolved with at

least a few timesteps, even for the largest magnetization σ = 50 that
we explore (the numerical speed of light is 0.45 cells timestep−1).
We investigate the long-term evolution of reconnection in large-
scale computational domains. In the following, we shall call L
the half-length of the computational domain along the x-direction,
i.e. along the reconnection layer. In units of the Larmor radius of
hot particles r0,hot = √

σ c/ωp, the half-length L for our fiducial
runs is L � 720 r0,hot for σ = 3, L = 1130 r0,hot for σ = 10 and
L = 505 r0,hot for σ = 50 (see Table 1). In units of the plasma
skin depth, this amounts to L/ c/ωp � 1229 for σ = 3, and

4 More precisely, our simulation box expands (via discrete jumps along ± ŷ)
whenever the two injectors approach its top and bottom boundaries, thus
allowing us to save memory.
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L/ c/ωp � 3584 for both σ = 10 and 50. This corresponds to an
overall box size along the x-direction (so, for the full length 2 L) of
24 576 cells for σ = 3 and 71 680 cells for both σ = 10 and 50.5 As
we show below, such large domains are of paramount importance to
reconcile the results of PIC simulations with the analytical theory
of relativistic magnetic reconnection by Lyubarsky (2005), and to
attain a sufficient dynamic range to separate effects happening on
plasma scales from the physics at macroscopic scales � L.

For our reference case of σ = 10, we investigate the depen-
dence of our results on L, exploring also the cases L � 127 r0,hot,
L � 257 r0,hot and L � 518 r0,hot. We evolve the system up to a few
L/c (typically, up to � 3.6 L/c), corresponding to ∼95 000 timesteps
for σ = 3 and ∼270 000 timesteps for both σ = 10 (as regard to our
reference case with L = 1130 r0,hot) and σ = 50. This is sufficient
to study with enough statistics the steady state of the system, which
is established after ∼L/c, as described below.

We typically employ four particles per cell (including both
species), but we have extensively tested that the physics is the
same when using up to 64 particles per cell (the tests have been
performed for the case with magnetization σ = 10 and box sizes
L � 127 r0,hot and L � 257 r0,hot). In order to reduce noise in the
simulation, we filter the electric current deposited to the grid by
the particles, effectively mimicking the role of a larger number of
particles per cell (Spitkovsky 2005; Belyaev 2015).

2.1 Plasmoid identification and tracking

In this subsection, we describe our technique to identify the plas-
moids that are self-consistently generated by reconnection, and to
follow individual plasmoids over time. As it is customary in MHD
simulations (Fermo, Drake & Swisdak 2010; Huang & Bhattachar-
jee 2012; Loureiro et al. 2012; Murphy et al. 2013), the O-points
at the centre of plasmoids and the X-points in between neighbour-
ing plasmoids are identified in a 2D domain as local maxima and
minima of the magnetic vector potential Az. Apart from a minus
sign, Az also corresponds to the magnetic flux function. Each max-
imum of Az identifies the O-point at the centre of a plasmoid. The
plasmoid area is defined as the region where the vector potential
stays larger that the maximal value of Az of the two neighbouring
X-points (each one corresponding to a local minimum of Az). In
other words, the plasmoid contour corresponds to the equipotential
line at the maximal value of Az of the two neighbouring X-points.
It is in this region that we measure the area-averaged properties of
individual plasmoids, e.g. their density and magnetic and kinetic
energy content. The logitudinal size of the plasmoid (or ‘length’) is
measured along the current sheet (i.e. along x at y = 0), whereas its
transverse size (or ‘width’) is measured along a cut in the y-direction
taken at the location of the corresponding O-point.

The plasmoid speed is defined as the local bulk velocity at the
corresponding O-point. We have verified that an isolated plasmoid
(i.e. not undergoing a merger with another plasmoid) moves nearly
as a solid body, or equivalently that the electric field in the plasmoid
comoving frame nearly vanishes. By knowing the plasmoid speed,
we can readily measure the plasmoid properties in the comoving
frame. Below, we shall indicate with a subscript ‘lab’ all the quan-
tities measured in the laboratory frame. Otherwise, we will refer
to comoving quantities, with the exception of the spatial locations
x and y, the inflow speed vin and the outflow four-velocity 	vout,

5 The box size along y increases over time, and at the end, it is comparable
or larger than the x extent.

which are always measured in the laboratory frame. Here, the bulk
Lorentz factor 	 = (1 − v2

out/c
2)−1/2.

By accounting for all the particles belonging to the plasmoid, we
can compute the island energy and momentum spectrum, in the lab-
oratory or comoving frame. Below, it will be convenient to have an
estimate of the upper cutoff of the comoving momentum spectrum
of individual plasmoids, which we measure as follows (see also Bai
et al. 2015). If pi is the particle momentum in a given direction (be-
low, we will primarily consider the positron momentum) measured
in the plasmoid comoving frame, we define

pi,cut =
∑

α∈P p
ncut
α,i∑

α∈P p
ncut−1
α,i

, (3)

where the sum is extended over all the particles α belonging to the
plasmoid P, and the power index ncut is empirically chosen to be
ncut = 6. If the momentum distribution takes the form dN/dpi ∝
p−s

i exp(−pi/p0) with power-law slope s and exponential cutoff at
p0, then our definition yields pi,cut ∼ (ncut − s) p0. In the plasmoid
comoving frame, a residual positron anisotropy might persist in the
direction +z of the reconnection electric field (with electrons having
the opposite anisotropy). It will then be illuminating to distinguish
the momentum spectrum of positrons having pz > 0 from positrons
with pz < 0. The cutoffs of the corresponding momentum spectra
will be indicated as p+z,cut and p−z,cut, respectively. The quantity
pcut will refer to the cut-off momentum for the total comoving
momentum p = (p2

x + p2
y + p2

z )
1/2

. It will be convenient to cast
the value of the momentum cutoffs in terms of the corresponding
Larmor radius in the background field B0, which will be indicated
as r0,cut = pcutc/eB0 for the total momentum pcut and as r0i,cut =
pi,cutc/eB0 for the component along the direction i.

After having identified all the plasmoids in a given snapshot of
the simulation, we describe how we follow the temporal trajectory
of a given plasmoid, which allows us to assess, e.g. how its growth
proceeds over time. In our PIC code, each computational particle
has a unique identifier. At any given time, we tag each new plasmoid
that has been detected in the reconnection layer with a representative
particle, whose Lorentz factor is typically chosen to be 1.2 ≤ γ lab ≤
2.5. This range ensures that we have enough particles to be able to
tag each of the plasmoids (as we show below, the plasmoid spectrum
starts at mildly relativistic energies), and at the same time, we can
be confident that the particle of our choice stays effectively trapped
in the plasmoid (as opposed to a high-energy particle that was flying
outward from the X-point and happened to lie within the plasmoid
area at that particular time). At all subsequent times, the location of
the chosen particle will allow us to confidently track the temporal
history of the given plasmoid.

At certain times, a single plasmoid might contain two or more of
such ‘tracer particles.’ This is a signature that a plasmoid merger has
just occurred, and we can uniquely identify which plasmoids have
been taking part in the merger event. The post-merger plasmoid will
inherit the identifier from the largest of the pre-merger plasmoids
(and inherit its corresponding tracer particle), while all the other
pre-merger plasmoids will terminate their life history.

3 ST RU C T U R E A N D E VO L U T I O N O F TH E
R E C O N N E C T I O N L AY E R

We describe the evolution of the reconnection layer in our large-
scale computational domain, from the initial setup, until it reaches
a statistical steady state. We focus on the overall structure of the
current sheet, and we emphasize the dependence of the inflow and
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Figure 1. 2D structure of the particle number density in the lab frame nlab, in units of the lab-frame number density n0 far from the reconnection layer, from a
simulation with σ = 10 and L/r0,hot � 518. We only show the region |y|/L < 0.15 to emphasize the small-scale structures in the reconnection layer (the extent
of the computational box along y increases at the speed of light, as described in Section 2). The 2D density structure at different times (as marked on the plots)
is shown in the panels from top to bottom, with overplotted magnetic field lines. After triggering reconnection in the centre of the current sheet (x � 0 in the
top panel), two ‘reconnection fronts’ propagate to the right and to the left, reaching the boundaries of the box right after ctlab/L = 1.2 (see the two overdense
regions at x � −0.4 L and x � 0.4 L in the second panel, or at x � −0.85 L and x � 0.85 L in the third panel). The evolution of the reconnection layer after this
time is completely independent of the initialization of the current sheet.

outflow speeds on the flow magnetization, demonstrating excellent
agreement of the results of our PIC simulations with the analytical
model by Lyubarsky (2005).

3.1 Towards a steady state

Fig. 1 illustrates the early phases of evolution of the system, pre-
senting the 2D structure of the particle number density in the lab
frame nlab for a representative case with magnetization σ = 10 and
size L/ r0,hot � 518. We only show the region |y|/L < 0.15 closest
to the current sheet, to emphasize the small-scale structures in the
reconnection layer; the full extent of our computational box along
y is much larger, since it increases with time at the speed of light,
as described in Section 2. As anticipated in Section 2, the recon-
nection process is initiated by hand at the centre of the domain, by
removing the thermal pressure of the hot particles in the current
sheet near x, y ∼ 0. Our choice of driving the reconnection onset
near the centre – rather than periodically modulating the magnetic
flux function, or letting the system go unstable via numerical noise

– would mimic the effect of a large-scale curvature of the field lines
(over a scale ∼L), such that the current sheet is narrower near the
centre. The central region is then most likely to go unstable via the
tearing mode,6 and the signal of ongoing reconnection will propa-
gate towards the outer regions (where the current sheet is broader)
before they have time to become unstable.

The lack of pressure support in the vicinity of x, y ∼ 0 resulting
from our initial perturbation triggers the collapse of the current sheet
(top panel in Fig. 1), with the magnetic field lines that begin to get
advected towards the centre (the magnetic field lines are overplotted
in grey in Fig. 1) where an X-point is formed. In the following, we
indicate this X-point as the ‘primary X-point.’ The primary X-point
remains in the vicinity of x ∼ 0 throughout the timespan of our
simulations (deviating at most by ∼0.2 L), and it will be easy to

6 For an unperturbed pair plasma that goes unstable via the tearing instability
(seeded by numerical noise), the growth time of the fastest growing mode
increases with the current sheet thickness as �5/2 (e.g. Zenitani & Hoshino
2007), at fixed magnetization σ and overdensity η.
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identify by tracking the large-scale convergence of the field lines,
or the divergence of the outflowing plasma velocity.

On the two sides of the primary X-point, two ‘reconnection
fronts’ are formed (see the overdense regions at |x|/L ∼ 0.1 in
the top panel of Fig. 1). Pulled by the tension force of the magnetic
field lines, the two reconnection fronts move towards the ends of the
current sheet at the Alfvén speed, which, for relativistic reconnec-
tion, approaches the speed of light (for the case of σ = 10 in Fig. 1,
the Alfvén speed is vA/c � 0.95). As they propagate, they sweep
up the hot plasma that was initialized in the current sheet, so the
‘heads’ of the two reconnection fronts become wider and wider with
time (compare the overdense structures at |x|/L ∼ 0.4 for ctlab/L
∼ 0.7 with those at |x|/L ∼ 0.85 for ctlab/L ∼ 1.2). After the two
reconnection fronts exit through the two absorbing x boundaries of
the box (for the case in Fig. 1, this happens around ctlab/L ∼ 1.4),
the system retains no memory of the initialization of the current
sheet (in contrast, in the case of periodic boundary conditions in
the x-direction, the initial current sheet plasma would accumulate
within a large island at the boundary of the box, see Section 2).
After the two reconnection fronts have left the domain, the system
approaches a statistical steady state (compare the two bottom-most
panels in Fig. 1). Even though our main results do not depend on the
choice of boundary conditions along the x-direction (absorbing or
periodic), it is only when we employ absorbing/outflow boundaries
that we can study the steady state of the system for several Alfvén
crossing times.

For our choice of a thick current sheet (i.e. � � r0,hot), the region
in between the two reconnection fronts is the only portion of the
domain where reconnection is active. In fact, we specifically choose
the value of � such that reconnection does not spontaneously start
anywhere in the region ahead of the two reconnection fronts, during
the time it takes for the two fronts to reach the boundaries of the
box. In contrast, in the case of a thinner current sheet, the tearing
instability would periodically break the initial current layer into a
series of magnetic islands, separated by X-points (e.g. see fig. 1a
in SS14). Such magnetic islands – which we would call ‘primary
islands’ – would still bear memory of the initialization of the current
sheet, since their core has a negligible magnetic content (e.g. see
fig. 2c in SPG15) and it is entirely supported by the pressure of the
hot particles initialized in the current sheet7 (see Nalewajko et al.
2015, for an investigation of the structure of primary islands). For
our choice of a thick current sheet, no primary islands are formed
in the reconnection layer.

The focus of our work is not on primary islands, since their
properties would still be sensitive to the details of the current sheet
initialization, which would be impossible to constrain from astro-
physical observations. Rather, we investigate the properties of the
‘secondary islands’ resulting from the secondary tearing instability
discussed by Uzdensky et al. (2010). Secondary plasmoids are con-
tinuously generated in between the two reconnection fronts (or in
the whole domain, after the two reconnection fronts have exited the
computational box) and then advected outwards by the tension force
of the magnetic field lines (e.g. the plasmoid that was located at x/L
= −0.5 for ctlab/L = 1.2 has moved to x/L = −0.9 for ctlab/L = 1.7).
Secondary plasmoids are a self-consistent by-product of the long-
term evolution of the system (see Daughton & Karimabadi 2007,

7 Similar conclusions would hold in the case that the current sheet is set
up as a force-free layer (e.g. Guo et al. 2014), rather than a Harris sheet.
In such a case, the island cores would be dominated by the pressure of the
out-of-plane field initially present in the current sheet.

for similar conclusions in non-relativistic reconnection), and their
properties only depend on the flow conditions far from the current
sheet, i.e. only on the magnetization σ , for our case of antiparallel
reconnection in pair plasmas. This allows robust predictions to be
made on the observational implications of relativistic reconnection
in pulsar winds and jets of blazars and GRBs.

When two plasmoids merge, a current sheet forms in between,
along the y-direction. Similarly to the picture described above, this
current sheet results in a second generation of secondary plasmoids
moving in the y-direction. Further mergers between these plasmoids
gives a third generation of secondary plasmoids in the x-direction,
with a fractal framework that is expected to continue down to micro-
scopic plasma scales. In this work, we only focus on the first gen-
eration of secondary plasmoids, but we expect that our results are
equally applicable to all subsequent generations. The only caveat
is that, while the plasma flowing into the first-generation current
sheet is cold, in all subsequent phases, the inflowing plasma (which
already belongs to a ‘parent’ plasmoid) is relativistically hot.

