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ABSTRACT
We propose a mechanism whereby the intense, sheet-like structures naturally formed by
dynamically aligning Alfvénic turbulence are destroyed by magnetic reconnection at a scale
λ̂D, larger than the dissipation scale predicted by models of intermittent, dynamically aligning
turbulence. The reconnection process proceeds in several stages: first, a linear tearing mode
with N magnetic islands grows and saturates, and then the X-points between these islands
collapse into secondary current sheets, which then reconnect until the original structure is
destroyed. This effectively imposes an upper limit on the anisotropy of the structures within
the perpendicular plane, which means that at scale λ̂D the turbulent dynamics change: at scales
larger than λ̂D, the turbulence exhibits scale-dependent dynamic alignment and a spectral index
approximately equal to −3/2, while at scales smaller than λ̂D, the turbulent structures undergo
a succession of disruptions due to reconnection, limiting dynamic alignment, steepening the
effective spectral index and changing the final dissipation scale. The scaling of λ̂D with
the Lundquist (magnetic Reynolds) number SL⊥ depends on the order of the statistics being
considered, and on the specific model of intermittency; the transition between the two regimes
in the energy spectrum is predicted at approximately λ̂D ∼ S−0.6

L⊥ . The spectral index below λ̂D

is bounded between −5/3 and −2.3. The final dissipation scale is at λ̂η,∞ ∼ S
−3/4
L⊥ , the same

as the Kolmogorov scale arising in theories of turbulence that do not involve scale-dependent
dynamic alignment.
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1 IN T RO D U C T I O N

Turbulence is thought to be important in many astrophysical situa-
tions, and is also measured directly by spacecraft in the solar wind
(Bruno & Carbone 2013). In many situations, the system consists
of an ionized plasma threaded by a strong mean magnetic field
B0. In this case, the Alfvénically polarized fluctuations decouple
from the compressive modes and satisfy the reduced magnetohy-
drodynamics (RMHD) equations (Strauss 1976), regardless of the
collisionality of the plasma (Schekochihin et al. 2009). Written in
terms of Elsasser (1950) variables z±

⊥ = u⊥ ± b⊥, where u⊥ and b⊥
are the velocity and magnetic field (in velocity units) perturbations
perpendicular to B0, these equations are

∂t z±
⊥ ∓ vA∂z z±

⊥ + z∓
⊥ · ∇⊥z±

⊥ = −∇⊥p, (1)

�E-mail: alfred.mallet@unh.edu

where the pressure p is obtained from the solenoidality condition
∇⊥ · z±

⊥ = 0, the Alfvén speed is vA = |B0| and B0 is in the z
direction.

The turbulent system described by equation (1) has several inter-
esting characteristics. First, it is anisotropic with respect to the
direction of the local magnetic field, as attested by numerical
simulations (Shebalin, Matthaeus & Montgomery 1983; Oughton,
Dmitruk & Matthaeus 2004; Chen et al. 2011; Beresnyak 2015;
Mallet et al. 2016) and solar-wind measurements (Horbury,
Forman & Oughton 2008; Podesta 2009; Wicks et al. 2010; Chen
et al. 2011; Chen 2016). This anisotropy can be understood in terms
of the critical-balance conjecture (Goldreich & Sridhar 1995, 1997),
whereby the linear (Alfvén) time τA ∼ l‖/vA (l‖ being the fluctua-
tions’ coherence length along the magnetic field line) and non-linear
time τ nl should be similar to each other at all scales, τA ∼ τ nl.

Secondly, it has been noticed that at least in numerical simu-
lations there is a tendency for the different fields (z±

⊥, u⊥, b⊥) to
align with one another within a small, scale-dependent angle θ
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(Boldyrev 2006, hereafter B06; Beresnyak & Lazarian 2006;
Mason, Cattaneo & Boldyrev 2006). In the non-linear term in
equation (1), only z±

⊥ with a gradient in the direction of z∓
⊥ gives

rise to a non-zero contribution. Combined with the solenoidality of
the RMHD fields, this implies that the alignment causes the non-
linearity to be noticeably suppressed. One can take this into account
by defining the non-linear time as follows:

τ±
nl

.= λ

δz∓
⊥ sin θ

. (2)

If sin θ is scale dependent, it may affect how the fluctuation am-
plitudes δz±

⊥ scale with the perpendicular scale λ. One can link
the alignment effect to local anisotropy of the turbulent structures
within the perpendicular plane. The aspect ratio of a sheet is re-
lated to the alignment angle between δu⊥ and δb⊥ fluctuations (see
Boldyrev 2006) or between δz+

⊥ and δz−
⊥ fluctuations (see Chandran,

Schekochihin & Mallet 2015) via

λ

ξ
∼ sin θ, (3)

where ξ is the coherence length of the structure in the direc-
tion of the vector fluctuations (hereafter the ‘fluctuation-direction
scale’), and λ is the coherence length of the structure in the di-
rection perpendicular to this and also perpendicular to the par-
allel direction along the magnetic field (which we therefore call
the ‘perpendicular scale’). This 3D anisotropy has been mea-
sured in numerical simulations (Verdini & Grappin 2015; Mallet
et al. 2016) and in the solar wind (Chen et al. 2012, although in
the latter case, it has not as yet been definitively pronounced scale
dependent).

The third key feature of Alfvénic turbulence, seen in both nu-
merical simulations and in the solar wind, is its high degree
of intermittency. Two related models of this intermittency that
take into account both critical balance and dynamic alignment
(Chandran et al. 2015; Mallet & Schekochihin 2017, reviewed in
Section 2) show that, at each scale, higher amplitude fluctuations
are systematically more aligned and therefore more anisotropic in
the perpendicular plane. Anticorrelation of the alignment angle and
amplitude has been confirmed in numerical simulations (Mallet,
Schekochihin & Chandran 2015; Mallet et al. 2016).

