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Electron Gyrokinetics @ Sub-Larmor Scales
electron Larmor rings are >> spatial scale of  e-m fluctuations
but electron Larmor period << time scale of  e-m fluctuations
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Magnetic Fluctuations @ Sub-Larmor Scales

Parallel Ampere’s law:

small factor!
Perpendicular Ampere’s law:

small factor!

Our equations are electrostatic. Is this a good approximation? – YES:

Key point: magnetic spectra are slaved to the spectra of  density and of     :  



Plan: Theory      Observables
1. Solve this system for                :

…and get spectra

2. Infer density spectra: 

magnetic-field spectra:

electric-field spectra:

because

because

because



Free Energy
1. Solve this system for                :

Rather than “solving,” we can resort to Kolmogorov-ology: scalings will be
set assuming constant flux of  some conserved quantity, viz., free energy:

free energy injection collisional dissipation
(negative definite!)

[AAS et al. 2008, PPCF 50, 24024]



Free Energy
1. Solve this system for                :

Rather than “solving,” we can resort to Kolmogorov-ology: scalings will be
set assuming constant flux of  some conserved quantity, viz., free energy:

free energy injection collisional dissipation
(negative definite!)

NB: free energy has to get to small scales in velocity space, to dissipate.



in our case

Free Energy

Rather than “solving,” we can resort to Kolmogorov-ology: scalings will be
set assuming constant flux of  some conserved quantity, viz., free energy:

free energy injection collisional dissipation
(negative definite!)

In general, the free energy in      kinetics is

Kruskal & Oberman 1958
Bernstein 1958 
Fowler 1963, 68
Krommes & Hu 1994 
Krommes 1999 
Sugama et al. 1996 
Hallatschek 2004 

Howes et al. 2006
Schekochihin et al. 2007-09
Scott 2010 
Banon, Jenko et al. 2011-14
Plunk et al 2012
Abel et al. 2013
Kunz et al. 2015…

This has a long history:

[AAS et al. 2008, PPCF 50, 24024]So our conserved quantity is (minus) entropy!
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Gyroaveraged Response

Constant flux of  free energy: 

…and we now need a relationship between     and    :   

oscillatory integral, sign changes
with period

we’ll show this
decorrelates
on the scale

from J0
(gyroaverging)

integral accumulates
as a random walk,

[AAS et al. 2008, PPCF 50, 24024]
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Nonlinear Phase Mixing

Constant flux of  free energy: 

…and we now need a relationship between     and    :   

we’ll show this
decorrelates
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•
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Two values of  gyroveraged velocity
come from spatially

decorrelated fluctuations if

coherence scale in velocity space, q.e.d.
[Tatsuno et al. 2009, PRL 103, 015003]
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coherence scale in velocity space.
[Tatsuno et al. 2009, PRL 103, 015003]

Thus, we have a phase-space cascade (“entropy cascade”), 
simultaneous in position and velocity. 



Entropy Cascade

Constant flux of  free energy: 

…and we now need a relationship between     and    :   

we’ll show this
decorrelates
on the scale

coherence scale in velocity space.
[Tatsuno et al. 2009, PRL 103, 015003]

Thus, we have a phase-space cascade (“entropy cascade”), 
simultaneous in position and velocity. 
Spectral representation in terms of  Hankel transform:

Phase-space spectrum:
[Plunk et al. 2010,
JFM, 664, 407]



Entropy Cascade

Constant flux of  free energy: 



Entropy Cascade

Constant flux of  free energy: 



Theory vs. Simulations

THEORY:

GK SIMULATIONS by T. Tatsuno (2D, electrostatic, decaying):

[Tatsuno et al. 2009, PRL 103, 015003]



Theory vs. Simulations
GK SIMULATIONS (3D electrostatic, ITG):

[Banon Navarro et al. 2011, PRL 106, 055001]