3.2 The steady-state reconnection layer

The continuous formation and ejection of secondary plasmoids
characterizes the steady-state appearance of the reconnection layer,
which is presented in Fig. 2 at ctlab/L = 3.2 for the same simula-
tion as in Fig. 1. We plot the 2D structure of various quantities, as
measured in the lab frame of our simulations. In Section 4, we will
quantify how the comoving density and magnetic and kinetic energy
content of the secondary plasmoids depend on the plasmoid size.
The secondary plasmoids appear as overdense structures (Fig. 2a)
containing strong fields (Fig. 2b) and hot particles (Fig. 2c). Fig. 2(b)
shows that the cores of secondary plasmoids are significantly mag-
netized, in contrast with the structure of primary plasmoids (see fig.
1 c in SS14), whose core would be populated by the unmagnetized
hot particles that were initialized in the current layer. In the centre of
secondary plasmoids, the magnetic and kinetic densities are roughly
comparable, i.e. secondary plasmoids are nearly in equipartition of
magnetic and kinetic energy (see SPG15, and also Section 4 below).
At the centre of the plasmoids, the magnetic energy fraction reaches
εB,lab = B2

lab/8πn0 mc2 ∼ 100. This should be compared with the
value expected in the inflow region, where εB, lab ∼ σ/2 = 5. So,
the magnetic field in the plasmoid core is compressed by a factor of
∼4, with respect to the initial B0.

The magnetic field strength is nearly uniform in the inflow region,
with the exception of a few areas with weaker fields (in blue in Fig. 2
b; see e.g. at x/L ∼ 0.1 and |y|/L � 0.05). Such regions lie close
to the current sheet, in the vicinity of a large secondary island (for
the case indicated above, see the island at x ∼ 0). As the magnetic
field lines advect into the current sheet during the reconnection
process, they wrap around large magnetic islands. The same bundle
of field lines that are now accumulating on the outskirts of a large
island have to make their way to the current sheet, on the two
sides of the large island. It follows that the density of field lines
near a large magnetic island will be reduced, resulting in weaker
fields. In view of flux freezing, this will also correspond to a locally
lower value of the number density of inflowing particles (e.g. see
the same region at x/L ∼ 0.1 and |y|/L � 0.05 in Fig. 2a). As
we demonstrate in Section 4, this will have implications for the
magnetic energy content of small plasmoids, that reside in regions
where the inflowing magnetic field is weaker.

The inflow rate of particles is nearly uniform along the current
sheet, as shown by the plot of the inflow velocity vin/c = v/c · ŷ
in Fig. 2(d). The only exceptions are the regions just ahead of the
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Figure 2. 2D structure of the reconnection layer at ctlab/L = 3.2, from a simulation with σ = 10 and L/ r0,hot � 518. Along the y-direction, we only show
the region |y|/L < 0.15 to emphasize the small-scale structures in the reconnection layer (the extent of the computational box along y increases at the speed
of light, as described in Section 2 and shown in the animation linked below). From the top to the bottom panel, we show: (a) the particle number density in
the lab frame nlab, in units of the number density n0 far from the reconnection layer, with overplotted magnetic field lines; (b) the magnetic energy fraction
εB,lab = B2

lab/8πn0 mc2, where the magnetic field Blab is measured in the lab frame; (c) the kinetic energy fraction εkin, lab = (〈γ 〉lab − 1) nlab/n0, where 〈γ 〉lab

is the mean particle Lorentz factor in the lab frame; (d) the inflow bulk speed vin = v · ŷ in units of the speed of light; (e) the outflow bulk four-velocity
	vout = 	 v · x̂ in units of the speed of light. The reconnection layer is fragmented into a series of overdense magnetized hot plasmoids, which are propagating
away from the centre at ultra-relativistic speeds. The inflow speed (i.e. the reconnection rate) is mildly relativistic (vin/c ∼ 0.1), and remarkably uniform along
the current sheet. [The animation referring to Fig. 2 is available as supporting information.]

secondary plasmoids, where the plasmoids plunge into the inflowing
plasma and they push it aside (see e.g. to the left of the plasmoid at
x/L ∼ −0.8 in Fig. 2d, where vin has opposite sign than in the bulk
of the inflow). The inflow speed is non-relativistic, vin/c ∼ 0.15.
In Lyubarsky (2005)’s analytical model of relativistic reconnection,
the inflow speed is closely related to the opening angle θ of the
magnetic field in the inflow region (with respect to the x-axis), with
vin/c = tan θ . From Fig. 2(a), the inclination of the magnetic field
lines is such that tan θ ∼ 0.15, which is in excellent agreement
with the inflow speed that we measure in Fig. 2(d). In steady state,
both the obliquity of the field lines and the inflow velocity (or
‘reconnection rate’) stay remarkably constant in time.

The 2D plot in Fig. 2(d) also reveals the presence of spheri-
cal waves propagating back into the inflow region (e.g. see the
spherical front centred at (x, y) ∼ (0.2, 0) L). They appear most
clearly in the plots of inflow velocity (Fig. 2d) and magnetic energy
fraction (Fig. 2b), and they are generated by the merger event of
two plasmoids. Plasmoid mergers are rather frequent, as a result
of the fact that different plasmoids propagate at different speeds
along the layer, with larger plasmoids typically moving slower.
Fig. 2(e) presents the structure of the outflow bulk four-velocity
	vout = 	 v · x̂, in units of the speed of light. The large plasmoid

at x/L ∼ −0.8 moves slower than the smaller plamoids in its wake,
which will eventually accrete on to the large plasmoid, further in-
creasing its mass. In addition to such ‘minor mergers’ between plas-
moids of unequal sizes, occasional ‘major mergers’ of equal-mass
plasmoids might occur, as it is happening in the central region of
Fig. 2(e). The convergence of the velocity flow in between merging
plasmoids is believed to play an important role for particle accelera-
tion (Drake et al. 2006; Guo et al. 2014, 2015; SS14; Nalewajko et al.
2015). The dependence of the plasmoid speed on its size will be ex-
tensively quantified in Section 4. Yet, Fig. 2(e) already suggests that,
while large islands exit the layer with only trans-relativistic veloci-
ties, small plasmoids can reach ultra-relativistic speeds. Small plas-
moids approach the terminal four-velocity 	vout/c ∼ √

σ ∼ 3.3 ex-
pected for the bulk outflow from relativistic σ = 10 reconnection
(Lyubarsky 2005).8

In Fig. 3, we demonstrate that the predictions of Lyubarsky
(2005)’s theory, as regard to the inflow and outflow speeds in

8 We remind that Lyubarsky (2005)’s predictions on the bulk outflow speed
from relativistic reconnection are based on a steady-state model of the
reconnection layer, i.e. neglecting its fragmentation into plasmoids.
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Figure 3. Inflow and outflow speeds as a function of time in the lab frame,
for three values of the magnetization σ , as indicated in the legend of the top
panel (σ = 3 in blue, σ = 10 and L � 518 r0,hot in green, and σ = 50 in red).
Top panel: inflow bulk speed in units of the speed of light, averaged over
a region of width |y| � 0.5 L across the reconnection layer (but our results
are nearly independent of this choice). The steady-state inflow speed, after
the two reconnection fronts have exited the computational domain (i.e. at
ctlab/L � 1.5), has a weak dependence on the magnetization. Bottom panel:
maximum outflow four-velocity, in units of the speed of light. For each value
of the magnetization, we take the slice at y = 0 and plot the fifth largest
value of the ouflow four-velocity (but we have tested that the variation from
the first largest to the 10th largest is minimal). The resulting peak outflow
four-velocity in in excellent agreement with the prediction 	 |vout|/c ∼ √

σ

by Lyubarsky (2005), indicated by the dotted lines.

relativistic reconnection, hold for the whole range of magnetizations
σ = 3–50 explored in our work. In the top panel, we present the in-
flow bulk speed in units of the speed of light, averaged over a region
of width |y| � 0.5 L along the y-direction and extending along the
whole current sheet in the x-direction. The top panel in Fig. 3 shows
that, after the system reaches a steady state (i.e. at ctlab/L � 1.5),
the inflow speed (or equivalently, the reconnection rate) has only a
weak dependence on the magnetization, varying from |vin|/c ∼ 0.10
for σ = 3 up to |vin|/c ∼ 0.18 for σ = 50. The weak dependence
of the inflow speed on the magnetization is consistent with earlier
works (SS14; Guo et al. 2015) and with the analytical model of
Lyubarsky (2005), that predicted that the reconnection rate should
saturate in the limit σ � 1 at a value around ∼0.1 c. The inflow
speeds presented in Fig. 3 are obtained by averaging over a macro-
scopic region of size 2 L × L, and are therefore representative of the
mean dissipation rate of the magnetic field. The value of the inflow
speed can be much larger in the vicinity of X-points, approaching
the speed of light (e.g. Liu et al. 2015), but such large values only
extend over microscopic skin-depth scales.

The inflow speeds presented in the top panel of Fig. 3 are about
a factor of 2 larger than we reported in SS14, just due to a different
choice of the area where we average the inflow rate. In SS14, recon-
nection proceeded from numerical noise, resulting in the formation
of a number of primary plasmoids. The inflow speed nearly van-
ished at the location of the primary plasmoids, whereas in between
primary plasmoids, it resembled the values presented in Fig. 3. At
any given time, about half of the current sheet length was occupied
by primary plasmoids. By averaging over the entire domain (and
not just over the active regions in between primary plasmoids), we
then obtained a value that is indeed expected to be half of what we
quote here.

The linear increase in the inflow speed at early times (ctlab/L <

1.5) is simply driven by the fact that the distance between the two
reconnection fronts is progressively increasing, as they move from
the centre towards the boundaries of the box. As we have explained
above, it is only in the region in between the two fronts that the
reconnection process is active. At all times, the inflow velocity in
between the two fronts is the same as the steady-state value that we
read from the top panel of Fig. 3 at late times (ctlab/L � 1.5). Ahead
of the two reconnection fronts, the plasma is still at rest. One would
then expect that the reconnection rate presented in the top panel of
Fig. 3, which is averaged over the whole extent of the current sheet,
would increase linearly from zero up to the steady-state value, as the
two fronts move outward at nearly the Alfvén speed. The time for
the two fronts to propagate to the boundaries of the box is ∼L/vA,
which explains why it takes slightly longer for σ = 3, where vA �
0.85, than for σ = 10 and 50, where the Alfvén speed is nearly the
speed of light.

While the inflow speed in relativistic reconnection is non-
relativistic, the outflowing plasma can reach ultra-relativistic ve-
locities. This is illustrated in the bottom panel of Fig. 3, where we
present the maximal value of the outflow four-velocity 	 |vout|/c as
a function of time.9 For all the magnetizations we explore, the peak
outflow four-velocity is in excellent agreement with the prediction
	 |vout|/c ∼ √

σ by Lyubarsky (2005), which is indicated by the
dotted lines (the colour coding is described in the legend in the top
panel). Or equivalently, the outflow velocity approaches the Alfvén
speed vA/c = √

σ/(σ + 1). This conclusion also holds in the case
of periodic boundary conditions, as long as the computational box
is sufficiently large (as argued in SS14).

The box length needed to capture the asymptotic value of
	 |vout|/c can be estimated from the early increase in the curves
in the bottom panel of Fig. 3. This shows that the outflow accel-
erates to the terminal speed on a time-scale that is shorter than
the Alfvén crossing time of the box, yet not much shorter. For the
most extreme magnetization of σ = 50 (red curve), the acceler-
ation time is ∼0.4 L/c. Since the overall box length in this case
is 2L ∼ 1000 r0,hot, we argue that a simulation, whose x extent is
smaller than ∼400 r0,hot, would not be able to capture the terminal
outflow speed of σ = 50 reconnection. While this estimate is appro-
priate for the case of absorbing (or outflow) boundary conditions,
in the case of periodic boundaries, the same requirement should
be imposed over the distance in between two neighbouring primary
islands, resulting in a much more constraining condition on the over-
all box length (which typically includes many primary plasmoids).
This might explain why earlier works (Cerutti et al. 2013; Guo et al.
2015; Kagan et al. 2016) claimed that the outflow speed from rel-
ativistic reconnection seems systematically lower than Lyubarsky
(2005)’s prediction. With a sufficiently large domain, we are able to
demonstrate that the outflow four-velocity from relativistic recon-
nection can be as fast as ∼√

σ c, in full agreement with Lyubarsky
(2005)’s model.

4 T H E P L A S M O I D C H A I N

In this section, we focus on the chain of secondary plasmoids that are
continuously generated in the reconnection layer as a result of the
secondary tearing instability (Uzdensky et al. 2010). As a function of

9 The maximal value plotted in Fig. 3 is defined as the fifth largest value of
	 |vout|/c computed along the 1D slice at y = 0, but we have tested that the
variation from the first largest to the 10th largest is minimal.
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Figure 4. Position–time diagram of magnetic islands, for three values of the magnetization, as indicated at the top (σ = 3 in the left-hand panel, σ = 10 and
L/ r0,hot � 518 in the middle panel, and σ = 50 in the right-hand panel). The islands start from the centre of the layer (x � 0), where reconnection is initially
triggered, and while propagating outwards, they grow in size (as indicated by the colours, the plasmoid width w is in units of the system length L) and they
accelerate, approaching the speed of light (which would correspond to lines oriented at 45◦ in the plots). Their tracks terminate when they either leave the
reconnection layer at |x| = L or they merge with a bigger plasmoid, as it frequently happens at large magnetizations. For the sake of clarity, we only plot the
evolutionary tracks of plasmoids whose lifetime (in the lab frame) is longer than � 0.35L/c.

their size, in Section 4.1, we quantify their fluid properties (averaged
over the plasmoid volume), and in Section 4.2, the spectrum and
anisotropy of the particle population that they contain. We also
follow individual plasmoids over time, quantifying their growth (in
Section 4.3) and acceleration (in Section 4.4) as they propagate
from the centre towards the boundaries.

Fig. 4 presents the position–time diagram of secondary plas-
moids, for the three values of magnetization that we explore in this
work (σ = 3 on the left, σ = 10 in the middle and σ = 50 on
the right). The various tracks follow the trajectories of individual
plasmoids (more precisely, of their centre), as they move along the
reconnection layer. The plasmoid width w in the direction trans-
verse to the current sheet is indicated by the colour scale on the
right (red and yellow for the largest plasmoids). For the sake of
clarity, we only plot the evolutionary tracks of plasmoids whose
lifetime (in the lab frame) is longer than � 0.35L/c.

For all the values of magnetization we explore, we see that the
vicinity of the primary X-point, where reconnection is initially trig-
gered, is always a preferred region for the formation of long-lived
secondary plasmoids. They form around the centre with an initial
width of a few plasma skin depths, and as they propagate outwards,
they grow in size, as indicated by the colours (e.g. see the plasmoid
that for σ = 3 starts in the centre at ctlab/L ∼ 0.4 and exits to the left
at ctlab/L ∼ 2.7). In general, the longer they spend around the central
region, the bigger they grow. Eventually, the tension force of the
magnetic field accelerates them outwards, with the fastest plasmoids
approaching the Alfvén speed. Since for all the cases explored in
this work, the Alfvén speed is close to the speed of light (with the
only marginal exception of σ = 3, that gives vA � 0.85 c), plasmoids
moving at the Alfvén speed would have position—time tracks ori-
ented at ±45◦ in Fig. 4, as indeed is observed for most of the small

plasmoids (as we show in Section 4.4, at a given distance from the
centre, larger plasmoids always move slower than smaller ones).

Even though most of the plasmoids shown in Fig. 4 start from
the central region, copious production of secondary islands occurs
everywhere in the reconnection layer (see also Fig. 2). For example,
the relatively large plasmoid that exits to the left at ctlab/L ∼ 2.7 for
σ = 3 is preceded by a series of smaller plasmoids, all generated at
a distance of � 0.2 L from the centre, and in some cases even further
out. Plasmoids generated close to the boundaries exit the domain
before reaching the threshold lifespan of � 0.35L/c adopted in
Fig. 4, so they do not appear in the figure.