Models of turbulence that incorporate dynamic alignment
tend to predict perpendicular spectral indices close to −3/2
(Boldyrev 2006; Chandran et al. 2015; Mallet & Schekochihin
2017), while the original ‘GS95’ (Goldreich & Sridhar 1995) model,
which does not include dynamic alignment, predicts a −5/3 spec-
tral index. Surprisingly, which of these two classes of models is
correct has still not been settled numerically: while spectral indices
measured in extremely high-resolution (20482 × 512) simulations
are very close to −3/2 (Perez et al. 2012, 2014), the scaling of the
dissipation scale λη with Reynolds number (Re

.= L⊥δz/η, where η

is the resistivity) in simulations with equivalent resolution appears
to agree much better with the prediction using the GS95 model,
λη ∝ Re−3/4 (Beresnyak 2014). This suggests that there may be
some small scale (perhaps relatively close to, but not smaller than,
the dissipative scale predicted by the alignment theories) past which
further alignment (or, equivalently, anisotropy within the perpen-
dicular plane) breaks down.

In this paper, we propose a mechanism that causes the turbulent
structures to stop aligning and becoming more sheet like. It appears
to be in the nature of the turbulence, at least at large scales, to dynam-
ically generate coherent, large amplitude, sheet-like structures. It is
well known that sheet-like current structures are unstable to tearing

modes1 (Furth, Killeen & Rosenbluth 1963; Coppi et al. 1976), and
that these modes can eventually disrupt the initial sheet-like struc-
tures via magnetic reconnection (Loureiro et al. 2005; Tenerani
et al. 2016; Uzdensky & Loureiro 2016). This paper attempts to an-
swer the question of whether and at what scale this process occurs
for the kind of sheet-like structures that are dynamically formed by
the aligning Alfvénic turbulence. It has recently been realized that,
as current sheets form, they are violently unstable to the tearing in-
stability, and so they never reach the idealized ‘Sweet-Parker’ recon-
nection regime (Parker 1957; Sweet 1958; Loureiro, Schekochihin
& Cowley 2007; Pucci & Velli 2014; Tenerani et al. 2016; Uzdensky
& Loureiro 2016) but instead break up into shorter sheets separated
by magnetic islands. There are several stages in this process: the
initial linear growth of the tearing instability, a possible Rutherford
stage (Rutherford 1973) involving secular growth of the magnetic
islands and, finally, collapse of the X-points between the islands into
short, Sweet-Parker-like sheets, which disrupt the initial structure
by magnetic reconnection (Loureiro et al. 2005). The characteristic
time-scales of these processes, discussed in Section 3, make up the
overall time needed to disrupt the sheet, which must be compared
with the turbulent cascade time, τC ∼ τ nl ∼ τA, to determine if
the disruption occurs. This is done in Section 4. We then determine
the critical scale below which the sheet-like structures cannot sur-
vive, and also determine the number of magnetic islands that the
sheets are broken into (see Sections 4.4 and 5). We also discuss, in
Section 6, the possible nature of the turbulence below the disruption
scale, and show that the disruption process (repeated in a recursive
fashion) leads to the Kolmogorov (1941) scaling of the final dissi-
pative cutoff, and a steepening of the spectrum below the disruption
scale. This can potentially explain the controversy between the re-
sults of Perez et al. (2014) and Beresnyak (2014), as well as being an
interesting physical example of turbulence creating the conditions
needed for reconnection.

2 TU R BU L E N C E P H E N O M E N O L O G Y

The intermittency models of Chandran et al. (2015, hereafter
CSM15) and Mallet & Schekochihin (2017, hereafter MS17) both
envision structures that are characterized by amplitude δz, and char-
acteristic scales l‖ (parallel scale), λ (perpendicular scale) and ξ

(fluctuation-direction scale). Here, we outline the scalings arising
from these models that we need in this work. Following MS17, we
introduce normalized variables

δẑ = δz

δz
, λ̂ = λ

L⊥
, l̂‖ = l‖

L‖
, ξ̂ = ξ

L⊥
, (4)

where δz is the outer-scale fluctuation amplitude, and L⊥ and L‖
are the perpendicular and parallel outer scales, respectively. The
normalized amplitude in both models is given by δẑ ∼ βq , where
the non-negative random integer q is a Poisson random variable2

with the mean μ = − ln λ̂, and β is a dimensionless constant. This
form for the distribution of the amplitude may be motivated by

1 One might also ask whether these sheets could be disrupted by the
Kelvin–Helmholtz instability. However, since the vortex stretching terms
for the different Elsasser fields have opposite sign (Zhdankin, Boldyrev &
Uzdensky 2016), in general, there will be more ‘current sheets’ than ‘shear
layers’. In such sheets, the Kelvin–Helmholtz instability is suppressed
(Chandrasekhar 1961).
2 Technically, in the MS17 model, the distribution of q conditional on λ̂ is a
Poisson mixture, which, however, gives the same scalings for the structure
functions as would be obtained with a pure Poisson-distributed q.
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modelling the amplitude as decreasing by a fixed factor β each time
some quantized event (interpreted in CSM15 as a balanced collision)
occurs, as the structure sharpens in scale (She & Waymire 1995).
The perpendicular scalings are given in both models by

〈δẑm〉 ∼ λ̂ζ⊥
m , (5)

with

ζ⊥
m = 1 − βm, (6)

where β is fixed via two different strategies in the two models: in
MS17, the result is β = 1/

√
2, while in CSM15, β = 0.691. We

will find it useful to define the ‘effective amplitude’ of the structures
that dominate the mth order perpendicular structure function:

〈δẑm|λ̂〉 ≡ (δẑ[m])m ∼ λ̂1−βm

, (7)

and so

δẑ[m] ∼ λ̂(1−βm)/m. (8)

Note that (1 − βm)/m is a strictly decreasing function of m, and so
m is a useful proxy for the amplitude of the structures at a given
scale. Three cases in particular will be important. The first is m →
∞, corresponding to the most intense structures with q = 0, which
have amplitudes

δẑ[∞] ∼ 1, (9)

independent of λ̂. Secondly, m = 2 corresponds to the ‘r.m.s. am-
plitude’ structures that determine the spectral index (since this is
simply related to the scaling of the second-order structure function),
and have amplitudes

δẑ[2] ∼ λ̂1/4 (MS17), δẑ[2] ∼ λ̂0.26 (CSM15). (10)

Finally, the limit m → 0 describes the ‘bulk’ fluctuations with q = μ,
whose amplitudes are