This was done for ion entropy cascade, but in the electrostatic limit,
the theory and results are exactly the same [AAS et al. 2008, PPCF 50, 24024]

THEORY:



Theory vs. Experiment!
LABORATORY EXPERIMENT:

[Kawamori (2013), PRL 110, 195001]

This was done for ion entropy cascade, but in the electrostatic limit,
the theory and results are exactly the same [AAS et al. 2008, PPCF 50, 24024]

by the two-point technique with the FSLP. j!kyj2 ¼
R1
"1 j!kx;ky j2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
Þdkx is equivalent to the one-

dimensional spectrum FðkyÞ, which follows k""
y scaling

if the energy spectrum density j!kx;kyj2ðkx;kyÞ is isotropic
in the k?-space and E!ðk?Þ / k?j!k?j2ðk?Þ follows k""

?
scaling. In Fig. 3, each spectrum is appropriately shifted
vertically to prevent overlapping and provide better visi-
bility. At higher wave numbers ky#i > 1, FðkyÞ for state
(iii) decays more sharply than that for the other states.
The high-ky power spectrum for state (iii) clearly follows

k"10=3
y , as predicted by Schekochihin et al. [8]. Also a line
proportional to k"6

y is shown together for comparison.
The fact that the spectrum in state (iii) followed the

k"10=3
? power law indicates that local interaction dominated
the entropy cascade in the k? range. On the other hand,
state (ii) was considered to be affected by disparate scale
interactions because a zonal-flow-like structure (m ¼ 0,
kk ¼ 0) was formed.

Here we examine the influence of linear phase mixing
based on typical measured plasma parameters: Ti ¼
0:1 eV; ! & 3' 103 ' 2$ & 18 krad s"1 ( kkvthi ¼
0:4' 490 m s"1 ¼ 196 rad s"1. Therefore, we conclude
that linear phase mixing is negligible in these plasma states.
In addition, as shown in Ref. [8], for ions, the linear phase

mixing whose time scale t & ðkkvthiÞ"1ð!=%iiÞ1=2 can be
superseded by a faster nonlinear phase mixing that cas-
cades the turbulent electric field energy to collisional
velocity scales over times t & !"1. In our case, because
the nonlinear decorrelation time &l dominated, t & &l.

The exponent of the power spectrum should be indepen-
dent of the plasma production method as long as turbulent
plasmas maintain the 2D electrostatic gyrokinetic condition,
according to the theory. Figure 4 shows one-dimensional
spectra FðkyÞ of electron cyclotron resonance discharge
plasmas in the turbulent state associated dominantly with

drift waves. Two plasma shots having different dimension-
less parameters D are shown (gray: D ¼ 28, blue: D ¼ 8),
where the dimensionless parameter D ¼ ðk?c#iÞ5=3 ¼
1=ð%ii&pÞ represents the ratio between the nonlinear term
and the dissipation term in the gyrokinetic turbulence
[10,18]. The quantities %ii and &p are the ion-ion collision
frequency and the turnover time of the turbulent eddy at the
scale #i, respectively. Both spectra FðkyÞ had a range

following the k"10=3
y law for ky#i > 1 within 10%–15%

discrepancy in the exponent, in the same manner as the
turbulent hot-cathode plasma did [state (iii) in Fig. 3].
The cutoff of the entropy cascade spectrum k?c, above

which the entropy cascade is smeared by collisions, is
given as k?c#i ¼ D3=5 [10,18]. In the turbulent state D ¼
28 in Fig. 4 (whose plasma parameters were &p ) B0 '
2$=kx=ðky’Þ & 0:045' 2$=ð3142 * 0:56Þ & 5:1' 10"6 s,
fci¼17:2 kHz, Ti0 ¼ 0:4 eV, and ne0 ¼ 5:8' 1015 m"3),
k?c#ijtheory estimated from the formula is 7.4, whereas
k?c#ijmeas evaluated from the inflection point of the spec-
trum is 15 & 2:0' k?c#ijtheory. Similarly, the calculated
k?c#ijtheory for the D ¼ 8 plasma, whose plasma parame-
ters were Ti0 ¼ 0:4 eV, ne0 ¼ 1:6' 1016 m"3 and fci ¼
32:8 kHz, is 3.5. The measurement indicated that
k?c#ijmeas ¼ 8 & 2:3' k?c#ijtheory. Therefore, the ex-
perimentally obtained k?c#i agreed with the theoretical
evaluation.
In summary, we have shown experimentally observed