The plasmoid trajectories in Fig. 4 terminate when either the
plasmoid exits one of the two boundaries or it merges with a bigger
plasmoid. For example, the small plasmoids that, in the left-hand
panel, are trailing the large plasmoid mentioned above will termi-
nate their life by merging with it. It follows that smaller plasmoids
typically have shorter lives, since they will eventually encounter a
bigger plasmoid moving ahead of them (which propagates slower)
and merge with it. In addition to such minor mergers (indicated as
‘minor’ because of the size difference of the two plasmoids), major
mergers between plasmoids of comparable widths can also occur,
typically close to the centre. This is seen in the case of σ = 50
(right-hand panel) at ctlab/L ∼ 3.3, where two large islands merge
at x � −0.2 L. Fig. 4 shows that, in the course of the merger, the
width of the two islands shrinks (see the point where the two tracks
meet). This is just a consequence of our criterion for the identifica-
tion of the plasmoid contour, that relies on the maximal value of the
vector potential Az among the two neighbouring X-points (each one
being a local minimum of Az). In a merger, the X-point in between
the two islands will have the largest value of Az, and it will set the
plasmoid contours. As the two plasmoids approach in the course
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of the merger, the value of Az in the X-point will increase, so the
two contours will shrink more and more, resulting in an apparent
decrease of the width of the two islands. Soon after the merger, the
surviving plasmoid (the larger of the two) recovers its proper width.

Mergers are most frequent at higher magnetizations. The total
electric current in a plasmoid of a given size scales as ∝ √

σw,10

which results in a stronger interaction among neighbouring plas-
moids for higher magnetizations, and a consequent increase in the
merger rate. Indeed, while in the case of σ = 3 (left-hand panel),
mergers predominantly involve smaller (so, faster) plasmoids catch-
ing up with larger (so, slower) islands, the situation is much more
diverse in the high-magnetization case σ = 50 (right-hand panel).
There, it is quite frequent that large plasmoids merge both with trail-
ing plasmoids (for the large plasmoid exiting on the left at ctlab/L
∼ 2.1, see the merger at x/L ∼ −0.7 and ctlab/L ∼ 1.9) and with
leading plasmoids that are pulled back by the attractive force of the
large plasmoid (for the same plasmoid, see the merger at x/L ∼
−0.5 and ctlab/L ∼ 1.4). In the latter case, the leading plasmoid that
is pulled back might even reverse its velocity along the layer.

The high merger rate in high-σ flows has two main consequences.
First, the spherical waves emanating from each merger event (e.g.
see Fig. 2d) will seed fluctuations in the current sheet, triggering
the formation of additional secondary plasmoids. In fact, we find
that, for the same timespan and domain size, high-σ flows result in
a much larger number of secondary islands. Secondly, in the high-
magnetization case, small plasmoids leading a large island will be
decelerated by its attraction (in the extreme limit, to the point of
being pulled back and merge with the large plasmoid). This will
tend to inhibit their acceleration up to the Alfvén speed. As we
show in Section 4.4, for σ = 50, a smaller number of plasmoids
will be able to approach the expected terminal four-velocity

√
σ c,

as compared to lower magnetizations.
Finally, Fig. 4 suggests that large plasmoids are rarer than smaller

plasmoids. At any given time, several small plasmoids can co-exist
in the reconnection layer, but only a few large plasmoids. In Section
4.1, we will quantify the plasmoid size distribution. Interestingly, in
the right-hand panel of Fig. 4, we notice a clear signature of quasi-
periodicity in the ejection time of relatively large plasmoids (with
final width between 0.05 L and 0.1 L). Looking at the plasmoids
escaping on the right, we detect an island leaving at ctlab/L ∼ 1.9,
followed by others of similar size at ctlab/L ∼ 2.3, 2.6, 3.1 and 3.3.
In Section 4.3, we demonstrate that such a quasi-periodicity also
holds for the largest plasmoids generated in the layer, with width
∼0.2 L. By following a system with σ = 10 and L/ r0,hot � 127 up
to ctlab/L ∼ 14, we will show that their typical recurrence time is
∼2.5 L/c.

4.1 Plasmoid fluid properties

In Fig. 5, we analyse a number of fluid properties of secondary
plasmoids, averaged over the plasmoid volume. We investigate how
the plasmoid properties depend on the width w (on the horizon-
tal axis, in units of L) and on the flow magnetization σ (with
σ = 3 in the left-hand column, σ = 10 in the middle column
and σ = 50 in the right-hand column). Each panel in Fig. 5 is a
2D histogram indicating the number of plasmoids with a given fluid
property (for example, a given value of the rest-frame density) and
a given width, normalized to the overall number of magnetic islands

10 Here, we have assumed that the magnetic field at the plasmoid boundary
is always equal to the initial B0.

Nisl. All of the plasmoid properties investigated in Fig. 5 refer to
comoving quantities. From quantities measured in the simulation
frame, the corresponding comoving values can be easily obtained
via Lorentz transformations, since we can measure the velocity of
each plasmoid (and consequently, its bulk Lorentz factor 	). We
remark again that, while earlier works focused on the structure of
primary plasmoids (Nalewajko et al. 2015), that are necessarily af-
fected by the prescribed setup of the initial Harris sheet, here we
study secondary plasmoids, whose properties only depend on the
flow magnetization.

The first row of Fig. 5 shows that the plasmoids are quasi-
spherical in their rest frame, with a ratio of comoving length w‖ to
width w that lies around ∼1.5 (as indicated by the dotted white lines
in the plot), irrespective of the magnetization σ . The tendency for
sphericity is even more pronounced when the plasmoids approach
the terminal four-velocity ∼√

σ c. We have also verified that the
plasmoid area is well approximated by πw‖w/4, as expected for an
ellipse with major axis w‖ and minor axis w.

The second row of panels shows dependence on w and σ of
the average comoving density n = nlab/	, in units of the particle
number density n0 far from the current sheet. For each value of the
magnetization, the comoving number density appears to be nearly
independent of the plasmoid size. The density has a weak depen-
dence on magnetization, varying from n/n0 ∼ 3 for σ = 3 up to n/n0

∼ 5 for σ = 50. This is in apparent disagreement with Lyubarsky
(2005)’s theory, predicting that the rest-frame density in the fast out-
flows from relativistic reconnection should scale as n/n0 ∼ 2

√
σ (as

indicated by the dotted white lines). However, Lyubarsky (2005)’s
scalings only apply to a fully accelerated smooth outflow (i.e. mov-
ing with the Alfvén speed). As we will see in Section 4.4, while
most of the plasmoids are successfully accelerated to the Alfvén
speed for σ = 3 (where, in fact, the expected scaling is satisfied),
only few plasmoids can reach the terminal four-velocity of ∼√

σ c

for σ = 50.
We now present a simple argument describing why the scaling

n/n0 ∝ √
σ is only to be expected for the fastest moving plasmoids.

Pressure balance across the current sheet, between the pressure of
hot particles in the islands and the magnetic pressure of the cold in-
flow, dictates that the mean plasmoid internal energy fraction should
scale as εkin ∼ σ (see also the fifth row of panels in Fig. 5). Here, εkin

= (〈γ 〉 − 1)n/n0, where 〈γ 〉 is the mean comoving particle Lorentz
factor. In addition, conservation of the energy per particle requires
that σ ∼ 	εkin/(n/n0), where 	 is the plasmoid bulk Lorentz factor.
In reality, the mean energy per particle is likely to be smaller than
∼σ during the acceleration phase, since some ‘potential energy’ is
still available in the field line tension, which will only be released
when the plasmoid reaches the expected terminal velocity. It fol-
lows that we would generally expect 	εkin/(n/n0) � σ . Combined
with the pressure balance εkin ∼ σ , this implies that n/n0 � 	,
with the equality being realized only for plasmoids moving at the
Alfvén speed, or equivalently with 	 ∼ √

σ .11 The condition n/n0

� 	 is realized for all the plasmoids of our simulations, regardless
of the flow magnetization. In particular, we find that the densest
plasmoids are typically the fastest ones, fully accelerated up to the
Alfvén speed.

The third row of panels in Fig. 5 illustrates the dependence on
plasmoid size and magnetization of the magnetic flux � (more
specifically, of �/B0w, since the flux is expected to depend linearly

11 In this whole argument, we have implicitly assumed that σ � 1 for the
sake of simplicity.
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Figure 5. 2D histograms of various plasmoid properties as a function of the width w (in units of L), for three values of the magnetization, as indicated at the
top (σ = 3 on the left, σ = 10 in the middle, and σ = 50 on the right). In each bin, the number of plasmoids is normalized to the total number of magnetic
islands Nisl (see the colour bars on the right). The green solid lines indicate the median values. From top to bottom row, we show: (a)–(c) the ratio of the length
w‖ (measured in the comoving frame) to the width w, which is around ∼1.5 regardless of the magnetization (as indicated by the dotted white lines); (d)–(f) the
comoving density n averaged over the plasmoid area, in units of the density n0 far from the current sheet, with the scaling n/n0 ∼ 2

√
σ predicted by Lyubarsky

(2005) indicated with the dotted white lines; (g)–(i) the plasmoid flux �, which approaches the nominal value B0w at large sizes (see the dotted white lines);
(j)–(l) the magnetic energy fraction εB = B2/8πn0 mc2 averaged over the plasmoid area, where B is measured in the plasmoid comoving frame; (m)–(o) the
internal energy fraction εkin = (〈γ 〉 − 1) n/n0 averaged over the plasmoid area, where 〈γ 〉 is the mean particle Lorentz factor in the plasmoid frame; both
εB and εkin scale as ∝ σ , as indicated with the dotted white lines; (p)–(r) the equipartition parameter χeq as defined in equation (5), which lies around ∼0.6
regardless of the magnetization, as indicated by the dotted white lines; (s–u) the Larmor radius r0y,cut = py,cutc/eB0 of the positrons at the cut-off momentum
py,cut as defined in equation (3), in units of the plasmoid width; this lies around ∼0.2 regardless of the magnetization, as indicated by the dotted white lines.
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Figure 6. Plasmoid width (left) and flux (right) cumulatives distribution functions, for three values of the magnetization, as indicated in the legend (σ = 3 in
blue, σ = 10 in green and σ = 50 in red). The width is normalized to the system length L and the flux to B0L, while the histogram (with Poissonian error bars) is
normalized to the overall number of plasmoids Nisl. The corresponding differential distributions can be obtained as f(w) = dN(w)/dw and f(�) = dN(�)/d�.
The predictions N(w) ∝ w−1 by Uzdensky et al. (2010) and Loureiro et al. (2012) and N(w) ∝ const by Huang & Bhattacharjee (2012) (and similarly for �)
are plotted as dashed and dotted black lines, respectively.

on the plasmoid size). The magnetic flux in a given plasmoid is
defined as the difference between the vector potential Az at the plas-
moid O-point and at its contour (which is an equipotential surface).
Since Az is Lorentz invariant, the plasmoid flux is also Lorentz in-
variant. As expected, we find that at large sizes, �/B0w approaches
a constant of order unity (as indicated by the dotted white lines). In
contrast, at small sizes (typically, w/L � 0.02), the plasmoid flux
is systematically lower than the expected value ∼B0w. As we show
below, the same trend is observed for the mean magnetic energy
density of small plasmoids.

A similar deficit of magnetic flux at small sizes has been ob-
served in MHD simulations of non-relativistic plasmoid-dominated
reconnection (fig. 4 in Loureiro et al. 2012). There, it was at-
tributed to the effect of plasmoid mergers. They envisioned the
coalescence as a gradual stripping of the outer layers of the smaller
plasmoid, so the magnetic flux in a semidigested plasmoid would be
� ∼ B0w

2/w0, where w0 is the plasmoid width at the beginning
of the merger. Here, we find that the lack of magnetic flux in small
plasmoids holds for both merging and non-merging plasmoids. As
we have anticipated in Section 3, the inflow region around a rela-
tively large plasmoid generally displays a lower magnetic content
(so, B � B0), as a result of the field lines piling up on the outskirts
of the large plasmoid. A small plasmoid lying in the current sheet
in the vicinity of a large plasmoid will have a surface magnetic field
B � B0, as we further demonstrate in Appendix A. More precisely,
the surface magnetic field is weaker for smaller plasmoids. This
justifies the trend in magnetic flux in the third row of Fig. 5.

We have also verified that the transition from �/B0w � 1 to
�/B0w ∼ 1 always occurs at the same value of w/L, regardless of
the system length (i.e. for different choices of L/ r0,hot). In fact, as
we demonstrate in Section 5, the largest islands always reach a width
w/L ∼ 0.1–0.2, regardless of L/ r0,hot. At their surface, the magnetic
field is comparable to the field B0 far from the current sheet. Since
the largest islands are controlling the structure of magnetic field lines
near the current sheet (magnetic field lines have to wrap around the
biggest islands), one would expect that small islands whose width
is a fixed fraction of the size of the largest islands will have a similar
suppression of the magnetic flux, independent of the system length
L/ r0,hot. This is indeed what we find.

From the 2D histogram of size and magnetic flux in the third
row of Fig. 5, one can find the distribution of plasmoid sizes and

magnetic fluxes, by projecting on to the two axes. Our results are
shown in Fig. 6, where we present the cumulative distribution of
plasmoid sizes (left-hand panel, with the plasmoid width in units of
the system length L) and fluxes (right-hand panel, with the flux in
units of B0L). In the plots, the dashed lines indicate the prediction
N(w) ∝ w−1 by Uzdensky et al. (2010) (and similarly for �),
whereas the dotted lines indicate the scaling N ∝ const suggested
by Huang & Bhattacharjee (2012). The main difference among the
two models lies in the assumption on the relative velocity between
merging plasmoids, which Uzdensky et al. (2010) took to be always
∼vA, whereas Huang & Bhattacharjee (2012) allowed for a more
detailed dependence on the plasmoid size.

Fig. 6 suggests that the plasmoid distributions (for both width
and magnetic flux) are nearly the same for the three values of
magnetization we investigate in this work (σ = 3 in blue, 10 in green
and 50 in red). In addition, our findings are fully consistent with
the results of MHD simulations of non-relativistic and relativistic
reconnection (Fermo et al. 2010; Huang & Bhattacharjee 2012;
Loureiro et al. 2012; Takamoto 2013). The distributions show a hard
slope at small sizes and fluxes (at w/L � 0.01 and �/B0L � 0.01),
resembling the N ∝ const prediction of Huang & Bhattacharjee
(2012). This is clearer in the magnetic flux distribution than in
the size distribution. Ideally, one would need to extend our study to
even larger system lengths in order to attain a broader dynamic range
in w and �, and reliably probe the distributions of small islands
(for comparison, the MHD study by Huang & Bhattacharjee 2012
extended over six orders of magnitude in �). For the magnetic flux,
the break at �/B0L ∼ 0.01 likely results from the fact that small
islands (with w/L � 0.02) display a deficit of magnetic flux as
compared to the expected value of � ∼ B0w, as shown in the third
row of Fig. 5.