δẑ[0] ∼ λ̂− ln β . (11)

In both models, the fluctuation-direction scale ξ̂ is given by

ξ̂ ∼ λ̂αδẑ, (12)

and the cascade time is

τC ∼ τnl ∼ λ̂κ1δẑκ2
L⊥
δz

. (13)

In the MS17 model,

α = κ1 = 1/2, κ2 = 0, (14)

while in the CSM15 model3,

α = 1 + ln β, κ1 = (1 + ln β)2, κ2 = 1 + ln β. (15)

Both models envision structures that are sheet-like in the perpen-
dicular plane, with length ξ and width λ, satisfying ξ � λ. Note
that taking m = 2 in the MS17 model recovers all the scalings of the
original dynamic-alignment model due to Boldyrev (2006, which

3 CSM15 defined the quantity ξ (or ξλ in their notation) to be the char-
acteristic distance along the (δz+) fluctuation direction that a weak δz−
fluctuation would propagate within an intense δz+ sheet before exiting that
sheet. CSM15 also showed (see e.g. their section 2.6) that two locations
within a δz+ sheet that are separated along the fluctuation direction by a
distance ∼ξλ cascade in different and uncorrelated ways. As a sheet-like
δz+ structure cascades to smaller scales, its characteristic dimension along
the fluctuation direction in the CSM15 model thus becomes ∼ξλ.

we will hereafter refer to as B06), but via a different derivation,
and positing alignment between Elsasser fields rather than between
the velocity and magnetic field. We will assume that the magnetic
field varies by δB ∼ δz across the sheet, and further assume that
any velocity fluctuation δu � δB across the sheet4 does not signif-
icantly alter the scalings of the tearing instability or its saturation.
To determine whether and how structures of a particular amplitude
are disrupted faster than they cascade, we must take a detailed look
at the different time-scales involved in the disruption process.

3 TI MESCALES

The process whereby a sheet of length ξ and width λ, with a mag-
netic field jump δB ∼ δz, can be destroyed by reconnection oc-
curs in several stages, which we will now briefly review, following
Uzdensky & Loureiro (2016). First, there is exponential growth of
the linear tearing mode until the width of the island(s) is approxi-
mately the width of the inner layer where resistivity is important,

w ∼ δin ∼ [
γ (kδz)−2λ2η

]1/4
, (16)

where γ is the linear growth rate of the tearing mode and k ∼ N/ξ

is its wavenumber (N is the number of islands). Secondly, there
may be secular “Rutherford’ growth of the islands until w ∼ 1/�′,
where �′ is the instability parameter for the tearing mode. Thirdly,
the X-point(s) that have arisen collapse into thin sheets, which then
undergo fast reconnection, leaving behind a set of magnetic islands.
We will examine these processes to determine which of them domi-
nates the total time to disrupt the sheet, and thus determine whether
this is faster than the cascade time τC.

3.1 Linear growth stage

We will assume that a typical sheet-like structure arising in dynam-
ically aligning turbulence is reasonably well modelled by a Harris
(1962) sheet, so

�′λ = 2

(
1

kλ
− kλ

)
. (17)

There is an instability provided that �′ > 0. We are interested in
long-wavelength modes, so

�′λ ∼ 1

kλ
∼ ξ̂

Nλ̂
. (18)

There are two possible situations: (i) �′δin � 1, ‘FKR’ modes
(Furth et al. 1963) with

γFKR ∼ �′4/5k2/5δz2/5λ−2/5η3/5

∼ N−2/5

(
ξ

λ

)2/5

S
−3/5
λ

δz

λ
, (19)

and (ii) �′δin ∼ 1, ‘Coppi’ modes (Coppi et al. 1976) with

γCoppi ∼ k2/3δz2/3λ−2/3η1/3

∼ N2/3

(
ξ

λ

)−2/3

S
−1/3
λ

δz

λ
, (20)

4 The ‘�’ is important because for δu > δB, the Kelvin–Helmholtz mode
dominates over the tearing mode. However, we neglect this situation for the
reasons given in footnote 1.
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where the Lundquist number5 is Sλ
.= λδz/η. Since these two modes

have opposite dependence on k, the maximum growth rate can be
found at the wavenumber where γ FKR ∼ γ Coppi, giving

kmaxλ ∼ S
−1/4
λ , γmax ∼ S

−1/2
λ

δz

λ
. (21)

However, this ‘transitional mode’ is only accessible if it actually
fits into the sheet, i.e. if

kmaxξ ∼ Nmax ∼ ξ̂

λ̂
S

−1/4
λ > 1. (22)

The maximum growth rate for a particular structure is thus either
γ max given by equation (21), if kmax fits into the structure, or γ FKR

given by equation (19) with N = 1, the longest-wavelength FKR
mode, otherwise.

3.2 Rutherford growth stage

The linear growth stage ends when the width of the islands w ∼ δin,
given by equation (16). If �′w � 1, there will be secular ‘Ruther-
ford’ growth (Rutherford 1973) until �′w ∼ 1,

w ∼ η�′t . (23)

If present, this stage lasts for a time

τRuth ∼ 1

η�′2 ∼ N2

(
λ̂

ξ̂

)2

Sλ

λ

δz
. (24)

Note that τRuth increases with N, so if the maximum growth rate
is attained for the N = 1 FKR mode, this mode will also exit the
Rutherford stage and saturate first. In the FKR limit, �′δin � 1, and
so there is a well-defined Rutherford stage. For the Coppi modes,
�′δin ∼ 1, and so there is no Rutherford stage.

3.3 Collapse/reconnection stage

At the end of the Rutherford stage (or immediately after the linear
stage in the case of Coppi modes), the X-point(s) formed by the
tearing mode collapse into thin secondary sheets, each of length
∼ξ/N, and reconnect the flux in the original structure. This collapse,
studied by Loureiro et al. (2005), results in exponential, Sweet-
Parker-like growth of the reconnected flux on a time-scale that,
written in terms of our variables, is

γSP ∼ S
−1/2
λ

δẑ

λ
∼ γmax, (25)

and so the rate of the collapse is always greater than or equal to
the growth rate of the initial linear instability. Following Uzdensky
& Loureiro (2016), we therefore do not need to consider the time
associated with this stage in our determination of the disruption
time of the original structure.

