

Electron Sub-Larmor Turbulence

Alex Schekochihin (Oxford)

with

Steve Cowley (UKAEA/Oxford),
Bill Dorland (U of Maryland), —
Tomo Tatsuno (UEC Tokyo),
Gabriel Plunk (IPP, Greifswald)

 $k_{\perp}\rho_{e}\gg 1$

electron Larmor rings are >> spatial scale of e-m fluctuations

 $\omega \ll \Omega_e$

but electron Larmor period << time scale of e-m fluctuations

$$k_{\perp}\rho_{e}\gg 1$$

 $k_\perp
ho_e \gg 1 \ \omega \ll \Omega_e$ this is simultaneously possible if $k_\parallel \ll k_\perp$, because $\omega \sim k_\parallel v_{
m the}$

$$k_\perp
ho_e \gg 1$$
 this is simultaneously possible if $k_\parallel \ll k_\perp$, because $\omega \sim k_\parallel v_{
m the}$

$$f_{e} = F_{0} + \varphi(t, \mathbf{r})F_{0} + h(t, \mathbf{R}, v_{\perp}, v_{\parallel}) \leftarrow \text{distribution}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \text{of rings}$$
equilibrium Boltzmann gyrocentre
$$\text{Maxwellian response} \qquad \mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_{\perp} \times \hat{\mathbf{b}}}{\Omega_{e}}$$
(yes, I know...) $\varphi = e\phi/T_{e}$

$$\kappa_{\perp}\rho_{e}\gg 1$$
 $\omega\ll\Omega_{e}$

 $k_\perp
ho_e \gg 1$ this is simultaneously possible if $k_\parallel \ll k_\perp$, because $\omega \sim k_\parallel v_{
m the}$

$$f_e = F_0 + \varphi(t, \mathbf{r}) F_0 + h(t, \mathbf{R}, v_\perp, v_\parallel) \leftarrow \text{distribution}$$
 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \text{of rings}$
equilibrium Boltzmann gyrocentre

Maxwellian response $\mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_\perp \times \hat{\mathbf{b}}}{\Omega_s}$

(yes, I know...) $\varphi = e\phi/T_e$

$$\mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_{\perp} \times \hat{\mathbf{b}}}{\Omega_e}$$

energy injection (from larger scales)

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$$

parallel

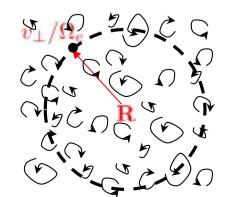
gyroaveraged gyroaveraged

collisions

particle streaming (more of it later!)

Ex**B** drift velocitty wave-ring interaction

 $\mathbf{u}_{\perp} = \frac{\rho_e v_{\text{th}e}}{2} \, \hat{\mathbf{b}} \times \nabla_{\perp} \varphi \qquad -\left\langle \frac{d\varepsilon}{dt} \frac{\partial f_e}{\partial \varepsilon} \right\rangle_{-}$



$$\langle \varphi \rangle_{\mathbf{R}} = \frac{1}{2\pi} \int_{0}^{2\pi} d\vartheta \, \varphi \left(\mathbf{R} + \frac{\mathbf{v}_{\perp} \times \hat{\mathbf{b}}}{\Omega_{e}} \right)$$

$$\kappa_{\perp}\rho_{e}\gg 1$$
 $\omega\ll\Omega_{e}$

 $k_\perp
ho_e \gg 1$ this is simultaneously possible if $k_\parallel \ll k_\perp$, because $\omega \sim k_\parallel v_{
m the}$

$$f_e = F_0 + \varphi(t, \mathbf{r}) F_0 + h(t, \mathbf{R}, v_\perp, v_\parallel) \leftarrow \text{distribution}$$
 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \text{of rings}$
equilibrium Boltzmann gyrocentre

Maxwellian response $\mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_\perp \times \hat{\mathbf{b}}}{\Omega}$ (for \mathbf{r})

(yes, I know...)
$$\varphi = e\phi/T_e$$

$$\mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_{\perp} \times \mathbf{b}}{\Omega_e}$$

energy injection (from larger scales)

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$$

parallel gyroaveraged gyroaveraged

collisions

particle streaming (more of it later!)

ExB drift velocitty wave-ring interaction

$$\mathbf{u}_{\perp} = \frac{\rho_e v_{\text{th}e}}{2} \,\hat{\mathbf{b}} \times \nabla_{\perp} \varphi \qquad -\left\langle \frac{d\varepsilon}{dt} \frac{\partial f_e}{\partial \varepsilon} \right\rangle_{\mathbf{R}}$$

$$\langle \varphi \rangle_{\mathbf{R}} = \frac{1}{2\pi} \int_0^{2\pi} d\vartheta \ \varphi \Bigg(\mathbf{R} + \frac{\mathbf{v}_{\perp} \times \hat{\mathbf{b}}}{\Omega_e} \Bigg) = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} J_0 \bigg(\frac{k_{\perp} v_{\perp}}{\Omega_e} \bigg) \varphi_{\mathbf{k}}$$