At larger sizes and fluxes (w/L � 0.01 and �/B0L � 0.01), the
distributions show a steeper decay, approximately as N(w) ∝ w−1

and N(�) ∝ �−1, which is consistent with the model of Uzdensky
et al. (2010). The size distribution cuts off at w/L ∼ 0.2, whereas
the flux distribution terminates at �/B0L ∼ 0.2. We find that the
reconnection layer might occasionally result in the formation of
extraordinarily large plasmoids with w/L ∼ 0.3–0.4, but their oc-
currence is extremely rare (not more than once every few tens of
L/c). Overall, we conclude that the plasmoids routinely produced
in the reconnection layer reach at most a width of wmax/L ∼ 0.2.

MNRAS 462, 48–74 (2016)



60 L. Sironi, D. Giannios and M. Petropoulou

This is in good agreement with the findings of non-relativistic MHD
simulations, where the largest plasmoids (defined as ‘monster plas-
moids’ by Uzdensky et al. 2010) reached a width of ∼0.2 L.12

We now proceed to describe the fourth, fifth and sixth rows in
Fig. 5. They all illustrate the magnetic and kinetic energy con-
tent of plasmoids, as a function of size and magnetization. The
comoving magnetic energy fraction in the fourth row of pan-
els is computed as εB = εB, lab − εE, lab, where the magnetic
energy in the comoving frame is B2/8π = (B2

lab − E2
lab)/8π, as-

suming that the electric field vanishes in the plasmoid comov-
ing frame. Alternatively, by defining ε‖,lab = B2

x,lab/8πn0mc2 and
ε⊥,lab = (B2

y,lab + B2
z,lab)/8πn0mc2, the comoving magnetic energy

fraction equals εB = ε‖,lab + ε⊥,lab/	2. We have verified that the
two expressions yield nearly identical results. The comoving mag-
netic energy fraction scales in the large plasmoids as εB ∼ σ , as
indicated by the dotted white lines and expected from pressure equi-
librium. If the magnetic field in the plasmoids were to be the same
as the field in the inflow, we would expect εB ∼ σ/2. It follows
that the comoving magnetic field in the large plasmoids is on aver-
age ∼√

2 B0. The apparent deficit in magnetic energy in the small
plasmoids is directly related to the lack of magnetic flux discussed
above, and it ultimately results from the decrease of magnetic field
strength in the vicinity of the current sheet, as we describe in Ap-
pendix A. So, small plasmoids are still in pressure equilibrium with
their surroundings, but the mean magnetic energy (both inside and
outside the small plasmoids) is smaller than for larger plasmoids.

We have also measured the ratio of the ‘parallel’ and ‘perpen-
dicular’ comoving magnetic energies, ε‖,lab/(ε⊥,lab/	2) (not shown
in Fig. 5). We have verified that it is remarkably constant with re-
spect to island size (in particular, it does not show the deficit at
small islands of the overall magnetic energy fraction), and it is
slightly larger than unity. This is in agreement with the fact that
the plasmoids are nearly spherical, just slightly elongated along the
direction parallel to the outflow (see the first row in Fig. 5).

The fifth row in Fig. 5 illustrates the internal energy content of
secondary magnetic islands. The kinetic energy fraction in the plas-
moid comoving frame εkin is computed from quantities measured
in the simulation frame as

εkin = εkin,lab − (	 − 1)nlab/n0

γ̂ 	2 − (γ̂ − 1)
, (4)

where we have assumed that the particle distribution in the plasmoid
comoving frame is isotropic with adiabatic index γ̂ . The adiabatic
index is computed iteratively using the Synge (1957)’s equation of
state, and in all the cases, we find that γ̂ ∼ 4/3. The assumption of
an isotropic particle population is well realized in large plasmoids,
as we demonstrate in Section 4.2.

In analogy to the magnetic energy fraction, the kinetic energy
fraction scales as ∼σ , as indicated by the dotted white lines and
expected from pressure equilibrium. For small islands, we notice
the usual deficit, although it is much less dramatic for the kinetic
energy fraction than for the magnetic energy fraction, for reasons
that will be clarified in Appendix A. For large islands, the kinetic
energy fraction is slightly larger than the magnetic energy fraction
(compare the fourth and fifth rows in Fig. 5). This suggests that
secondary plasmoids display a slight dominance of particle energy
over magnetic energy.

12 Note that in Loureiro et al. (2012), the overall system length was L,
whereas it is 2L in our case. Also, they defined w to be the plasmoid half-
width, whereas it is the full width in our work.

This is further illustrated in the sixth row of Fig. 5, which shows
the equipartition parameter χ eq. Following SPG15, this is defined
as

χeq =
∫

εkin
εkin+εB

εkin dV∫
εkin dV

, (5)

where the integral is extended over the volume of the plasmoid, εkin

is the particle kinetic energy density (as measured in the plasmoid
rest frame) and εB is the comoving magnetic energy density. In the
case of a proton–electron plasma, εkin should only include the kinetic
energy of the radiating species, i.e. of the electrons. As appropriate
for the fast cooling regime (see SPG15), the ratio εkin/(εkin + εB)
in equation (5) is weighted with the kinetic energy.

In the case of equipartition between kinetic and magnetic energy
densities, we would expect χ eq ∼ 0.5. The sixth row in Fig. 5
shows that, regardless of the magnetization or the plasmoid size,
secondary islands are indeed close to equipartition, with only a slight
dominance of the particle kinetic component, leading to χ eq ∼ 0.6
(as indicated by the dotted white lines). This is consistent with the
results in SPG15, where the equipartition parameter was measured
by integrating over the entire plasmoid chain (rather than isolating
individual plasmoids, as we are doing here). Finally, we remark that
the tendency for χ eq → 1 at small island sizes (most significantly for
σ = 3, left-hand panel) is just related to the corresponding deficit of
magnetic energy that we have discussed above, and that we explain
in Appendix A.

We comment on the bottom-most panel in Fig. 5 in the next
subsection, where we describe the particle spectrum and anisotropy
in secondary plasmoids.

4.2 Particle spectrum and anisotropy in plasmoids

Fig. 7 describes the properties of the population of particles belong-
ing to individual plasmoids, as a function of the plasmoid size and
of the flow magnetization (with σ = 3 in the left-hand column, σ

= 10 in the middle column and σ = 50 in the right-hand column).
In the top row, we plot the Larmor radius r0i,cut = pi,cutc/eB0

of the positrons at the comoving cut-off momentum pi,cut along
different directions (i = x in green, i = y in blue, i = +z in solid
red, i = −z in dotted red) or the Larmor radius r0,cut = pcutc/eB0 of
the positrons at the total comoving cut-off momentum, regardless
of the direction (black solid lines). The definition of the cut-off
momentum is in equation (3), and the Larmor radius is normalized
to the plasmoid width w. Each filled circle in the top row of Fig. 7
represents the mean value among the plasmoids whose width (as
indicated on the horizontal axis, in units of L) falls in that range.

The Larmor radius r0y,cut = py,cutc/eB0 (blue lines) measured
with the y component of the momentum transverse to the current
sheet (which is Lorentz invariant) scales almost linearly with the
plasmoid width w (equivalently, r0y,cut/w is a constant). This is also
illustrated in the bottom-most row in Fig. 5, where we present the
same ratio r0y,cut/w for all the plasmoids in our simulations, as a 2D
histogram. Remarkably, the ratio r0y,cut/w is also nearly insensitive
to the magnetization, and always around ∼0.2 (as indicated by the
dotted white lines in Fig. 5), with only a slight tendency for a lower
value at σ = 3 (see the top-left panel in Fig. 7).

We argue that the ratio r0y,cut/w is an excellent indicator of the
confinement capabilities of secondary plasmoids, i.e. of the highest
energy particles that can stay trapped in a plasmoid of width w. In
fact, the particles inflowing into the reconnection layer are initially
accelerated by the reconnection electric field at the X-points (either
the primary X-point or the series of secondary X-points in between

MNRAS 462, 48–74 (2016)



Plasmoids in relativistic reconnection 61

Figure 7. Spectrum and anisotropy as a function of the plasmoid width, for three values of the magnetization, as indicated at the top (σ = 3 in the left-hand
column, σ = 10 in the middle column, and σ = 50 in the right-hand column). Top row: in bins of the plasmoid size w normalized to L, we plot the Larmor
radius r0i,cut = pi,cutc/eB0 of the positrons at the comoving cut-off momentum pi,cut (i = x in green, i = y in blue, i = +z in solid red, i = −z in dotted red)
or the Larmor radius r0,cut = pcutc/eB0 of the positrons at the total comoving cut-off momentum, regardless of the direction (black solid lines). Each data
point represents the mean value among the plasmoids whose width falls in that range. While small plasmoids preserve a significant anisotropy in the direction
of the accelerating electric field, large plasmoids have nearly isotropic particle distributions. Bottom row: momentum spectra of py, with the different colours
corresponding to the six bins in width indicated in the top panels (from blue for small w, to red for large w). At large plasmoid widths, the spectrum approaches
a power law, with slope s ∼ 3 for σ = 3, s ∼ 2 for σ = 10 and s ∼ 1.5 for σ = 50, as indicated by the dashed lines.

secondary plasmoids), as described by Zenitani & Hoshino (2001)
and SS14. At X-points, positrons are accelerated along the +z-
direction and electrons in the opposite direction. Then, the tension
force of the reconnected magnetic field advects the particles away
from the X-point along the x-direction of the outflow, where they
will be trapped in magnetic islands. So, before entering a magnetic
island, the particle motion preferentially lies in the x–z plane. It
follows that the outflowing particles can attain an appreciable com-
ponent of momentum along the y-direction only by interaction with
the toroidal magnetic loops of the islands. Larger islands will be
able to scatter along y higher energy particles, and then to keep them
confined within the island contour.

The value r0y,cut/w ∼ 0.2 can indeed be understood with a sim-
ple argument, based on particle confinement. A particle will stay
trapped in a given plasmoid if its full Larmor circle is smaller than
the island half-width (the Bx magnetic field switches sign on the
two sides of the island, so the comparison is with the plasmoid
half-width, rather than its full width). The most constraining condi-
tion will apply to the particles at the cut-off momentum py,cut, that
need to have 2 r0y,cut � w/2, or equivalently r0y,cut/w � 0.25. This
is remarkably close to the results shown by the blue lines in the top
row of Fig. 7. The fact that the ratio r0y,cut/w is slightly smaller for
σ = 3 than for higher magnetizations is probably due to our defi-
nition of pi,cut in equation (3), which overestimates the exponential
cutoff of the momentum distribution by a factor of ncut − s (see

the discussion after equation 3). We always choose ncut = 6, but
the spectral slope s of the momentum distribution is a function of
the magnetization (as we explain below), with s ∼ 3 for σ = 3,
s ∼ 2 for σ = 10 and s ∼ 1.5 for σ = 50. So, our definition of
pi,cut overestimates the true cutoff momentum by a factor of ∼3 for
σ = 3 and ∼4 to 5 for higher magnetizations. So, if we were to
measure the Larmor radius with the true cut-off momentum, rather
than our proxy in equation (3), we would obtain that it is a con-
stant fraction of the plasmoid width, remarkably independent of the
magnetization.

As shown by the top row in Fig. 7, the ratio r0x,cut/w, with
the cut-off momentum px,cut measured in the plasmoid rest frame,
follows closely the ratio r0y,cut/w for all the values of magnetization
we explore. Thus, the ratio r0x,cut/w is also a good indicator of
the confinement capabilities of secondary plasmoids. The fact that
r0x,cut/w is slightly larger than r0y,cut/w for small islands (compare
the green and blue lines in the top row of Fig. 7) is probably related
to the fact that the plasmoid length is typically larger than its width
by a factor of ∼1.5 (see the top row in Fig. 5), so that particles with
x momentum moderately higher than the y momentum can still stay
confined in a plasmoid of given w.

While the positron cut-off momentum along the −z-direction
follows the same trend as py,cut and px,cut (compare the dotted red
line with the blue and green lines), the positron momentum along
the +z-direction of the reconnection electric field shows a distinct
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behaviour (solid red line in the top panels of Fig. 7). Small islands
are highly anisotropic, with p+z,cut appreciably larger than py,cut

and px,cut (see also Cerutti et al. 2012, 2013; Kagan et al. 2016).
As a small (and so, fast) island moves along the current sheet, it
might stay in phase for a significant time with high-energy particles
accelerated at a neighbouring X-point, that are now propagating
along the current sheet. This results in a value of the positron cut-
off momentum p+z,cut (along the accelerating electric field) much
larger than p−z,cut. For electrons, the opposite anisotropy is ob-
served. The sign of the z anisotropy seen in the top row of Fig. 7 is
consistent with the sign of the electric field at X-points, suggesting
that direct acceleration by the reconnection electric field plays an
important role in the early stages of particle acceleration Zenitani
& Hoshino 2001; SS14; Nalewajko et al. 2015).13 In contrast, the
antireconnection electric field at the interface between merging is-
lands is oriented along the −z-direction, and it would result in an
anisotropy opposite to what is observed in Fig. 7. This suggests
that the antireconnection electric field does not play a major role
for the acceleration of the particles trapped in small islands. The
fact that the z anisotropy in small islands is preferentially induced
by the accelerating electric field at X-points is also revealed by the
2D pattern of the z anisotropy (not shown), whose strongest signal
appears in the vicinity of the current sheet plane (i.e. for |y| � w).

Large islands are nearly isotropic, for all the magnetizations we
have explored. As we demonstrate in Section 5, the transition be-
tween small anisotropic islands and large isotropic islands occurs at
the same plasma scale, i.e. at a size that is a fixed multiple of r0,hot,
for different values of the overall system length L/ r0,hot. It follows
that, for a realistic astrophysical system with L/ r0,hot � 1, all but
the smallest islands will be fairly isotropic. Kinetic simulations in
small computational domains, due to the lack of a sufficient separa-
tion of scales between the plasma scales and the system size, might
have artificially overemphasized the degree of particle anisotropy
(Cerutti et al. 2012, 2013; Kagan et al. 2016), which is found to be
quite low in the big islands of our large-scale simulations.

This also explains why, for a fixed w/L, the z anisotropy is more
pronounced at higher magnetizations. As we have stated above, the
degree of anisotropy depends primarily on w/ r0,hot. Our domain
size for σ = 10 is twice as big (in units of r0,hot) than for σ = 50.
This explains why, at the same w/L, the case σ = 50 displays a
higher degree of z anisotropy than the case σ = 10.

The residual weak anisotropy in large islands is not related to the
reconnection electric field, but it is a consequence of the combined
effect of the ∇B-drift and the curvature drift, both pointing along
+z for positrons (and in the opposite direction for electrons). As a
result, the anisotropy is not localized in the vicinity of the y = 0
plane (as it is the case for small islands), but it is rather uniform
over the plasmoid surface (not shown). For a relativistic particle,
the magnitude of the drift speed scales proportionally to the ratio
between the particle Larmor radius and the island half-width (which
we take as a proxy for the scale length ∼B/|∇B| or the curvature
radius of field lines). This has two consequences. First, for a given
island, the anisotropy in z will be maximal for the highest energy
particles, since they will have a larger ratio of their Larmor radius
to the island size. This trend is indeed observed (but not shown).
Secondly, the black lines in the top panel of Fig. 7 show that the ratio
of the Larmor radius at the total cut-off momentum (regardless of

13 The electric field at the ends of two coalescing islands (i.e. outside of the
region in between the two islands) is also oriented along +z, but we do not
expect small islands to have suffered many mergers.

direction) and the island size is a decreasing function of w. So, the
drift speed at the total cut-off momentum will be larger for smaller
islands, which explains the trend in anisotropy seen in Fig. 7 (but
only at the high-w end, since we have argued that the anisotropy in
small islands has a different origin).