For high enough SL⊥ , the collapse rate becomes independent of
Sλ because the Lundquist number associated with the secondary
sheets becomes larger than Sc ∼ 104, the critical Lundquist number
required to trigger the onset of plasmoid-dominated fast recon-
nection (Loureiro, Schekochihin & Cowley 2007; Bhattacharjee
et al. 2009; Samtaney et al. 2009; Uzdensky, Loureiro &
Schekochihin 2010; Loureiro et al. 2012). The critical SL⊥ nec-
essary to access the plasmoid-dominated regime will be determined
in Section 4.5.

5 Note that Sλ is just what in turbulence theory one would usually call the
local magnetic Reynolds number at scale λ.

3.4 Disruption time

Based on the above scalings, we can now identify the disruption
time as

τD ∼
{

max[1/γFKR, τRuth] if λ̂ > λ̂tr,

1/γmax if λ̂ ≤ λ̂tr.
(26)

This is just restating the key result of Uzdensky & Loureiro (2016),
which will allow us to compare τD with the cascade time τC. The
transition scale λ̂tr will be worked out in Section 4.2.

3.5 Resistive time

If the structures are not able to be disrupted by reconnection, they
can simply decay resistively on a time-scale

τη ∼ λ2

η
. (27)

The interesting question that we will answer in this paper is whether
and under what circumstances this basic dissipation mechanism is
superceded by tearing and the onset of reconnection.

4 C R I T I C A L S C A L E S

In this section, we will calculate the critical scales that partition the
domain defined by λ̂ and m (see equation 8) into regions where the
structures are and they are not disrupted by the onset of reconnec-
tion. To do this, we need to compare the time-scales identified in
Section 3 to the cascade time τC (equation 13).

4.1 Resistive scale

First, we deal with the dissipative scale for the turbulence in the
absence of any disruption by reconnection. Using equations (13)
and (27), we evaluate

τC

τη

∼ λ̂κ1δẑκ2L⊥η

λ2δz
∼ λ̂κ1−2δẑκ2S−1

L⊥ . (28)

We consider fluctuations δẑ[m] that are important for the mth-order
structure function, using equation (8), to obtain

τC

τη

∼ S−1
L⊥ λ̂κ1−2+κ2ζ⊥

m /m. (29)

Therefore, the resistive scale for these mth-order structures is

λ̂η ∼ S
−(2−κ1−κ2ζ⊥

m /m)−1

L⊥ . (30)

In the MS17 model, since κ1 = 1/2 and κ2 = 0,

λ̂MS
η ∼ S

−2/3
L⊥ , (31)

independent of m. This is the standard estimate for the dissipa-
tion scale (the analogue of the Kolmogorov scale) in the original
dynamic-alignment model of B06 (see e.g. Perez et al. 2012 for an
explicit derivation of this scaling). In the CSM15 model,

λ̂CSM
η ∼ S

−(1.60−0.63ζ⊥
m /m)−1

L⊥ , (32)

so the low-order, lower amplitude fluctuations dissipate at smaller
scales than the high-order, higher amplitude fluctuations.

4.2 Boundary between FKR and transitional modes

The boundary between the two different regimes for the lin-
ear tearing stage is given by equation (22), S

−1/4
λ ξ̂/λ̂ ∼ 1. Using
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equation (12) and replacing δẑ with the typical amplitude of an
mth-order structure given by equation (8), we see that the transi-
tional mode (21) may only occur when

λ̂ < λ̂tr ∼ S
1/4

(
α− 5

4 + 3
4

ζ⊥
m
m

)−1

L⊥ . (33)

In the MS17 model,

λ̂MS
tr ∼ S

−1/3(1−ζ⊥
m /m)−1

L⊥ , (34)

while in the CSM15 model,

λ̂CSM
tr ∼ S

−0.40(1−1.21ζ⊥
m /m)−1

L⊥ . (35)

At scales λ̂ > λ̂tr, the FKR mode with N = 1 is the most unstable
linear mode, while at λ̂ < λ̂tr, the transitional mode (21) is the
fastest.

4.3 Linear FKR critical scale

To determine whether the N = 1 FKR mode grows fast enough to
disrupt the structures, we first calculate, using equations (8), (12),
(13) and (19),

γFKR[N = 1]τC ∼
(

ξ̂

λ̂

)2/5

S
−3/5
λ

δẑ

λ̂
λ̂κ1δẑκ2

∼ S
−3/5
L⊥ λ̂

2α
5 −2+κ1δẑ

4
5 +κ2

∼ S
−3/5
L⊥ λ̂

2α
5 −2+κ1+ ζ⊥

m
m

(
4
5 +κ2

)
. (36)

The sheet will not be disrupted unless γ FKR[N = 1]τC > 1. This is
equivalent to

λ̂ < λ̂FKR ∼ S
3/5

[
2α
5 −2+κ1+ ζ⊥

m
m

(
4
5 +κ2

)]−1

L⊥ . (37)

For the MS17 model,

λ̂MS
FKR ∼ S

−6/13

(
1− 8ζ⊥

m
13m

)−1

L⊥ , (38)

while for the CSM15 model,

λ̂CSM
FKR ∼ S

−0.44(1−1.06ζ⊥
m /m)−1

L⊥ . (39)

Comparing these scalings with equation (33), we see that the scale
λ̂FKR is smaller than the corresponding λ̂tr for all m, and so there
are no FKR modes that grow fast enough to disrupt the structures.
Therefore, we do not need to consider the duration of the Rutherford
stage (see Section 3.2) to determine whether disruption occurs.