electrostatic potential fluctuations that support the existence

of the k"10=3
? inertial range of an entropy cascade in 2D

electrostatic turbulence in a laboratory magnetized plasma.
The one-dimensional spectra of the electrostatic potential
on the sub-Larmor scale was measured, and the exponent
of the electrostatic potential fluctuation spectrum agreed
with the theoretical results of Schekochihin et al. [8] and
the result of a numerical simulation by Tatsuno et al. [18].
The cutoff wave numbers of the spectrum, above which

FIG. 4 (color online). One-dimensional spectra FðkyÞ as a
function of wave number ky for two cases of different dimen-
sionless parameters D.

FIG. 3 (color online). One-dimensional spectra FðkyÞ as a
function of wave number ky for the three cases corresponding
to those of Fig. 2.

PRL 110, 095001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

095001-4

THEORY:



Theory vs. Simulations
PIC SIMULATIONS (3D, self-generated m. field):

[Schoeffler et al. (2014), PRL 112, 175001]

THEORY:



Theory vs. Simulations
GK SIMULATIONS by J. TenBarge (3D, forced):

[TenBarge et al. (2013), ApJ 774, 139]

THEORY:

They say exponential is
a better fit here, but I don’t think so.



Theory vs. Observations
SOLAR WIND OBSERVATIONS (Cluster):

THEORY:

[Alexandrova et al. (2012), ApJ 760, 121]
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[Sahraoui et al. (2013), ApJ 777, 15]
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[Huang, Sahraoui et al. (2014), ApJ 789, L28]



Theory vs. Observations
MAGNETOSHEATH OBSERVATIONS (Cluster):

THEORY:

[Huang, Sahraoui et al. (2014), ApJ 789, L28]

5.3
They say

peak is
at 5.2
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resolution are linked!
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This appears to have been checked in 
a laboratory experiment (for ions)



Validity of  Low-Frequency Limit

Collisional cutoff:

nonlinear time
at Larmor scale

“Dorland number”

[AAS et al. 2008, PPCF 50, 24024]

NB: spatial and velocity
resolution are linked!



Validity of  Low-Frequency Limit

Collisional cutoff:

nonlinear time
at Larmor scale

“Dorland number”

[AAS et al. 2008, PPCF 50, 24024]

NB: spatial and velocity
resolution are linked!

Thus, the entropy cascade stays within low-frequency limit if                            , or  

can’t be
too difficult!

Otherwise all sorts of  high-frequency physics will kick in…



Linear (  ) vs. Nonlinear (   ) Phase Mixing

Collisional cutoff:

nonlinear time
at Larmor scale

“Dorland number”

[AAS et al. 2008, PPCF 50, 24024]

NB: spatial and velocity
resolution are linked!

Quick treatment:
NONLINEAR (perpendicular):

Since cascade is nonlinear,
mixing occurs in one

turnover time (fast)



Linear (  ) vs. Nonlinear (   ) Phase Mixing

[AAS et al. 2008, PPCF 50, 24024]

NONLINEAR (perpendicular):

Since cascade is nonlinear,
mixing occurs in one

turnover time (fast)

LINEAR (parallel):
“ballistic response”

after one turnover
time

if  “critical balance” holds,
so linear phase mixing is slow 

Quick treatment:



Linear Phase Mixing and Critical Balance

nonlinear advection

[analogous to AAS et al. 2016, JPP 82, 905820212]

phase mixing



Linear Phase Mixing and Critical Balance

nonlinear advectionphase mixingPhase-mixing region:
everything is linear,
no echo, free energy flux
out into phase space

Very little energy!