The highest energy particles in the largest islands cannot be pro-
duced via direct acceleration by the reconnection electric field at
X-points (Guo et al. 2014; SS14; Nalewajko et al. 2015). Werner
et al. (2016) found that spectrum of particles produced at X-points
should cut off at ∼4σ (see also fig. 5 in SS14). Given that our proxy
for the cut-off momentum is a factor of a few larger than the true
cutoff, it would correspond to a Larmor radius r0,cut ∼ 10 r0,hot, in-
dependently from the island size. In large islands, we argue that the
high-energy cutoff of the particle spectrum is populated by particles
accelerated during island mergers (Guo et al. 2014; SS14; Nalewa-
jko et al. 2015). Let us assume that the accelerating electric field
generated during island mergers is ∼0.2B0, where we have taken
the reconnection rate in between the two merging islands to be of
the order of ∼0.15 c and we have considered that the magnetic field
in the plasmoids is a factor of ∼1.5 larger than the field B0 in the
inflow (see the fourth row in Fig. 5). The potential energy available
over a characteristic acceleration length of the order of ∼w will be
∼0.2e B0w, which results in a Larmor radius r0,cut/w ∼ 0.2. This
simple argument shows that as a result of the merger of two large
islands, particles can be accelerated so that to maintain the ratio
r0,cut/w close to 0.2, as required by our findings.

By equating r0,cut ∼ 10 r0,hot (from X-point acceleration) with
r0,cut/w ∼ 0.2 (from acceleration in island mergers), we find a crit-
ical island size of w/ r0,hot ∼ 50. The highest energy particles in
islands with w/ r0,hot � 50 are primarily accelerated by the recon-
nection electric field at X-points (and we would expect a high degree
of z anisotropy), whereas acceleration in island mergers dominates
at w/ r0,hot � 50. In units of the system length L, we expect the
transition to occur at w/L ∼ 0.07 for σ = 3, at w/L ∼ 0.04 for σ

= 10 (for our fiducial case L/ r0,hot � 1130) and at w/L ∼ 0.1 for
σ = 50.

The bottom row in Fig. 7 shows how the momentum spectrum
pydN/dpy of positrons trapped in plasmoids depends on the plas-
moid size (different colours, from blue to red, correspond to the
bins in width indicated by the filled circles in the top panels). As
we demonstrate in Appendix B, most of the high-energy particles
reside in plasmoids (more precisely, in the largest plasmoids), so
the particle spectrum from plasmoids is an excellent proxy for the
spectrum integrated over the whole current sheet (i.e. including the
plasmoids as well as the regions in between islands).

The bottom row of Fig. 7 shows that the upper cutoff of the mo-
mentum spectrum scales linearly with the island size (the bins in
width are logarithmically spaced), in agreement with the blue line
in the top row. The spectral shape is a strong function of the island
size. Small islands have a momentum distribution that is nearly
thermal, since they cannot confine the highest energy particles ac-
celerated at X-points. An extended power-law distribution appears
in larger islands, since they can successfully trap all of the particles
accelerated at X-points. The power-law slope in the largest islands
is asymptoting to s ∼ 3 for σ = 3, s ∼ 2 for σ = 10 and s ∼ 1.5 for
σ = 50, as indicated by the dashed black lines in the three bottom
panels. Such slopes are consistent with the values quoted in SS14,
where the particle spectrum was integrated over the whole current
sheet. As we demonstrate in Appendix B, most of the high-energy
particles are contained within large islands. It follows that the spec-
trum measured in SS14, despite being integrated over the whole
layer, was actually mostly contributed by the few largest islands. It
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Figure 8. Growth of the plasmoid width as a function of the proper time, for three values of the magnetization, as indicated at the top (σ = 3 in the left-hand
panel, σ = 10 in the middle panel, and σ = 50 in the right-hand panel). For the sake of clarity, we only plot the evolutionary tracks of plasmoids whose lifetime
(in the lab frame) is longer than � 0.4L/c. Colours indicate the plasmoid four-velocity, relative to the terminal four-velocity ∼√

σ c predicted by Lyubarsky
(2005), as indicated by the colour bar (blue for fast plasmoids, yellow for slow plasmoids). It is apparent that most of the growth happens at slow velocities
(yellow or red tracks), and that in this phase, the plasmoid width increases linearly with time (with a coefficient of w/t � 0.06 c for σ = 3, � 0.08 c for
σ = 10 and � 0.1 c for σ = 50, as indicated by the dashed black lines). When the plasmoid speed approaches the Alfvén speed (or equivalently, its four-velocity
approaches

√
σ c), the plasmoid growth terminates, as schematically shown by the curved dotted lines with arrows.

is then quite natural to expect that the spectral slope of the largest
islands in Fig. 7 is comparable to the power-law index found in
SS14, for all the magnetizations we explore.

In the regime σ � 1, one expects that the mean energy per
particle in the plasmoids should scale as ∝ √

σ (Lyubarsky 2005).
Since small islands have nearly-thermal particle spectra, one would
expect the same scaling for the peak momentum, as long as it
exceeds unity. In fact, the peak of the blue curve in panel (e) lies
at py/mc ∼ 1.5, whereas it is close to py/mc ∼ 3 for the blue line
in panel (f). This is consistent with the predicted scaling ∝ √

σ .14

For a given magnetization, the mean energy per particle should be
independent of the plasmoid size, which explains why for larger
sizes, as the particle spectrum extends to higher momenta, the low-
energy cutoff also recedes to lower values. This is more pronounced
for σ = 10 and 50 than for σ = 3, since the power-law slope for σ

= 3 is so steep that most of the energy content is controlled by the
particles at the low-energy cutoff, which is then expected to stay
nearly the same as we vary the plasmoid width.

In the bottom row of Fig. 7, we have chosen to display the mo-
mentum spectrum along the direction transverse to the current sheet
to emphasize the confinement capabilities of plasmoids of different
sizes. We find that the comoving momentum spectrum pxdN/dpx

is nearly identical (not shown; yet, compare the blue and green
lines in the top row), and also similar to [pzdN/dpz]pz<0, i.e. the
z momentum spectrum of positrons having pz < 0 (or similarly, of
electrons having pz > 0). In contrast, the spectrum [pzdN/dpz]pz>0

of positrons having pz > 0 shows a harder spectral slope (even for
relatively small islands), resulting from particles accelerated by the
reconnection electric field at X-points (see Appendix B).

4.3 Plasmoid growth

By following individual plasmoids over time, we can quantify the
rate at which they grow. This is illustrated in Fig. 8, where we present

14 For σ = 3, the peak is at even lower values, but since it lies at non-
relativistic speeds, we would not necessarily expect that it scales as ∝ √

σ .

the temporal evolution of the plasmoid width (time is measured in
the plasmoid rest frame), for three values of the magnetization, as
indicated at the top (σ = 3 in the left-hand panel, σ = 10 in the
middle panel, and σ = 50 in the right-hand panel). For the sake
of clarity, we only plot the evolutionary tracks of plasmoids whose
lifetime (in the lab frame) is longer than � 0.4L/c.

We find that in the plasmoid rest frame, the growth in plasmoid
width proceeds at a constant rate

dw

c dt
= βg, (6)

where the coefficient βg has a weak dependence on magnetization.
As indicated by the three dashed black lines in Fig. 8, βg � 0.06
for σ = 3, βg � 0.08 for σ = 10 and βg � 0.1 for σ = 50. For all
the values of σ , we find that βg is about half of the reconnection
inflow rate |vin|/c (see the top panel in Fig. 3). We have also verified
that our results are not consistent with the assumption of constant
growth in the laboratory frame. Rather, since it is in the plasmoid
rest frame that the growth rate is constant, the increase in plasmoid
width in the simulation frame follows dw/c dtlab = βg/	, where 	

is the plasmoid bulk Lorentz factor. In Section 4.3.1, we propose a
toy model to corroborate our results.

The colored tracks in Fig. 8 confirm that the growth of the largest
plasmoids proceeds at a constant rate in the comoving frame, fol-
lowing the black dashed lines. The sudden dips that occasionally
appear in the tracks (e.g. at ct/L ∼ 2 in the right-hand panel) are a
consequence of the apparent shrinking in the plasmoid size that ac-
companies island mergers (see the beginning of Section 4 in relation
to Fig. 4). Soon after the merger, the surviving plasmoid (defined
as the larger of the two that merged) recovers its proper width. The
smaller of the two merging plasmoids terminates its life trajectory.
This explains why in Fig. 8 smaller plasmoids tend to have shorter
lives, since they are more likely to encounter a larger plasmoid that
swallows them.

The colour coding in Fig. 8 indicates the plasmoid four-velocity,
relative to the expected terminal four-velocity ∼√

σ c (more pre-
cisely, colours indicate 1 − 	|vout|/√σ c). Most of the plasmoid
growth happens while the islands are still non-relativistic (yellow
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in Fig. 8). When the plasmoids approach the Alfvén speed (so, their
four-velocity becomes closer to ∼√

σ c), the accretion rate dimin-
ishes and the plasmoid width saturates (green and blue in Fig. 8).
As a result, their tracks deviate from the locus of constant growth
indicated by the dashed black lines in Fig. 8 (as sketched by the
curved dotted lines with arrows in Fig. 8). For example, the two
plasmoids that live longest in the middle panel (for σ = 10) deviate
from the dw/c dt = 0.08 curve when their four-velocity reaches
∼0.5

√
σ c, and after this point, their width stays nearly unchanged.

For each plasmoid, we have tracked the trajectories of the parti-
cles that get trapped within the plasmoid, which allows us to clarify
how the plasmoid growth proceeds. We find that most of the long-
lasting plasmoids are born close to the centre of the current sheet.
The longer they spend in the vicinity of x ∼ 0 in their early life
(see the position-time tracks in Fig. 4), the larger they will eventu-
ally become. While they stay in the vicinity of the centre (roughly
speaking, within a distance of a few times their size), the islands
accrete from both sides of the current sheet. Eventually, the tension
force of the field lines pulls them away from the centre. At a given
distance from the current sheet, the speed of a plasmoid is inversely
proportional to its size, as we show in Section 4.4. It follows that
while its speed is still non-relativistic, a given plasmoid mostly ac-
cretes smaller (so, faster) plasmoids that are trailing in its wake.
As it accelerates to relativistic speeds, the accretion rate from the
trailing side decreases, since now the plasmoid is moving at the
same speed (∼c) as all of the smaller plasmoids in its wake, and the
trailing islands cannot catch up with it. At this point, most of the
accreted particles come from the region ahead of the plasmoid.

Fig. 9 shows that accretion of particles in the current sheet can
lead to the formation of ‘monster plasmoids’ whose width reaches
w/L ∼ 0.2, in agreement with the findings of MHD simulations of
non-relativistic reconnection (Loureiro et al. 2012). Fig. 9 refers to
a system with σ = 10 and L/ r0,hot � 127, but we have verified that
this conclusion holds regardless of σ or L/ r0,hot. Extraordinarily
large plasmoids with w/L ∼ 0.3–0.4 might be occasionally pro-
duced, but their occurrence is extremely rare (not more than once
every few tens of L/c). In fact, in the timespan of ∼14 L/c covered
by Fig. 9, no plasmoid larger than ∼0.2 L is produced.

The red curve in the top panel of Fig. 9 shows the width of the
largest plasmoid existing in our domain as a function of time. The
other curves show the width of the second largest plasmoid (in
yellow) down to the fifth largest plasmoid (in black), showing that
plasmoids with w/L ∼ 0.05 occur much more frequently than the
monster plasmoid with w/L ∼ 0.2 (as we have already described in
Fig. 6). The largest plasmoid (red curve in the top panel of Fig. 9)
grows at a fraction ∼0.1 of the speed of light, in agreement with the
conclusions of Fig. 8. This can be measured from the temporal slope
of the red curve in the top panel: in the time interval 1 � ctlab/L �
3, the plasmoid width increases up to 0.2 L, as indeed expected for a
growth rate of ∼0.1 c.15 The sudden drop in the red curve at ctlab/L
∼ 3.5 occurs when the large plasmoid is ejected from the current
sheet. At this point, the plasmoid that used to be the second largest
(see the yellow curve in the top panel at ctlab/L ∼ 3.5) becomes the
largest one in the domain (and the third largest becomes the second
largest, and so on).

The red curve in the top panel of Fig. 9 demonstrates that the
typical recurrence time of monster plasmoids is ∼2.5 L/c (see the

15 As we demonstrate in Section 4.4, large plasmoids move at non-relativistic
speeds, so no relativistic corrections are required to transform from the
comoving to the laboratory time.

Figure 9. Temporal evolution of the properties of the five largest plasmoids
(from the largest in red to the fifth largest in black), as a function of time
in the laboratory frame, for a simulation with σ = 10 and L � 127 r0,hot.
Top panel: width of the five largest plasmoids, in units of the system size
L. Middle panel: the five plasmoids with the largest value of the positron
Larmor radius r0y,cut = py,cutc/eB0, where py,cut is the cut-off momentum
in the y-direction. Bottom panel: same as in the middle panel, but for the
total comoving positron momentum, rather than its y component. The dotted
black line shows the characteristic timespan (∼3.6 L/c) of our fiducial runs.
The panels show that the typical recurrence time for the largest plasmoids
(having a width wmax ∼ 0.2 L) is ∼2.5L/c, and that the temporal evolutions
of rmax

0y,cut and rmax
0,cut closely follow the time track of wmax.

quasi-periodic peaks in the red curve).16 This is indeed the time
needed to grow a plasmoid up to the monster width of w/L ∼ 0.2,
since the growth proceeds at a rate ∼0.08 c (see the middle panel in
Fig. 8). In turn, this implies that most of the plasma flowing into the
current sheet within this time interval is accreted on to the monster
plasmoid that is currently present in the reconnection layer. It is
only when the monster plasmoid is ejected from the current sheet
that another plasmoid can grow to monster-like sizes.

The middle panel in Fig. 9 presents the five plasmoids with the
five largest values (from red to black) of the positron Larmor radius
r0y,cut = py,cutc/eB0, where py,cut is the cut-off momentum in the y-
direction. The temporal evolution of the curves in the middle panel
displays a remarkable correlation with the lines in the top panel
(compare curves of the same colour). This is in agreement with the
results shown in Fig. 5 (bottom-most row) and in Fig. 7 (top row),
i.e. the Larmor radius computed with the cut-off momentum py,cut

scales linearly with the island size. Those two plots showed that
this linear relation holds for all sizes, whereas Fig. 9 only focuses
on the largest plasmoids, with size w/L � 0.05. From the top and

16 It follows that the simulation timespan of ∼3.6 L/c of our fiducial runs
(indicated with a vertical dotted black line in Fig. 9) is sufficient to capture
the steady state physics of the system, and in particular the occurrence of
monster plasmoids.
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middle panels in Fig. 9, one can compute that the coefficient of
the linear scaling is around r0y,cut/w ∼ 0.2, in excellent agreement
with Fig. 5 and Fig. 7.