4.4 Disruption scale

For a given m, at λ̂ ≤ λ̂tr, with the latter scale given by equation (33),
the disruption time is, therefore,

τD ∼ 1/γmax, (40)

and we must calculate

γmaxτC ∼ S
−1/2
λ

δẑ

λ̂
λ̂κ1δẑκ2

∼ λ̂−3/2+κ1+(1/2+κ2)ζ⊥
m /mS

−1/2
L⊥ , (41)

where we have used equation (21) for γ max and equations (8) and
(13) to express τC and δẑ in terms of λ̂ and m. The sheet will be
disrupted if γ maxτC > 1. This happens for

λ̂ < λ̂D ∼ S
−1/2

[
3
2 −κ1−

(
1
2 +κ2

)
ζ⊥
m
m

]−1

L⊥ . (42)

The corresponding number of islands, from equation (22), is

ND ∼ S
−1/4
λD

ξ̂D

λ̂D
,

∼ λ̂
α−5/4+3ζ⊥

m /4m

D S
−1/4
L⊥ ,

∼ S

{
1
2

(
5
4 −α− 3ζ⊥

m
4m

)[
3
2 −κ1−

(
1
2 +κ2

)
ζ⊥
m
m

]−1

− 1
4

}

L⊥ . (43)

In the MS17 model, these scalings become

λ̂MS
D ∼ S

−1/2

(
1− ζ⊥

m
2m

)−1

L⊥ , NMS
D ∼ S

1−2ζ⊥
m /m

8−4ζ⊥
m /m

L⊥ , (44)

while in the CSM15 model,

λ̂CSM
D ∼ S

−0.45(1−1.03ζ⊥
m /m)−1

L⊥ , NCSM
D ∼ S

1−2.71ζ⊥
m /m

32.3−32.1ζ⊥
m /m

L⊥ . (45)

Note that λ̂D < λ̂tr, as expected, since no FKR modes grow fast
enough to disrupt the sheets (see Section 4.3). These scalings de-
termine the largest λ̂ for which the fastest growing mode reaches
collapse in a time shorter than the cascade time τC of the turbulence,
and, therefore, the smallest λ̂ for which the aligned, sheet-like struc-
tures can survive. We will examine some instructive particular cases
and the physical consequences of these results in Sections 5 and 6.

4.5 Critical SL⊥ for the plasmoid-dominated regime

As an interesting aside, we noted in Section 3.3 that for high enough
SL⊥ the reconnection rate γ SP becomes independent of Sλ due to the
onset of the plasmoid instability. For this to occur, the Lundquist
number associated with the secondary sheets must be

SξD/ND ∼ λ̂Dδẑλ̂D
S

1/4
λ̂D

SL⊥ ∼ λ̂
5/4(1+ζ⊥

m /m)
D S

5/4
L⊥ > Sc, (46)

where we used equation (22) for ND = Nmax. Expressing this con-
dition in terms of SL⊥ , we obtain in the MS17 model, using equa-
tion (44),

SL⊥ > S
4/5

1−ζ⊥
m /2m

1/2−ζ⊥
m /m

c . (47)

In the CSM15 model, we obtain

SL⊥ > S

1.47−1.51ζ⊥
m /m

1−2.72ζ⊥
m /m

c . (48)

For such values of SL⊥ , the secondary sheets will break into plas-
moids and the reconnection/collapse rate will be given by

γplasmoids ∼ S−1/2
c

δẑ

λ
, (49)

instead of equation (25), because the secondary sheet will be broken
into ‘critical Sweet-Parker sheets’ (Uzdensky et al. 2010), each of
which will reconnect at this rate. Assuming Sc ∼ 104 (Loureiro
et al. 2007; Samtaney et al. 2009),6 the critical SL⊥ given by
equation (47) is quite high: for the m = ∞ structures in the MS17

6 Note that in a turbulent environment, Sc may be somewhat lower, possibly
by as much as an order of magnitude (see Loureiro et al. 2009).
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Figure 1. Comparison of the cascade time-scale τC, equation (13, dashed lines), the disruption time-scale τD, equation (26, solid, coloured lines) and the
resistive time-scale τη , equation (27, dotted lines), for the MS17 model (left-hand panel) and the CSM15 panel (right-hand panel). Where these time-scales
depend on the order m of the fluctuations, three values of m are plotted: m = ∞ (in red), m = 2 (in green) and m = 0 (in blue). In the CSM15 model, not
only τD but also the cascade time varies with m, and so there are three curves for τC. In the MS17 model, τC does not depend on m, and so there is a single
curve. The point at which the disruption process becomes faster than the turbulent cascade is marked with a circle for each m, and a grey vertical line marks
the corresponding scale λ̂D[m], given by equations (44) for MS17 and (45) for CSM15.

model to be plasmoid unstable, SL⊥ � S8/5
c ∼ 106, while for the

m = 2 structures in the MS17 model, SL⊥ � S14/5
c ∼ 1011. In the

CSM15 model, the m = ∞ structures are plasmoid unstable for
SL⊥ � S1.47

c ∼ 106, while the m = 2 structures are plasmoid unstable
for SL⊥ � S3.7

c ∼ 1015. This suggests that the plasmoid-dominated
regime is not accessible in current numerical simulations, as indeed
confirmed by the absence of plasmoid-unstable current sheets in
the simulations of Zhdankin et al. (2013). The critical SL⊥ is much
higher than the critical Lundquist number for a Sweet-Parker sheet
to be plasmoid unstable because the structures formed by the turbu-
lence do not have a particularly high aspect ratio. The mechanism
outlined in this paper does not rely on the secondary sheets be-
ing plasmoid unstable. For the disruption to occur, we only need
τC/τD > 1, where τD is set by the tearing growth rate.

5 TR A N S I T I O N TO A N E W R E G I M E O F
STRO NG ALFVÉ N I C T U R BU L E N C E

The comparison of time-scales in Section 4 has allowed us to predict
the scale at which the sheet-like structures at each order m are
disrupted by the onset of reconnection. While the cascade time τC

(equation 13)) decreases as the cascade progresses to smaller scales,
so does the disruption time τD (equation 26). Since the non-linearity
in the aligned sheet-like structures is suppressed by a factor equal
to their alignment angle (inverse aspect ratio), τD decreases faster
than the cascade time, and eventually becomes smaller, at the scale
λ̂D. This is shown in Fig. 1 for both the MS17 and CSM15 models,
for m = ∞, 2, 0 (most intense, rms. amplitude and most typical
structures, respectively). Also shown are the disruption scales λ̂D[m]
beyond which the sheet-like structures of order m cannot survive.