Gyroaveraging is a Bessel operator, so, at $k_{\perp}\rho_{e}\gg1$, $\langle\varphi\rangle_{\mathbf{R}}=\hat{J}_{0}\varphi\sim\frac{\varphi}{\sqrt{J_{\mathbf{R}}-g}}$

$$\omega \ll \Omega_e$$

 $k_\perp \rho_e \gg 1 \ \omega \ll \Omega_e$ this is simultaneously possible if $k_\parallel \ll k_\perp$, because $\omega \sim k_\parallel v_{
m th} e$

$$f_e = F_0 + \varphi(t, \mathbf{r}) F_0 + h(t, \mathbf{R}, v_\perp, v_\parallel) \leftarrow \text{distribution}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \text{of rings}$$
equilibrium Boltzmann gyrocentre
$$\text{Maxwellian response} \qquad \mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_\perp \times \hat{\mathbf{b}}}{\Omega_e}$$
(yes, I know...) $\varphi = e\phi/T_e$

$$\begin{split} \frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h &= -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi \\ \uparrow & \uparrow \\ \text{To calculate } \varphi \text{, use quasineutrality:} \\ \frac{\delta n_e}{n_e} &= \varphi + \frac{1}{n_e} \int d^3 \mathbf{v} \, \langle h \rangle_{\mathbf{r}} = \frac{\delta n_i}{n_i} \end{split}$$

$$\omega \ll \Omega_e$$

 $k_\perp \rho_e \gg 1$ this is simultaneously possible if $k_\parallel \ll k_\perp$, because $\omega \sim k_\parallel v_{
m th} e$

$$f_{e} = F_{0} + \varphi(t, \mathbf{r})F_{0} + h(t, \mathbf{R}, v_{\perp}, v_{\parallel}) \leftarrow \text{distribution}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \text{of rings}$$
equilibrium Boltzmann gyrocentre
$$\text{Maxwellian response} \qquad \mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_{\perp} \times \hat{\mathbf{b}}}{\Omega_{e}}$$
(yes, I know...) $\varphi = e\phi/T_{e}$

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_{0} + C[h] + \chi$$

$$\uparrow \qquad \uparrow$$
To calculate φ , use quasineutrality:
$$\frac{\delta n_{e}}{n_{e}} = \varphi + \frac{1}{n_{e}} \int d^{3}\mathbf{v} \langle h \rangle_{\mathbf{r}} = \frac{\delta n_{i}}{n_{i}} = -\frac{e\phi}{T_{i}} = -\frac{T_{e}}{T_{i}} \varphi$$

Ions have Boltzmann response

because everything else averages out over their (huge!) Larmor orbits

$$\omega \ll \Omega_e$$

 $k_\perp
ho_e \gg 1$ this is simultaneously possible if $k_\parallel \ll k_\perp$, because $\omega \sim k_\parallel v_{
m the}$

$$f_{e} = F_{0} + \varphi(t, \mathbf{r})F_{0} + h(t, \mathbf{R}, v_{\perp}, v_{\parallel}) \leftarrow \text{distribution}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \text{of rings}$$
equilibrium Boltzmann gyrocentre
$$\text{Maxwellian response} \qquad \mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_{\perp} \times \hat{\mathbf{b}}}{\Omega_{e}}$$
(yes, I know...) $\varphi = e\phi/T_{e}$

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_{0} + C[h] + \chi$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
To calculate φ , use quasineutrality:
$$\frac{\delta n_{e}}{n_{e}} = \varphi + \frac{1}{n_{e}} \int d^{3}\mathbf{v} \langle h \rangle_{\mathbf{r}} = \frac{\delta n_{i}}{n_{i}} = -\frac{e\phi}{T_{i}} = -\frac{T_{e}}{T_{i}} \varphi$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_{e}} \int d^{3}\mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_{e}} \int d^{3}\mathbf{v} J_{0} \left(\frac{k_{\perp}v_{\perp}}{\Omega_{e}}\right) h_{\mathbf{k}}$$

$$\alpha = -\frac{1}{1 + T_e/T_i}$$

$$k_{\perp}\rho_{e}\gg 1$$

 $k_\perp
ho_e \gg 1$ this is simultaneously possible if $k_\parallel \ll k_\perp$, because $\omega \sim k_\parallel v_{
m the}$

$$f_e = F_0 + \varphi(t, \mathbf{r})F_0 + h(t, \mathbf{R}, v_{\perp}, v_{\parallel}) \leftarrow \text{distribution}$$
 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \text{of rings}$
equilibrium Boltzmann gyrocentre
Maxwellian response
 $\mathbf{R} = \mathbf{r} - \frac{\mathbf{v}_{\perp} \times \hat{\mathbf{b}}}{\Omega_e}$
(yes, I know...) $\varphi = e\phi/T_e$

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$$

Closed system

$$\mathbf{u}_{\perp} = \frac{\rho_e v_{\text{th}e}}{2} \,\hat{\mathbf{b}} \times \nabla_{\perp} \varphi$$
$$\langle \varphi \rangle_{\mathbf{R}} = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) \varphi_{\mathbf{k}}$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e}\right) h_{\mathbf{k}}$$

$$\alpha = -\frac{1}{1 + T_e/T_i}$$

Our equations are electrostatic. Is this a good approximation?