The top row in Fig. 7 showed that the largest plasmoids are
nearly isotropic, and the upper cutoff in their momentum spectrum
(black lines; regardless of the direction) is comparable to the cut-
off momentum in the y-direction (blue lines). This is confirmed by
the bottom panel in Fig. 9, where the curves display the plasmoids
with the five largest values (from red to black) of the total positron
Larmor radius r0,cut = pcutc/eB0. The evolution of the curves in the
bottom panel is well correlated in time with the lines in the middle
panel (compare curves of the same colour), and their ratio is of the
order of unity, i.e. r0,cut � r0y,cut, in agreement with the top row in
Fig. 7 at the largest sizes (w/L � 0.05).

4.3.1 Toy model for the plasmoid growth

We now present a toy model for the plasmoid growth, in support
of the numerical findings presented above. Let us assume that each
plasmoid of size w is accreting material from a ‘distance of influ-
ence’ dw , as measured along the current sheet in the plasmoid rest
frame. An empirical estimate of the distance of influence will be
given below. This implies that the number of particles Nprt in the
plasmoid will grow, in the comoving frame, as

dNprt

cdt
= 2n0

|vin|
c

dw, (7)

where the factor of 2 accounts for accretion from the two sides of
the current sheet (the flux of particles perpendicular to the current
sheet is Lorentz invariant). The plasmoid area is ∼πww‖/4 � w2,
where we have used that w‖ � 1.5 w (see the top row in Fig. 5).
If n is the plasmoid mean density, the number of particles in the
plasmoid will be Nprt � nw2. This implies that the plasmoid width
increases at a rate

dw

cdt
� n0

n

|vin|
c

dw

w
, (8)

where we have assumed that the comoving density n does not sig-
nificantly change with time. To estimate the distance of influence
dw , one can assume that all the plasma that is attracted to a given
island will eventually accrete on to that island. The electric current
integrated over the surface of an island of size w is proportional to
w, so its distance of influence will also scale linearly with w. By
following the trajectories of the particles that will eventually accrete
on to a given plasmoid, we can measure the distance of influence
in our simulations, and we find that it is of the order dw ∼ 2 w for
all the magnetizations we explore. Since n/n0 ∼ 3–5 regardless of
σ (second row in Fig. 5), we find that the plasmoid size grows as

dw

cdt
� 0.5

|vin|
c

, (9)

which is consistent with our numerical findings.

4.4 Plasmoid acceleration

After growing by accretion, secondary plasmoids are accelerated
by the tension force of the reconnected magnetic field up to ultra-
relativistic speeds, while they propagate towards the boundaries
of the domain (‘first they grow, then they go’). We find that, at a
given distance from the centre of the current sheet, larger plasmoids
tend to be slower. We find that the shape of the bulk acceleration
profile becomes universal (i.e. the same for all the plasmoids in a
given system) if the plasmoid four-velocity 	vout along the outflow

direction is measured as a function of the distance x − x0 from their
birth location x0, normalized to the instantaneous plasmoid width
w. This is demonstrated in Fig. 10, which shows that, once the
distance along the current sheet is in units of the plasmoid width
w, all the plasmoid tracks overlap, regardless of the plasmoid size
(which is indicated by the colours, see the colour bar on the right).

We find a universal profile of the form (see the dashed pink lines
in Fig. 10)

	
vout

c
� √

σ tanh

(
βacc√

σ

x − x0

w

)
, (10)

where x0 is the plasmoid location at its birth, and the dimensionless
acceleration rate βacc � 0.12 is nearly independent of the flow
magnetization (with only a minimal tendency to increase for higher
reconnection rates, i.e. higher σ ). For σ = 10, we have also verified
that the acceleration rate βacc does not depend on the overall system
length L/ r0,hot, from L/ r0,hot � 127 up to L/ r0,hot � 1130.

Equation (10) implies that high velocities (or equivalently, for
βacc|x − x0| � √

σw, the plasmoids approach the terminal four-
velocity ∼√

σ c. On the other hand, at low velocities (or equiva-
lently, for βacc|x − x0| � √

σw), the scaling is

	
vout

c
∼ βacc

x − x0

w
. (11)

This implies that: (i) monster plasmoids with w/L ∼ 0.2 leave the
system at trans-relativistic speeds, with |vout|/c ∼ 0.5; (ii) the largest
plasmoids capable of reaching the end of the current sheet (i.e. |x|
∼ L) with the terminal four-velocity ∼√

σ c have a final width of
w/L ∼ βacc/

√
σ ∼ 0.1/

√
σ , i.e. they are systematically smaller at

higher magnetizations.
The scaling in equation (11) has a simple empirical justification.

Quite generally, we can equate the growth time up to a width w,
which equals tg, lab ∼ 	w/βg in the lab frame, with the accelera-
tion/propagation time up to a distance x − x0 from the plasmoid
birth place, which is tacc, lab ∼ c(x − x0)/vout, finding that

	
vout

c
∼ βg

x − x0

w
. (12)

This has the same form as equation (11), and by comparison, we
argue that βacc ∼ βg ∼ 0.1, as indeed we find in our simulations.

The right-hand panel in Fig. 10 shows that for σ = 50, only
few islands can approach the terminal dimensionless four-velocity
∼√

σ ∼ 7, as compared to the copious number of fast plasmoids
observed for σ = 3 and 10. Yet, since regions with four-velocity
as fast as ∼√

σ c ∼ 7 c are present in the reconnection layer, in the
fast smooth outflows in between magnetic islands (see the red line
in the bottom panel of Fig. 3), we anticipate that, for a sufficiently
large system, a number of plasmoids will be capable of reaching
the expected terminal four-velocity ∼√

σ c, even for σ = 50.
The apparent lack of fast plasmoids for σ = 50 is due to

three main reasons. First, for a given final plasmoid size w (in
units of r0,hot), acceleration to the terminal speed requires a
length L/ r0,hot � √

σβ−1
acc(w/ r0,hot), i.e. larger domains (i.e. larger

L/ r0,hot) are needed at higher σ . For comparison, our domain length
for σ = 10 is L/ r0,hot � 1130, which implies that we should use
L/ r0,hot ∼ 2500 for σ = 50, in order to capture a sufficient number
of plasmoids moving at the terminal speed (rather, our domain for
σ = 50 is L/ r0,hot = 505). Secondly, as we have described above,
the critical size of the largest plasmoid that can reach the terminal
Alfvén velocity is ∼0.1 L/

√
σ , so it is smaller at higher σ . This im-

plies that the probability for such a plasmoid to accrete on to a larger
and slower plasmoid is higher at stronger magnetizations (since the
‘target’ plasmoid can range in size from the monster width of ∼0.2 L
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Figure 10. Plasmoid four-velocity along the outflow direction as a function of distance (x − x0) from their birth location x0, normalized to the instantaneous
plasmoid width w, for three values of the magnetization, as indicated at the top (σ = 3 in the left-hand panel, σ = 10 in the middle panel, and σ = 50 in the
right-hand panel). For the sake of clarity, we only plot the tracks of plasmoids whose lifetime (in the lab frame) is longer than � 0.35L/c. Once the distance
along the current sheet is normalized with the plasmoid width w, we show that all the tracks overlap, regardless of the plasmoid size (which is indicated by the
colours, see the colour bar on the right). The plasmoid four-velocity follows a universal profile 	vout/c � √

σ tanh[0.12(x − x0)/
√

σw], where the coefficient
of � 0.12 is nearly insensitive to the magnetization (see the pink dotted lines in the three panels, for the three values of σ ).

down to the width of the ‘projectile’ plasmoid ∼0.1 L/
√

σ ). The
small and fast plasmoid disappears into the large and slow one that
lies ahead, before reaching the terminal four-velocity. The third rea-
son is the fact that interactions among the plasmoids are stronger
at higher magnetizations, as we have discussed at the beginning of
Section 4. As a result, a small and fast plasmoid that is formed ahead
of a large and slow one gets pulled back, inhibiting its acceleration.
For the second and third reasons, we still expect that the number of
plasmoids capable of reaching the expected terminal four-velocity
∼√

σ c will be smaller for σ = 50 than for lower magnetizations,
even at the same value of L/

√
σ r0,hot.

We have explicitly verified that it is the tension of the field lines
that is responsible for the plasmoid bulk acceleration. Since the total
magnetic and kinetic energy content of a plasmoid with width w

scales as ∝ σw2 in the plasmoid comoving frame, its momentum
in the lab frame will be ∝ σw2	vout. From equations (6) and (11),
it follows that the force exerted on the plasmoid in the simulation
frame (i.e. the time derivative of its momentum in the lab frame)
scales as ∝ σwvout/c, until the plasmoid reaches the terminal four-
velocity. By measuring the tension force exerted on each plasmoid
by the bundle of field lines lying between the plasmoid contour and
its trailing X-point, we have successfully assessed that it is indeed
the magnetic field tension that drives the plasmoid bulk acceleration.

We now present a toy model to support why the magnetic tension
force should scale as ∝ wvout/c, or equivalently (using equation 11),
as ∝ wmin [1, βaccx/w], assuming for the sake of simplicity that
the plasmoid starts at x0 ∼ 0. For a plasmoid sufficiently far from
the centre, the accelerating force will be provided by a cone of field
lines trailing behind the plasmoid. The opening angle of the cone is
∼|vin|/c (as predicted by Lyubarsky (2005), this is the inclination
angle of the field lines) and its apex lies at a distance dapex ∼
(c/|vin|) w/2 behind the plasmoid. For a plasmoid sufficiently far
from the centre, all of the field lines between the apex and the
plasmoid will contribute to provide the accelerating force, which
would then scale as ∝ w. In contrast, if the apex lies beyond the
centre of the current sheet (i.e. to the other side, as compared to
the plasmoid location), only a fraction of the field lines would be
available for acceleration (in the special case of a plasmoid that lies

close to the centre, the tension force is expected to vanish). This
happens when the plasmoid distance from the centre is x � dapex,
in which case, only a fraction ∼x/dapex of the field lines will be
employed for acceleration. Putting everything together, the tension
force should scale as ∝ min [x, dapex] ∝ wmin [1, 2 (|vin|/c) x/w],
in good agreement with our numerical results.

5 D E P E N D E N C E O N T H E SY S T E M L E N G T H

In this section, we describe how our results depend on the over-
all length of the system L, measured in units of the Larmor
radius r0,hot = √

σ c/ωp of the particles heated/accelerated by
reconnection.17 We focus on our fiducial magnetization σ = 10
and we vary the system length L/ r0,hot from 127 up to 1130. In all
the cases, the simulation timespan is ∼3.6 L/c, for fair comparison
among the different values of L/ r0,hot.

We find that both the plasmoid growth rate βg and the acceleration
rate βacc are nearly identical over the range of L/ r0,hot that we
explore. The plasmoid fluid properties presented in Fig. 5 do not
depend on the overall system length. As we have anticipated in
Section 4.1, the value of w/L where the lack of magnetic flux starts
to appear (i.e. smaller islands have a deficit of magnetic flux, as
compared to the scaling �/B0w ∼ 1 realized at larger widths) is
always w/L ∼ 0.02 regardless of the system length.

Fig. 11 quantifies how the size of the largest plasmoids and the
maximum energy of accelerated particles depend on the system
length L. In the top panel, the red line shows the plasmoid that, in
the course of its history, reaches the largest width; the yellow line
shows the second largest, and so on until the fifth largest plasmoid
(black line). The width of the largest plasmoid (red curve) is affected
by the limited timespan of our simulations. In fact, Fig. 9 shows, for
the case L/ r0,hot � 127, that a timespan of ∼3.6 L/c (as indicated
by the dotted vertical black line in Fig. 9) is barely sufficient to
capture the full growth of the largest plasmoid. From the second

17 We remind that the overall extent of our simulation domain in the x-
direction of the outflow is actually 2 L.
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Figure 11. Scalings of plasmoid properties with respect to the overall sys-
tem length L, as measured in units of r0,hot, from L/ r0,hot � 127 up to
L/ r0,hot � 1130. In all the cases, the simulation timespan is ∼3.6 L/c. Top
panel: the red line shows the plasmoid that, in the course of its history,
reaches the largest width; the yellow line shows the second largest, and so
on until the fifth largest plasmoid (black line). The width of the few largest
plasmoids approaches a fixed fraction of the system size L, which is inde-
pendent of the length L itself. Middle panel: the red line shows the plasmoid
that, in the course of its history, reaches the largest value of the positron
Larmor radius r0y,cut = py,cutc/eB0, where py,cut is the cut-off momentum
in the y-direction. Similarly, the yellow line shows the plasmoid that reaches
the second largest value, and so on until the fifth largest value (black line).
At large L, the maximum Larmor radius approaches a fixed fraction of the
overall system length L, independently of L. For comparison, the dashed
black line shows the scaling rmax

0y,cut/L ∝ L−1 expected if the maximum cut-
off pmax

y,cut were to saturate. Bottom panel: same as in the middle panel, but
for the total comoving positron momentum, rather than its y component.
This can be regarded as the Hillas criterion for relativistic reconnection.

to the fifth largest plasmoids (yellow to black lines in Fig. 11),
we are not affected by the limited timespan of our simulations,
since the number of plasmoids increases at smaller widths. The
corresponding curves in the top panel of Fig. 11 show that the width
of the few largest plasmoids is a fixed fraction of the system length
L, irrespective of L/ r0,hot.

We find that the linear scaling between plasmoid width w and
Larmor radius r0y,cut of the particles at the cut-off y momentum holds
regardless of the system length. Since the largest plasmoids have
w/L ∼ 0.05–0.2 independently of the system length (top panel), it
is then not surprising that the largest values of the positron Larmor
radius r0y,cut scale linearly with the system size, as shown in the
middle panel of Fig. 11. The normalization of the curves in the mid-
dle panel is consistent with the relation r0y,cut/w ∼ 0.2 discussed
in Section 4.2 and with the ratios w/L presented in the top panel
(in fact, the slight decay of the red curve in the middle panel is to
be correlated with the red line in the top panel). This suggests that
the maximum y momentum of particles accelerated in reconnection
scales linearly with the system size L. In contrast, if reconnection
were to give a maximal value of the positron y momentum that
stays constant with L, we would expect that rmax

0y,cut/L ∝ L−1 in the
middle panel of Fig. 11. This is shown as a dashed black line, and
it is clearly inconsistent with our data.

These conclusions are further supported by the bottom panel in
Fig. 11. There, we perform a similar analysis as in the middle panel,
but for the total comoving positron momentum, rather than its y com-
ponent. All the curves (from red for the largest value of the Larmor
radius r0,cut, down to black for the fifth largest) display a similar
trend, decreasing as rmax

0,cut/L ∝ L−1 for L/ r0,hot � 300 (compare
with the dashed black line), and flattening out for L/ r0,hot � 300.
We attribute the transition to a change in the dominant mechanism
for particle acceleration. At relatively small system sizes, particle
acceleration by the reconnection electric field at X-points dominates
(e.g. Zenitani & Hoshino 2001). The accelerated positrons move
preferentially along the +z-direction of the electric field (and elec-
trons in the opposite direction). The particle distribution is highly
anisotropic, and the total momentum is primarily controlled by its
z component (see the top row in Fig. 7). This explains why the
decreasing trend in the bottom panel of Fig. 11, which is driven by
the z momentum, does not appear in the middle panel, where the
Larmor radius r0y,cut is computed using the y momentum. At this
stage (i.e. for L/ r0,hot � 300), the maximum energy of accelerated
particles is controlled by the acceleration capabilities of X-points.
As anticipated in Section 4.2, the upper cutoff in the momentum
spectrum of particles accelerated at X-points corresponds to a Lar-
mor radius r0,cut ∼ 10 r0,hot, regardless of the system length L. This
explains why for L/ r0,hot � 300 the Larmor radius of the highest
energy particles scales as rmax

0,cut/L ∝ L−1. This is in agreement with
the results by Werner et al. (2016).