The effect that the disruption has on the turbulence is, thus, as
follows: for λ̂ < λ̂D, the sheet-like structures predicted by the turbu-
lence models that rely on dynamic alignment (e.g. MS17, CSM15
and the original model of B06) are disrupted by reconnection into
several separate islands. The detailed dependence of λ̂D on m in the

MS17 and CSM15 models (equations 44 and 45, respectively) is
shown in Fig. 2, along with the resistive scales corresponding to
these models (equations 31 and 32). The disruption scale λ̂D is an
increasing function of m. Roughly speaking, one might expect the
behaviour of the mth-order structure function to change at λ̂D[m].
In practice, since structures of all orders contribute to all struc-
ture functions to differing degrees, the transition will take place
over a range of scales between λ̂D[∞] and λ̂D[0]. As m → ∞, the
disruption scale approaches

λ̂MS
D [∞] ∼ S

−1/2
L⊥ , λ̂CSM

D [∞] ∼ S−0.45
L⊥ , (50)

in the MS17 and CSM15 models, respectively. One might expect to
see a change in the spectral index (since this is related to the scaling
exponent of the second-order structure function) at around

λ̂MS
D [2] ∼ S

−4/7
L⊥ , λ̂CSM

D [2] ∼ S−0.62
L⊥ . (51)

For m = 0 structures, the disruption scale is given by

λ̂MS
D [0] ∼ S−0.60

L⊥ , λ̂CSM
D [0] ∼ S0.73

L⊥ . (52)

In the MS17 model, the disruption scale is above the resistive scale
for all m, λ̂D > λ̂η (see Section 4.1). In the CSM15 model, λ̂D > λ̂η

for all m > 0, but λ̂D[0] and λ̂η[0] are identical. Thus, in the CSM15
model, m = 0 structures, which are neither aligned nor sheet like,
cascade to their resistive scale without being disrupted by the onset
of reconnection. This explicitly shows that the suppression of the
non-linearity due to dynamic alignment is required for the disruption
process to become effective at a larger scale than λ̂η.

6 T U R BU L E N C E B E L OW λ̂D

It is natural to ask what happens to the turbulence below the dis-
ruption scale λ̂D. We will restrict ourselves to the case of m = 2
(the r.m.s. amplitude structures) for the following discussion, i.e.
we forgo any discussion of intermittency below λ̂D.

We expect the sheet-like structures just above λ̂D to be broken
up into ‘flux-rope-like’ structures (3D versions of plasmoids) just
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Figure 2. The solid black line shows the dependence of λ̂D,1 on m in the MS17 model (equation 44, left-hand panel) and in the CSM15 model (equation 45,
right-hand panel). The dashed lines show λ̂D,1[m = ∞]. The two different subranges for the m = 2 structures are marked by blue and red arrows. The leftmost
(i.e. larger scale) dotted line in each plot shows the expected dissipation scales (31) and (32) of the Alfvénic turbulence without disruption, while the rightmost
(smaller scale) dotted line shows the Kolmogorov scale, S

−3/4
L⊥ . The black point shows the value of the final dissipation scale of the disrupted turbulence

λ̂D,∞ ∼ λ̂η,∞ (equations 60 and 63), equal to the Kolmogorov scale.

below λ̂D: these are roughly circular in the perpendicular plane,
with scale λ̂D,7 but extended in the direction parallel to the local
magnetic field, due to critical balance. These structures, no longer
anisotropic in the perpendicular plane, will break up non-linearly,
serving as the energy-containing ‘eddies’ of a new cascade.

This implies that the fluctuation amplitude just below λ̂D should
decrease8. Indeed, the energy flux just below the scale λ̂D must be
equal to the energy flux just above it, or at any other scale in the
inertial range:

ε ∼ δz
3

L⊥
∼ δz3

1,−
λD

, (53)

where δz1, − is the amplitude of the new structures. This gives a
simple expression for this dynamically adjusted amplitude:

δẑ1,− ∼ λ̂
1/3
D , (54)

where we have normalized by outer-scale quantities in the usual way
(4). We have assumed here that the reconnection process involved
in the X-point collapse and formation of flux ropes (plasmoids)
can be viewed as mostly transferring energy from one form of mag-
netic/velocity perturbation at scale λD (aligned structures) to another
form of perturbation at scale λD (plasmoids, outflows). Moreover,
since the cascade time-scale λD/δz1, − for unaligned structures just
below scale λD is shorter than the disruption time-scale, we assume
that non-linear interactions between unaligned structures are the
dominant mechanism for transferring fluctuation energy from scale
λD to smaller scales. If a constant energy flux across λ̂D were not
a good assumption, the amplitude below λ̂D would be smaller than

7 Based on the numerical evidence in Loureiro et al. (2005), this does appear
to be how the tearing mode saturates at high enough �′.
8 This does not mean that there are actually sharp jumps in the structure
function. As the cascade progresses to smaller scales, the fraction of the en-
ergy contained in disrupted structures increases continuously: the disruption
scale is just the scale at which a given structure function is dominated by
disrupted structures.

that in equation (54), and the corresponding spectral slope at scales
below λ̂D would be steeper than deduced in Section 6.3.

We expect the new structures to behave as they normally would
in Alfvénic turbulence: to interact, cascade to smaller scales and
dynamically align as the scale decreases. The change compared to
the ‘primary cascade’ is that the disruption process effectively resets
the perpendicular anisotropy at scale λ̂D, so the aligning structures
have smaller aspect ratios than they would have had without the
disruption. The amplitude of the (m = 2) turbulent structures at
scales λ̂ < λ̂D scales as

δẑ ∼ λ̂
1/3
D

(
λ̂/λ̂D

)ζ⊥
2 /2

, (55)

where ζ⊥
2 = 1/2 in the MS17 model (and also in the original B06

theory) and ζ⊥
2 = 0.52 in the CSM15 model.

These structures will eventually, in turn, be disrupted at a sec-
ondary disruption scale, have their amplitude dynamically adjusted
to keep the energy flux constant and their perpendicular anisotropy
removed, engendering another ‘mini-cascade’, and so on. There-
fore, what we have so far called λ̂D is only the first of many sub-
sequent disruption scales – and so from now on, we will call this
first disruption scale λ̂D,1. We can therefore identify two distinct
subranges of MHD turbulence:

λ̂ > λ̂D,1, ‘free alignment range′,

λ̂ < λ̂D,1, ‘disruption range′.