ü By pure kinematics of  
correlation functions, in 2D,

ü Parallel exponent fixed by matching
at the phase-mixing threshold                 

[analogous to AAS et al. 2016, JPP 82, 905820212]



Linear Phase Mixing and Critical Balance

nonlinear advectionphase mixingPhase-mixing region:
everything is linear,
no echo, free energy flux
out into phase space

Very little energy!

Advection-dominated region:
fully nonlinear, perfect echo,
free energy flux to phase space vanishes 

Most energy along critical balance curve

ü Perpendicular exponent
fixed by constant flux in 3D
ü Parallel exponent is
white noise: loss of  correlation
at long distances

[analogous to AAS et al. 2016, JPP 82, 905820212]



2D Spectra

nonlinear advectionphase mixingPhase-mixing region:
everything is linear,
no echo, free energy flux
out into phase space

Very little energy!

Advection-dominated region:
fully nonlinear, perfect echo,
free energy flux to phase space vanishes 

Most energy along critical balance curve

[analogous to AAS et al. 2016, JPP 82, 905820212]



2D Spectra

nonlinear advectionphase mixingPhase-mixing region:
everything is linear,
no echo, free energy flux
out into phase space

Very little energy!

Advection-dominated region:
fully nonlinear, perfect echo,
free energy flux to phase space vanishes 

Most energy along critical balance curve

[analogous to AAS et al. 2016, JPP 82, 905820212]



2D Spectra
These are “2D spectra” of     . 

Ø Magnetic-field spectra are

[analogous to AAS et al. 2016, JPP 82, 905820212]



2D Spectra
These are “2D spectra” of     . 

Ø Magnetic-field spectra are  

Ø To get “1D spectra,” integrate over wavenumber ranges bounded by critical balance:

(same as derived above) very steep!
NB: this is also the

frequency spectrum

[analogous to AAS et al. 2016, JPP 82, 905820212]



Phase-Space Spectra
These are “2D spectra” of     . 

Ø Magnetic-field spectra are  

Ø To get “1D spectra,” integrate over wavenumber ranges bounded by critical balance:

Ø This all the tip of  a larger iceberg – PHASE-SPACE TURBULENCE:

Hermite spectrum:                                                    Hankel spectrum:

Spectrum of  perpendicular
phase-mixing (entropy cascade)

[Plunk et al. 2010,  JFM, 664, 407]

Spectrum of  parallel
phase-mixing:
super-steep, so
Landau damping
is heavily reduced!

Cf. linear case:
[Kanekar et al. 2014, JPP 81, 305810104]

Details: another talk… or (exercise) derive this yourself  by analogy with this paper

[analogous to AAS et al. 2016, JPP 82, 905820212]



Ø Turbulence associated with the kinetic species at sub-Larmor scales can be
understood in terms of  entropy cascade, intimately associated with nonlinear
perpendicular phase mixing (small-scale spatial structure imprints itself  on the
velocity space due to Larmor gyration of  particles). 

Ø Spectra at electron sub-Larmor scales: 

density                        , electric field                      , magnetic field

These appear to have numerical, experimental and perhaps observational support.

Ø Parallel phase-mixing is a subdominant effect (but this has not been checked!)

Ø Phase-space dynamics, statistics, scalings, etc. remain largely unexplored.
THIS IS THE NEW FRONTIER (imho): both for theoreticians & for observers.  

Conclusions

“Turbulent Dissipation Challenge”
what it should be about:

cascade via phase space or position space?

THOR?
velocity-space
structure!

PPCF 50, 24024 (2008)
ApJS 182, 310 (2009), sec. 7.12
PRL 103, 015003 (2009)
JPP 82, 905820212 (2016)