For larger systems (i.e. at L/ r0,hot � 300), particle accelera-
tion during island mergers plays a more and more dominant role.
The potential energy available during the merger of two islands
of width ∼w is ∼0.2e B0w,18 which results in a Larmor radius
r0,cut ∼ 0.2 w. By equating r0,cut ∼ 10 r0,hot (from X-point acceler-
ation) with r0,cut ∼ 0.2 w (from acceleration in mergers), we find
that the transition between X-point acceleration and acceleration
governed by island mergers should occur at a critical island width
of w/ r0,hot ∼ 50. Then, remembering that w/L ∼ 0.2 for the largest
islands (which will give the highest energy particles), we find that
the transition width w/ r0,hot ∼ 50 should correspond to a critical
domain length of L/ r0,hot ∼ 250, in agreement with the break in
the curves of Fig. 11 (bottom panel).

18 We have taken the reconnection rate in between the two merging islands
to be of the order of ∼0.15 c and we have considered that the magnetic field
in the plasmoids is a factor of ∼1.5 larger than the field B0 in the inflow (see
the fourth row in Fig. 5).
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Figure 12. Positron anisotropy in the z-direction, as a function of the plas-
moid size w and for different values of the system length, L/ r0,hot � 127
(blue), L/ r0,hot � 257 (green), L/ r0,hot � 518 (yellow) and L/ r0,hot �
1130 (red). In all the cases, the simulation timespan is ∼3.6 L/c. Each of
the filled circles indicates the value of r0i,cut/w with i = +z (i.e. along
the reconnection electric field), averaged among the plasmoids whose width
falls in that range. Error bars indicate the standard deviation. In contrast,
the dotted lines show the mean values of r0i,cut/w with i = −z. For each
choice of L, larger plasmoids are closer to isotropy. Also, small system
lengths L, where the largest plasmoids are not much bigger than r0,hot, tend
to overemphasize the degree of anisotropy.

For L/ r0,hot � 300, the ratio r0,cut/L is expected to remain con-
stant with L, since the energy of the highest energy particles ac-
celerated in island mergers scales linearly with the width w of the
largest plasmoids, which in turn is proportional to the system size
L (see the top panel). Simulations in a small domain (Werner et al.
2016) are not able to reach this asymptotic limit, beyond the scal-
ing rmax

0,cut/L ∝ L−1 that holds at small L.19 Rather, we find that
in the limit L/ r0,hot � 1 of astrophysical interest, the highest en-
ergy particles accelerated by reconnection have a Larmor radius
r0,cut ∼ 0.03L, regardless of L/ r0,hot (here, we have implicitly as-
sumed that the highest energy particles in the system are contained
in magnetic islands, as we demonstrate in Appendix B). This can
be regarded as the Hillas criterion (Hillas 1984) for relativistic re-
connection.

We conclude this section by investigating the dependence of the
z anisotropy of the particle distribution on the system length L. In
Fig. 12, we quantify the z anisotropy by means of the Larmor radius
of positrons at the upper cutoff of their z momentum spectrum, con-
sidering only positrons with pz > 0 (solid lines with error bars) or pz

< 0 (dotted lines). The positron Larmor radius is plotted as a func-
tion of the island size w/L for different system lengths (L/ r0,hot �
127 in blue, L/ r0,hot � 257 in green, L/ r0,hot � 518 in yellow and
L/ r0,hot � 1130 in red). For each value of L/ r0,hot, the positron
anisotropy decreases with increasing plasmoid width, as already dis-
cussed in Section 4.2. More interestingly, the degree of anisotropy at
fixed w/L is significantly lower for larger system lengths L/ r0,hot.
Rather than being dependent on w/L, the level of z anisotropy
seems to be a function of w/ r0,hot, i.e. of the plasmoid width

19 In the case of untriggered reconnection studied with periodic boundary
conditions, the same requirement of L/ r0,hot � 300 should be imposed
over the distance in between two neighbouring primary islands, resulting
in a much more constraining condition on the overall box length (which
typically includes many primary plasmoids).

normalized to plasma scales (rather than to the system length L).
This is suggested in Fig. 12 by the fact that different solid curves
appear to overlap, if we were to shift them along the horizontal axis
by the corresponding value of L/ r0,hot (this, in fact, is equivalent
to measuring w in units of r0,hot). This results from the fact that in
small systems, the process of particle acceleration is dominated by
the X-point stage, that occurs on plasma scales ∼ r0,hot.

The pronounced anisotropy observed at small L/ r0,hot still bears
memory of the anisotropy of particles accelerated at X-points
(Cerutti et al. 2012, 2013; Kagan et al. 2016). In contrast, in large
systems, most of the particles accelerated at X-points are efficiently
isotropized in magnetic islands (SS14), resulting in a lower degree
of anisotropy. It follows that the kinetic beaming effect described
by Cerutti et al. (2012, 2013) and Kagan et al. (2016), due to the
strong anisotropy of particles accelerated by reconnection, tends to
be important only in small systems. Since realistic astrophysical
systems typically have lengths L/ r0,hot � 1, we conclude that the
comoving particle distribution in the largest plasmoids, which are
likely to give the brightest emission signatures, is nearly isotropic.

6 SU M M A RY A N D D I S C U S S I O N

In this work, we have performed a suite of 2.5D PIC simula-
tions of antiparallel relativistic reconnection in pair plasmas –
2D in space, but all three components of velocities and electro-
magnetic fields are tracked – to study the long-term evolution
of the system, independently of the initial setup of the current
sheet. We explore a range of flow magnetizations (from σ =
3 to 50), focusing on unprecedentedly large-scale systems with
length L � r0,hot, where r0,hot = √

σ c/ωp is the Larmor radius of
particles heated/accelerated by reconnection. We find that a self-
consistent by-product of the asymptotic physics is the continuous
formation of a chain of plasmoids/magnetic islands, generated by
the secondary tearing instability (Uzdensky et al. 2010). We argue
that such plasmoids, quasi-spherical structures filled with high-
energy particles and magnetic fields, can play a dominant role in
the high-energy emission from relativistic astrophysical sources,
such as PWNe and jets in AGNs and GRBs. We first summarize our
findings on the reconnection physics and then briefly discuss their
astrophysical implications.

6.1 Reconnection plasma physics summary

We have fully characterized the plasmoid properties as a function
of their width w (transverse to the reconnection layer) and the flow
magnetization σ , and our main conclusions can be summarized as
follows:

(i) the plasmoids are nearly spherical, with length along the cur-
rent sheet that is a factor of ∼1.5 larger than the width. They are
moderately denser than the inflowing plasma (a factor of a few, with
only a moderate dependence on σ ), with magnetic field strength av-
eraged over the plasmoid volume that is ∼50 per cent higher than
the value B0 in the inflow region. Both the magnetic and the kinetic
energy density in the plasmoids scale linearly with the magnetiza-
tion σ . The plasmoids are nearly in equipartition between particles
and magnetic fields, with only a moderate dominance of the particle
kinetic content, most pronounced in small plasmoids (w/L � 0.02).

(ii) Our choice of absorbing/outflow boundary conditions in the
x-direction of the outflow – as opposed to the common choice of
periodic boundaries – allows us to follow the system for many
light crossing times, and to assess the statistical distributions of
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plasmoid width w and magnetic flux �. For large plasmoids (�/B0L
� 0.01), the differential distributions of w and � both follow a
−2 power-law distribution. Smaller plasmoids (�/B0L � 0.01)
have harder distributions, with power-law slope around −1. The
width distribution cuts off at w/L ∼ 0.2 (and correspondingly, the
flux distribution at �/B0L ∼ 0.2). The results of our fully kinetic
simulations are consistent with MHD simulations of non-relativistic
(Huang & Bhattacharjee 2012; Loureiro et al. 2012) and relativistic
(Takamoto 2013) reconnection.

(iii) We identify the particles belonging to each plasmoid, and
we quantify their particle spectrum and anisotropy. We find that the
Larmor radius r0y,cut = py,cutc/eB0 measured with the cut-off mo-
mentum py,cut along the y-direction transverse to the current sheet
scales almost linearly with the plasmoid width w, with the same
constant of proportionality r0y,cut/w ∼ 0.2 at all magnetizations.
This corresponds to the particles with the highest y momentum be-
ing barely confined in the plasmoids (i.e. a confinement criterion).
The particle population is roughly isotropic in the x–y plane. In
small islands, a strong degree of anisotropy in the positron distribu-
tion is observed along the +z-direction of the reconnection electric
field (electrons have the opposite anisotropy), suggesting that direct
acceleration at X-points plays an important role in the early stages
of particle acceleration (Zenitani & Hoshino 2001; SS14; Nale-
wajko et al. 2015). In contrast, large islands are nearly isotropic,
and the highest energy particles they contain are accelerated during
island mergers (Guo et al. 2014, 2015; SS14). The transition be-
tween small anisotropic islands and large isotropic islands occurs at
w/ r0,hot ∼ 50, regardless of the overall system length L. It follows
that, for a realistic astrophysical system with L/ r0,hot � 1, all but
the smallest islands will be fairly isotropic. In contrast, in small
computational domains, due to the lack of a sufficient separation
of scales between the plasma scales and the system size, one might
artificially overemphasize the degree of particle anisotropy (as in
Cerutti et al. 2012, 2013; Kagan et al. 2016).

(iv) Small islands have a momentum distribution that is nearly
thermal, since they cannot successfully confine the highest energy
particles accelerated at X-points. In contrast, large islands have
power-law momentum distributions, with a power-law slope s ∼ 3
for σ = 3, s ∼ 2 for σ = 10 and s ∼ 1.5 for σ = 50. Such slopes
are consistent with the values quoted in SS14, where the particle
spectrum accounted for all the particles in the current sheet (and
not just the particles trapped in plasmoids). This is expected, since
we find that nearly all of the highest energy particles produced by
reconnection are contained in the few largest plasmoids.

(v) By following the trajectory of individual plasmoids over
time, we find that the life of secondary plasmoids from birth to
adulthood is characterized by two phases: first they grow, then
they go. They are born on microscopic plasma scales, and they
grow by accretion, with a constant comoving growth rate βg =
dw/c dt ∼ 0.1 that has only a weak dependence on magnetization.
For all the values of σ we explore, we find that βg is about half
of the reconnection inflow rate |vin|/c, which slightly increases
from |vin|/c � 0.1 for σ = 3 up to |vin|/c � 0.2 for σ = 50.
The weak dependence of |vin|/c on magnetization is consistent
with the predictions of Lyubarsky (2005)’s model of relativistic
reconnection.

(vi) Occasionally, a plasmoid in the reconnection layer can reach
a ‘monster’ width of w ∼ 0.2 L, consistent with the results of
MHD simulations of non-relativistic reconnection (Loureiro et al.
2012). The size of the monster plasmoid is always a fixed frac-
tion of the system length L, for different choices of L/ r0,hot, and
their typical recurrence time is ∼2.5 L/c. Monster plasmoids have

nearly isotropic particle distributions and they contain the high-
est energy particles in the system. For sufficiently large domains
(L/ r0,hot � 300), we show that the Larmor radius of the highest
energy particles is rmax

0,cut ∼ 0.03 L, i.e. a constant fraction of the sys-
tem size. This can be regarded as the Hillas criterion (Hillas 1984)
for relativistic reconnection. In contrast, simulations in a small do-
main with L/ r0,hot � 300 (Werner et al. 2016) would not be able to
reach this asymptotic limit, beyond the scaling rmax

0,cut/L ∝ L−1 that
we observe at small L, which is expected from the fact that early
particle acceleration at X-points yields a maximum Larmor radius
rmax

0,cut ∼ 10 r0,hot regardless of L.
(vii) After their growth, the plasmoids are accelerated towards

the boundaries of the domain by the tension force of the magnetic
field lines. We find that the bulk four-velocity of the accelerating
plasmoids follows a universal profile 	vout/c � √

σ tanh[βacc(x −
x0)/

√
σw], where the acceleration rate βacc � 0.12 is nearly insen-

sitive to the flow magnetization. Here, x0 is the plasmoid location
at birth. This implies that at large distances (βacc|x − x0| � √

σw),
the plasmoid four-velocity approaches ∼√

σ c, i.e. the plasmoid
moves at nearly the Alfvén speed vA = √

σ/(σ + 1) c. This is in-
deed the outflow speed from relativistic reconnection predicted by
Lyubarsky (2005), as we have verified for all the magnetizations we
explore (earlier studies in smaller domains could not capture this
asymptotic limit, see Cerutti et al. 2013; Guo et al. 2015; Kagan et al.
2016). On the other hand, at small distances (βacc|x − x0| � √

σw),
the scaling is 	vout/c ∼ βacc(x − x0)/w. It follows that (i) mon-
ster plasmoids with w/L ∼ 0.2 leave the system at trans-relativistic
speeds; (ii) the largest plasmoids capable of reaching the end of
the current sheet with the terminal four-velocity ∼√

σ c will have a
final width of w/L ∼ βacc/

√
σ , i.e. they are systematically smaller

at higher magnetizations.

We conclude with a few caveats. In this work, we have only
focused on electron–positron reconnection, but we claim that all of
our results will hold for electron–proton reconnection, since in the
relativistic regime σ � 1, the field dissipation results in nearly equal
amounts of energy transferred to protons as to electrons, as we have
demonstrated in SPG15. So, the mean energy per particle of the two
species is nearly the same, as it is the case for an electron–positron
plasma. From a numerical point of view, electron–ion reconnection
is much more demanding than electron–positron reconnection, since
the system needs to have a length (in cells) larger by

√
mi/me in

each direction (here mi and me are the proton and electron masses),
and the evolution needs to be followed for a factor

√
mi/me longer.

So, it will be even more challenging to reach the asymptotic state
described in this work, where the largest islands are nearly isotropic,
the outflow speed reaches the expected terminal velocity, and the
maximum energy of accelerated particles increases linearly with
the system size. Studies in small systems will tend to artificially
overemphasize the importance of effects that are only appropriate at
microscopic plasma scales, and irrelevant for L/ r0,hot � 1 systems
of astrophysical interest.

Also, we have only explored the case of anti-parallel fields, i.e.
without a guide field perpendicular to the alternating fields. For
stronger guide fields, one expects that the efficiency of reconnection
will be reduced and the plasmoids will become more magnetically
dominated, as we have shown in SPG15. A complete investigation
of the plasmoid properties in guide-field reconnection will be pre-
sented elsewhere. Finally, our simulations are two-dimensional. As
shown in SS14, the long-term evolution of 3D antiparallel recon-
nection is remarkably similar to the 2D physics, both in terms of
the dynamics of the reconnection layer and the efficiency of particle
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acceleration. Still, the structure of plasmoids/flux ropes in 3D re-
mains to be investigated.