The two subranges are shown in Fig. 2. We now proceed to dis-
cuss the sequence of disruptions (Section 6.1), the dissipation scale
λ̂η,∞ (Section 6.2) and the spectral index in the disruption range
(Section 6.3).

6.1 Recursive disruption

The series of consecutive disruptions can be understood as follows.
After the (i − 1)st disruption, the turbulence behaves as though there
is an ith cascade, with ‘outer-scale’ values of the turbulent variables
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Figure 3. The dependence of λ̂D,i on i (equation 59) is shown for the MS17
model (blue) and for the CSM15 model (red). The Kolmogorov scale given
by equation (63) is shown as a black dotted line.

given by the values at the (i − 1)st disruption scale, λ̂D,i−1. The
cascade has the same scalings as the original cascade, but with the
replacements

L⊥ → λD,i−1, δz → δzi−1,− ∼ λ̂
1/3
D,i−1δz, (56)

in all places where either of these variables appear (including nor-
malizations). Using the rule (56) in equations (44) and (45) for λ̂D

leads to the recursive relation

λ̂D,i ∼ λ̂
1+4fD/3
D,i−1 S

fD
L⊥ . (57)

This scale has been normalized by L⊥ after performing the replace-
ment procedure (56). The exponent fD depends on the choice of
turbulence model, and is the exponent in equation (51):

fD =
{−4/7, MS17 and B06 models,

−0.62, CSM15 model.
(58)

The recursion relation (57) may be written as

λ̂D,i ∼ S
fD

∑ i−1
j=0[1+4fD/3]j

L⊥ . (59)

As i → ∞, we have

λ̂D,∞ ∼ S
−3/4
L⊥ . (60)

Fig. 3 shows the scale λ̂D,i , for i = 1, 2, 3, . . . , 10. Obviously, as
i increases, the successive disruptions become ever closer to each
other in scale, and so the disruption scale quickly approaches the
asymptotic value (60).

6.2 Final dissipative cutoff scale

Similar to equation (57), using the rule (56) in equations (31) and
(32) for λ̂η leads to the recursive relation

λ̂η,i ∼ λ̂
1+4fη/3
D,i−1 S

fη

L⊥ , (61)

where the exponent fη is given by the exponents of equation (31) or
(32):

fη =
{−2/3, MS17 and B06 models,

−0.70, CSM15 model, m = 2.
(62)

The limit of λ̂η,i as i → ∞ is also given by (60), so

λ̂η,∞ ∼ λ̂D,∞ ∼ S
−3/4
L⊥ . (63)

Since fD > fη for both models, λ̂D,i > λ̂η,i for all i < ∞, and λ̂η,∞
may be considered the final dissipation scale for the cascade. This
scale is the same as the Kolmogorov (1941) scale that one expects
as the dissipation scale in the GS95 model, i.e. for MHD turbu-
lence without scale-dependent dynamic alignment. This reflects the
fact that there is a lower limit on alignment imposed by the dis-
ruption process. This dissipation scale is the key testable prediction
of our model for the disruption range. Encouragingly, Beresnyak
(2014) found that in numerical simulations of RMHD turbulence,
the dissipation scale was very close to the scale λ̂η,∞.

6.3 Coarse-grained spectrum

We will now proceed to estimate the effective spectral index of
the turbulent fluctuations in the disruption range. Namely, we will
examine the amplitudes just above and just below the disruption
scales to bound the effective scaling exponent in the disruption
range.

The ‘lower amplitude’, just below the ith disruption, scales as
(cf. equation 54)

δẑi,− ∼ λ̂
1/3
D,i . (64)

As i → ∞, δẑ∞,− ∼ S
−1/4
L⊥ . These lower amplitudes, defined only

on the coarse-grained set of scales λ̂D,i , define the lower envelope
of the second-order structure function (or spectrum).

The ‘upper amplitude’, just above the ith disruption, scales as (cf.
equation 55)

δẑi,+ ∼ λ̂
1/3
D,i−1

(
λ̂D,i/λ̂D,i−1

)ζ⊥
2 /2

. (65)

Using the recursion relation equation (57), this may be written as

δẑi,+ ∼ λ̂
(1/3−ζ⊥

2 /2)(1+4fD/3)−1+ζ⊥
2 /2

D,i S
−fD(1/3−ζ⊥

2 /2)(1+4fD/3)−1

L⊥ . (66)

In the MS17/B06 model, this is

δẑMS
i,+ ∼ λ̂

3/5
D,i S

1/5
L⊥ , (67)

while in the CSM15 model,

δẑCSM
i,+ ∼ λ̂0.68

D,i S0.26
L⊥ . (68)

As i → ∞, δẑ∞,+ ∼ S
−1/4
L⊥ for both models, the same as the lower

amplitudes. The upper amplitudes, defined on the coarse-grained
set of points λ̂D,i , determine the upper envelope of the second-
order structure function. Between disruptions, the fluctuations dy-
namically align and have the corresponding δẑ ∝ λ̂ζ⊥

2 /2 scaling. A
schematic for the idealized second-order structure function is shown
in Fig. 4. It consists of segments with the scaling ζ⊥

2 , joined by dis-
continuous jumps at each disruption scale λ̂D,i . In reality, the true
structure function will be continuous and lie between the upper and
lower envelopes.

The effective scaling of the second-order structure function is
therefore bounded above by λ̂6/5 (MS17/B06, equation 67) or λ̂1.3

(CSM15, equation 68), and below by λ̂2/3 (equation 64). Using the
usual correspondence between the second-order structure function
and the spectrum, we expect the effective spectral index in the
disruption range to be between −5/3 and −2.3 (CSM15) or −11/5
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Figure 4. Schematic showing the idealized form of the second-order struc-
ture function in the disruption range (black solid line). Also shown are the
upper amplitudes (66) as red points, lower amplitudes (64) as blue points
and the upper and lower envelopes as red and blue dotted lines, respectively.
The first three disruption scales are marked with vertical dotted lines, and
the final dissipation scale λ̂η,∞ (63) is marked with a vertical dashed line.
We stress that the true structure function will be continuous and somewhere
between the upper and lower envelopes.

(MS17/B06) in this range9. This is significantly steeper than the
−3/2 in the free alignment range, despite the fact that between
disruptions, there is scale-dependent alignment of fluctuations in
a similar way to the primary cascade. However, to measure such
a scaling unambiguously, one would likely need extremely high
SL⊥ , high enough to have a good scale separation between λ̂D,1 ∼
S

−4/7
L⊥ ∼ S−0.6

L⊥ and λ̂η,∞ ∼ S
−3/4
L⊥ . Thus, to test our model for the

disruption range, it is potentially more productive to determine the
scaling of the dissipation scale λ̂η,∞, comparing it to the S

−3/4
L⊥

scaling given in equation (63).
It is perhaps worth commenting on how one might expect the

scaling of the traditional alignment angles based on ratios of struc-
ture functions involving angles between different RMHD fields
(Beresnyak & Lazarian 2006; Mason et al. 2006) to change in the
disruption range. Because there is a physical lower limit to the align-
ment angle of turbulent structures in this range, these alignment
measures will likely have a shallower scaling exponent at scales
below λ̂D,1. Shallower scaling exponents for these measures were
indeed observed at the smallest scales in the numerical simulations
of both Perez et al. (2012, 2014) and Beresnyak (2012).

7 D ISCUSSION

The dynamic-alignment models of strong Alfvénic turbulence due
to B06, CSM15 and MS17 all predict that, as turbulent structures
cascade to smaller scales, the vector fluctuations within them pro-
gressively align, and the structures become progressively more

9 It might be worth mentioning in this context the results of Beresnyak
(2017) and Kowal et al. (2017), who observed in 3D numerical simula-
tions that reconnecting sheets generate turbulence that seems to agree with
the GS95 scalings, and also the results of Huang & Bhattacharjee (2016),
who performed a different simulation of reconnection-driven turbulence and
found turbulence with a perpendicular spectral index of −2.1 to −2.3.

sheet-like and anisotropic within the perpendicular plane. In this
paper, inspired by the recent work on the disruption of forming
current sheets by Uzdensky & Loureiro (2016), we have found that
these sheet-like structures are destroyed by reconnection below a
certain scale λ̂D. This disruption process occurs in two stages: linear
growth of a tearing instability with multiple islands, and then col-
lapse of the X-points between these islands into thin current sheets,
which reconnect until the original structure has been destroyed. This
means that the linear growth rate must be large compared to the cas-
cade rate of the turbulence in order for the structures to be disrupted.
To estimate the time-scales involved, we have used scalings from
the turbulence models of MS17 and CSM15. Qualitatively, these
models give similar results, although quantitatively the predicted
scalings are slightly different.

We find that there is a critical scale λ̂D ∼ S−0.6
L⊥ , below which the

turbulent structures are disrupted (see Section 5). This means that
the turbulence theories that rely on dynamic alignment can only be
expected to give accurate predictions at scales above λ̂D. At λ̂D, the
turbulent cascade is effectively reset to unaligned structures, which
can now cascade to smaller scales and again become progressively
more sheet like and aligned. We show that they are recursively
disrupted at a sequence of smaller scales λ̂D,i , with i = 2, . . . , ∞
(see Section 6.1). We place bounds on the effective spectral index
in the ‘disruption range’ below λ̂D, and show that the effective
spectral index is between −5/3 and −2.3, significantly steeper than
the approximately −3/2 spectral index above λ̂D (see Section 6.3).
However, a very large SL⊥ is needed to detect a reliable power law
in this range.

The disruptions get progressively closer to each other in scale as
i increases, and in the limit i → ∞ the turbulent fluctuations reach
a final dissipation scale λ̂η,∞ ∼ S

−3/4
L⊥ (see Section 6.2). This is a

smaller scale than the dissipation scale predicted by the dynamic-
alignment theories (B06; CSM15; MS17), and is identical to the
Kolmogorov (1941) scale that one would expect for turbulence with
a −5/3 spectrum (i.e. in the absence of dynamic alignment). This
is despite the fact that the spectral index above λ̂D in our model is
approximately −3/2 typical of the dynamic-alignment theories, and
that between disruptions, there is scale-dependent alignment: effec-
tively, the disruption process imposes a physical lower limit on the
alignment angle. Thus, our argument that sheet-like structures are
disrupted by reconnection below λ̂D might explain the discrepancy
between the measured −3/2 spectrum in numerical simulations
(Perez et al. 2014), and the seemingly opposing evidence that the
dependence of the dissipation range on viscosity or resistivity10 is
much better described by the Goldreich-Sridhar/Kolmogorov scal-
ing (Beresnyak 2014). Effectively, both sets of measurements are
correct, but neither tells the ‘full story’: at large scales, dynamic
alignment does occur, but at sufficiently small scales, the sheet-like
structures become unstable, which limits the alignment, steepens the
spectrum and forces the dissipation scale to have the Kolmogorov
scaling. The scaling of λ̂η,∞ is the key prediction of our model that
is testable in currently feasible numerical simulations.

There are many improvements possible to the simple model of
the disruption process and of the ‘disruption range’ that we have
proposed here. First, we have neglected the effects of shear and vis-
cosity on the stability of current layers (Chen & Morrison 1990a,b).
Secondly, our conjectures about the turbulence below λ̂D are rather
simple: we completely ignore the intermittency in this range, and
do not take into account anything about the specific nature of the

10 All relevant simulations were done with equal viscosity and resistivity.
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‘flux-rope-like’ structures produced by the tearing instabilities,
apart from conjecturing a limit on their anisotropy in the perpen-
dicular plane. Thirdly, we ignore any potential dissipation by the
reconnection process; this may steepen the spectral index in the dis-
ruption range. Finally, in many situations (including the solar wind),
kinetic scales will intervene at some point in the collapse process,
significantly altering the dynamics. Nevertheless, we expect the
idea that the sheet-like structures produced by dynamically align-
ing turbulence will eventually reconnect and destroy themselves is
robust, even in kinetic systems, and provides an interesting link be-
tween inertial-range intermittent turbulent structures and magnetic
reconnection.
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