6.2 Astrophysical implications

A large recent volume of research in the field has revealed that rel-
ativistic reconnection is a highly dynamical process that involves
a broad range of physical processes on very different time-scales;
all of which can have direct observational signatures. Consider a
reconnection layer of length L where magnetic energy is dissipated
in a magnetized fluid of total volume ∼L3 (for simplicity, we take
all the scales of the problem to be comparable). Reconnection pro-
ceeds on a global time-scale trec ∼ L/|vin| ∼ 10 L/c until it exhausts
all the available energy in the system. The dissipated energy ends
up in ultra-relativistic particles that are mostly contained in plas-
moids. The emission from the layer, therefore, comes in bursts or
flares whose duration is closely related to the time it takes for the
plasmoids to grow and leave the layer. The largest plasmoids take a
time ∼L/c to form, and they leave the reconnection layer at mildly
relativistic speeds (	|vout|/c ∼ 1). Powerful flares are therefore
expected from these plasmoids on a time-scale tl � L/c. Smaller
plasmoids are accelerated to relativistic speeds 	 ∼ √

σ and they
radiate anisotropically, as a result of their bulk motion. When the
observer lies along the current sheet, small plasmoids are viewed as
very powerful and extremely fast evolving ts � L/c emitters.

The detailed shape and variety of flares expected from a current
sheet and their implications for blazar jets are presented elsewhere
(Petropoulou et al. 2016). Here, we estimate the maximum energies
that particles can achieve in reconnection layers in blazar jets and
during flares from the Crab nebula. Let us assume a flow with a
bulk motion 	b that beams its emission towards the observer with
corresponding Doppler factor δ ∼ 	b. Consider a major flare from
this flow powered by a large plasmoid. The observed duration of
the flare is tf ∼ L/cδ, which constrains the size of the reconnection
layer. From our ‘Hillas criterion for reconnection,’ that dictates the
maximum particle energy associated with this plasmoid, we find that
the gyro-radius of the highest energy particles is rg ∼ 0.03 L. The
energy of the cosmic ray particles is ECR = 	beBrg ∼ 0.03	bδeBctf,
were the magnetic field B is measured in the rest frame of the flow.

Blazar jets show major flares on a time-scale of hours/days (as
a reference value, we set tf = 105t5 s). The ‘blazar zone’ is charac-
terized by typical 	b ∼ δ � 10, while the magnetic field strength is
B ∼ 1G (e.g. Celotti & Ghisellini 2008).20 Protons present
in the reconnecting plasma can be accelerated to ECR ∼ 3 ×
1018	1δ1B0 t5 eV. Here, 	1 = 	b/10, δ1 = δ/10 and B0 = B/1 G.
Therefore, protons can possibly reach the highest observed energies
of E ∼ 1020 eV for sufficiently fast jet flows 	b � 10 with field
strengths B � 1G.

The Fermi and AGILE satellites have detected a number of ∼day-
long flares at GeV energies from the Crab nebula, which surprisingly
falsify the widely believed standard candle nature of the high-energy
Crab emission. During these events, the Crab nebula γ -ray flux
above 100 MeV exceeded its average value by a factor of several or
higher (Abdo 2011; Buehler et al. 2012). Fermi acceleration at the
termination shock of the Crab nebula fails to explain the observed
GeV flares. In contrast, rapid conversion of magnetic field energy
into particle energy via magnetic reconnection has been recently
proposed to explain the Crab flares (e.g. Cerutti et al. 2013, 2014).

20 This value of magnetic field is typical only for leptonic models. In
hadronic models B ∼ 100 G.

For magnetic field strengths in the nebula of B ∼ several mG, tf =
105t5 s and allowing for a modest relativistic motion of the emitting
plasmoid 	b � δ � 2, we find that pairs can be accelerated up to
ECR ∼ 1PeV. This energy is sufficient to potentially explain the
extreme synchrotron peak during the Crab flares. Radiative cooling
has, however, to be taken into account self-consistently when one
considers the maximum attainable particle energy. This is left for
future work.
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APPENDI X A : PLASMOI D SPATI AL PRO FILES

Fig. A1 presents the spatial profiles of various comoving quantities
along the y-direction transverse to the current sheet, for the three
values of magnetization that we explore in this work (σ = 3 on
the left, σ = 10 in the middle and σ = 50 on the right). In each
panel, curves of different colours correspond to a different bin of
plasmoid width w (from blue to red in order of increasing w/L),
and each line is obtained by averaging the y-profile at the plasmoid
x-location over all the plasmoids whose width falls in that range.
The corresponding plasmoid width can be read from the separation,
along the y-direction, between the two filled circles, that denote the
plasmoid boundaries along y.

In the top row, we show the y-profiles of the plasmoid comoving
density, in units of the particle number density n0 far from the current
sheet. By plotting on a log–log scale (not shown), we can measure
that the density scales with distance from the current sheet roughly
as n ∝ (|y|/w)−1.0, with only a slight tendency for steeper profiles
at higher magnetizations. This scaling implies that the plasmoid
mass is mostly sensitive to the value of the density at the plasmoid
outskirts. The top row in Fig. A1 shows that the density in the
outskirts is a weak function of the magnetization, which explains
why the scaling ∝ √

σ expected for the mean density in relativistic
reconnection (Lyubarsky 2005) is not realized in the second row
of Fig. 5.21 As we have argued in Section 4.1, the scaling n ∝ √

σ

is to be expected only for the fastest plasmoids, that can reach the
terminal four-velocity ∼√

σ c. As described in Section 4.4, only
few plasmoids approach ∼√

σ c for σ = 50, which justifies why
the density in the plasmoid outskirts in the top row of Fig. A1 does
not appreciably increase between σ = 10 and 50.

The second row in Fig. A1 illustrates the y-profile of the co-
moving magnetic energy fraction. Since the slice along y where we
compute the profiles goes through the plasmoid centre, the magnetic
field B is dominated by its x-component, which is Lorentz invariant.
For this reason, we can extend the profiles in the second row of
Fig. A1 outside of the plasmoid contour (see the dotted lines), with-
out ambiguity (i.e. the profiles of plasmoids with different speeds
can be meaningfully averaged). By plotting on a log–log scale (not
shown), we can measure that the magnetic energy scales as εB ∝
(|y|/w)−1.2, regardless of the magnetization. This scaling implies
that most of the magnetic energy is contributed by the plasmoid
outskirts (filled circles in the plot). Since Fig. A1 shows that the
magnetic energy at the plasmoid boundary scales as ∝ σ (e.g. see
the red curves, for the largest islands), the same scaling is expected
for the volume-averaged magnetic energy fraction, as indeed found
in the fourth row of Fig. 5.

For a given magnetization, Fig. A1 reveals that the magnetic field
at the plasmoid boundary has a strong dependence on the island
width, with smaller islands systematically residing in regions with
weaker fields. As described in Section 3, this trend is due to field
lines wrapping around a large island, so that the smaller islands in
its vicinity will preferentially lie in a region where the field lines are
less densely spaced, and so the field is weaker. The fact that smaller
islands are more likely to reside in ‘wells’ of magnetic energy, as
revealed by the second row of Fig. A1, explains the apparent lack of

21 Yet, such a scaling seems to be fulfilled by the peak density (i.e. at y ∼ 0)
of the largest islands (compare the three red curves for different values of σ

in the top row of Fig. A1).
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Figure A1. 1D profiles of various plasmoid properties, along the direction y perpendicular to the current layer, for three values of the magnetization, as
indicated at the top (σ = 3 in the left-hand column, σ = 10 in the middle column, and σ = 50 in the right-hand column). In each panel, curves of different
colours correspond to a different bin of plasmoid width w (from blue to red in order of increasing w), and each line is obtained by averaging the y-profile at
the plasmoid x-location over all the plasmoids whose width falls in that range. The corresponding plasmoid width can be read from the separation, along the
y-direction, between the two filled circles, that denote the plasmoid boundaries along y. The bins in width are the same as in Fig. 7. From the top to the bottom
row, we plot: (a)–(c) the comoving density n, in units of the density n0 far from the current sheet; (d)–(f) the magnetic energy fraction εB = B2/8πn0 mc2,
where B is measured in the plasmoid comoving frame; (g)–(i) the internal energy fraction εkin = (〈γ 〉 − 1) n/n0, where 〈γ 〉 is the mean particle Lorentz factor
in the plasmoid frame. In the second row of panels, we plot the profile of εB outside the plasmoids with dotted lines. Here, B ∼ |Bx|, which is Lorentz invariant,
so the εB profile outside the plasmoids does not depend on the plasmoid velocity, and the profiles of plasmoids with different speeds can be meaningfully
averaged. This argument does not hold for n or εkin.

magnetic flux and magnetic energy seen in Fig. 5 (third and fourth
row) at small plasmoid widths.

The bottom row of panels in Fig. A1 describes the profiles of the
comoving particle kinetic energy. On a log–log scale (not shown),
we find that the kinetic energy fraction scales with distance from
the sheet as εkin ∝ (|y|/w)−1.4, regardless of the magnetization. By
comparing with the density profile, we find that the mean kinetic
energy per particle scales with distance as ∝ (|y|/w)−0.4, with only
a slight tendency for a harder slope at higher σ . This scaling for
the mean energy per particle (i.e. for the temperature) is consistent
with adiabatic heating, since for an ultra-relativistic gas, it should
depend on the density as ∝ n1/3 ∝ (|y|/w)−0.3. The scaling εkin ∝
(|y|/w)−1.4 of the kinetic energy fraction is slightly steeper than
the magnetic energy profile, so that the island core will typically
be dominated by the particle kinetic energy, whereas the magnetic
energy will govern the plasmoid outskirts.

As in the case of the magnetic energy fraction, the scaling εkin ∝
(|y|/w)−1.4 implies that most of the kinetic energy is contributed by
the plasmoid outskirts. There, εkin scales as ∝ σ (e.g. see the red
curves, for the largest islands), so the same scaling is expected for
the volume-averaged kinetic energy fraction, as indeed found in the

fifth row of Fig. 5. Unlike the magnetic energy fraction, the value
of the kinetic energy at the plasmoid boundary does not appreciably
depend on the plasmoid size, at fixed σ (see the filled circles in the
bottom row). In turn, this explains why the kinetic energy fraction in
the fifth row of Fig. 5 is nearly constant with respect to the plasmoid
width (especially as compared to the magnetic energy fraction in
the fourth row of Fig. 5, which shows a significant deficit at small
sizes).

A P P E N D I X B : C O M PA R I S O N O F T H E
SPECTRUM I N PLASMOI DS W I TH THE
OV E R A L L SP E C T RU M

Fig. B1 illustrates how the positron spectrum in the plasmoids com-
pares with the positron spectrum in the overall current sheet (i.e.
including also the region in between plasmoids). The spectra are
measured in the laboratory frame for the three values of magneti-
zation that we explore in this work (σ = 3 in the left-hand column,
σ = 10 in the middle column, and σ = 50 in the right-hand col-
umn). In each panel, we plot the overall spectrum from the current
sheet (blue lines; integrated over the whole reconnection layer and
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Figure B1. Positron energy and momentum spectra in the laboratory frame, for three values of the magnetization, as indicated at the top (σ = 3 in the left-hand
column, σ = 10 in the middle column, and σ = 50 in the right-hand column). In each panel, we plot the overall spectrum from the current sheet (blue lines;
integrated over the whole reconnection layer and over the timespan of our simulations), the spectrum of plasmoids (red lines; integrated over all the plasmoids
at all times), and the cumulative spectrum from the five largest plasmoids (green lines; integrated over the history of the five largest plasmoids). We plot: (a)–(c)
the positron energy spectrum in the laboratory frame; (d)–(f) the positron px spectrum in the laboratory frame; (g)–(i) the positron py spectrum in the laboratory
frame; (j)–(l) the positron pz spectrum in the laboratory frame, differentiating between positrons with pz > 0 (solid curves) and pz < 0 (dotted curves). For
reference, we plot with black dashed lines a power law with slope s = 3 for σ = 3, s = 2 for σ = 10 and s = 1.5 for σ = 50. The plot shows that the highest
energy particles are contained within the largest plasmoids.

over the timespan of our simulations), the spectrum of plasmoids
(red lines; integrated over all the plasmoids at all times), and the
cumulative spectrum from the five largest plasmoids (green lines;
integrated over the history of the five largest plasmoids).

Both the energy spectra in the top row and the momentum spectra
in the other panels suggest that the highest energy particles always
belong to a plasmoid. In all the panels, the blue and red curves
overlap at the high-energy end. Even more dramatically, most of
the high-energy particles are contained in the few largest plasmoids
(compare with the green curves, which only account for the five
largest plasmoids). It follows that the maximum energy of particles
accelerated in reconnection is identical to the maximum energy of

particles contained in plasmoids, which validates the generality of
the Hillas criterion discussed in Section 5.

Fig. B1 confirms what we had anticipated in Section 4.2, i.e. the
spectral slope of the largest plasmoids (green curves) asymptotes
to s ∼ 3 for σ = 3, s ∼ 2 for σ = 10 and s ∼ 1.5 for σ = 50,
as indicated by the dashed black lines. Such slopes are consistent
with the values quoted in SS14, where the particle spectrum was
integrated over the whole current sheet. As Fig. B1 suggests, this
is because the spectrum integrated over the whole layer is actually
dominated by the few largest islands. It is then quite natural to
expect that the spectral slope of the largest islands in Fig. B1 is
comparable to the power-law index found in SS14.
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In the particle energy spectra of the top row, the excess of particles
at intermediate energies in the blue line (as compared to the red line)
is due to hot particles in the reconnection outflow that do not belong
to plasmoids. They move with a bulk Lorentz factor ∝ √

σ and
their mean temperature also scales as ∝ √

σ . Overall, this implies
that their mean energy in the lab frame should scale as ∝ σ , as
indeed observed in the top row of Fig. B1 (see the peak at γ − 1
∼ 3 for σ = 3, at γ − 1 ∼ 7 for σ = 10 and at γ − 1 ∼ 30 for
σ = 50). A signature of this bump at intermediate energies is also
seen in the spectrum of small plasmoids (compare the red curve in
panel b with the green line, showing that such bump is absent in
the spectrum of the largest plasmoids). In simulations with periodic
boundaries, where the spectrum at any given time is dominated
by the particle content in the largest primary islands, one would
expect that such bump at intermediate energies would be buried
underneath the broad non-thermal spectrum of the largest islands,
as it was indeed the case in SS14.

Since the particles that populate the bump at intermediate energies
are preferentially moving along the x-direction of the outflow, a
similar signature should appear in the second row of Fig. B1, as it
is indeed observed. In the y and z momentum spectra, i.e. in the

directions perpendicular to the bulk outflow, one should still see the
thermal component of this particle population, whose temperature
scales as ∝ √

σ . In fact, this explains the bump appearing in the
third and bottom rows at trans-relativistic momenta, with a clear
tendency for the peak momentum to increase with magnetization
(the peak is located at ∼0.8 mc for σ = 3, at ∼1.5 mc for σ = 10
and at ∼3 mc for σ = 50).

In the bottom row, we present the positron pz spectrum in the
laboratory frame, differentiating between positrons with pz > 0
(solid curves) and pz < 0 (dotted curves). This shows that the
momentum spectrum in the +z-direction of the reconnection elec-
tric field is slightly harder than along the −z-direction (or along
the y-direction). The asymmetry between the pz > 0 and pz < 0
momentum spectra is most pronounced at the highest energies, in
agreement with the argument in Section 4.2, i.e. the anisotropy in
large islands is driven by the curvature and ∇B drift speed, which,
for a fixed island width, is an increasing function of the particle
energy.
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