Closed system
$$\begin{aligned} \frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h &= -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi \\ \mathbf{u}_{\perp} &= \frac{\rho_e v_{\mathrm{th}e}}{2} \, \hat{\mathbf{b}} \times \nabla_{\perp} \varphi \\ \langle \varphi \rangle_{\mathbf{R}} &= \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{R}} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) \varphi_{\mathbf{k}} \\ \varphi(\mathbf{r}) &= \frac{\alpha}{n_e} \int d^3 \mathbf{v} \, \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} \, J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) h_{\mathbf{k}} \\ \alpha &= -\frac{1}{1 + T_e/T_i} \end{aligned}$$

Our equations are electrostatic. Is this a good approximation? – YES:

Parallel Ampere's law:
$$\nabla_{\perp}^2 A_{\parallel} = -\frac{4\pi}{c} j_{\parallel} = \frac{4\pi e}{c} \int d^3 \mathbf{v} \, v_{\parallel} \langle h \rangle_{\mathbf{r}}$$

$$\frac{\delta \mathbf{B}_{\perp \mathbf{k}}}{B_0} = -\frac{\hat{\mathbf{b}} \times i \mathbf{k}_{\perp} A_{\parallel \mathbf{k}}}{B_0} = \frac{\beta_e}{k_{\perp} \rho_e} \hat{\mathbf{b}} \times i \mathbf{k}_{\perp} \frac{1}{n_e} \int d^3 \mathbf{v} \, \frac{v_{\parallel}}{v_{\text{th}e}} \, J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) h_{\mathbf{k}} \ll \varphi$$

small factor!

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e}\right) h_{\mathbf{k}}$$

$$\alpha = -\frac{1}{1 + T_e/T_i}$$

Our equations are electrostatic. Is this a good approximation? – YES:

Parallel Ampere's law:
$$\nabla_{\perp}^2 A_{\parallel} = -\frac{4\pi}{c} j_{\parallel} = \frac{4\pi e}{c} \int d^3 \mathbf{v} \, v_{\parallel} \langle h \rangle_{\mathbf{r}}$$

$$\frac{\delta \mathbf{B}_{\perp \mathbf{k}}}{B_0} = -\frac{\hat{\mathbf{b}} \times i \mathbf{k}_{\perp} A_{\parallel \mathbf{k}}}{B_0} = \underbrace{\frac{\beta_e}{k_{\perp} \rho_e}} \hat{\mathbf{b}} \times i \mathbf{k}_{\perp} \frac{1}{n_e} \int d^3 \mathbf{v} \, \frac{v_{\parallel}}{v_{\text{th}e}} \, J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) h_{\mathbf{k}} \ll \varphi$$

small factor!

Perpendicular Ampere's law:

$$\nabla_{\perp}^{2} \delta B_{\parallel} = -\frac{4\pi}{c} \, \hat{\mathbf{b}} \cdot (\nabla_{\perp} \times \mathbf{j}_{\perp}) = \frac{4\pi e}{c} \, \hat{\mathbf{b}} \cdot \left(\nabla_{\perp} \times \int d^{3} \mathbf{v} \, \langle \mathbf{v}_{\perp} h \rangle_{\mathbf{r}} \right)$$

$$\frac{\delta B_{\parallel \mathbf{k}}}{B_0} = \frac{\beta_e}{k_{\perp} \rho_e} \frac{1}{n_e} \int d^3 \mathbf{v} \, \frac{v_{\perp}}{v_{\text{th}e}} J_1 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) h_{\mathbf{k}} \ll \varphi$$

small factor!

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e}\right) h_{\mathbf{k}}$$

$$\alpha = -\frac{1}{1 + T_e/T_i}$$

Our equations are electrostatic. Is this a good approximation? – YES:

Parallel Ampere's law:
$$\nabla_{\perp}^2 A_{\parallel} = -\frac{4\pi}{c} j_{\parallel} = \frac{4\pi e}{c} \int d^3 \mathbf{v} \, v_{\parallel} \langle h \rangle_{\mathbf{r}}$$

$$\frac{\delta \mathbf{B}_{\perp \mathbf{k}}}{B_0} = -\frac{\hat{\mathbf{b}} \times i \mathbf{k}_{\perp} A_{\parallel \mathbf{k}}}{B_0} = \frac{\beta_e}{k_{\perp} \rho_e} \hat{\mathbf{b}} \times i \mathbf{k}_{\perp} \frac{1}{n_e} \int d^3 \mathbf{v} \, \frac{v_{\parallel}}{v_{\text{th}e}} \, J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) h_{\mathbf{k}} \ll \varphi$$

small factor!

Perpendicular Ampere's law:

$$\nabla_{\perp}^{2} \delta B_{\parallel} = -\frac{4\pi}{c} \, \hat{\mathbf{b}} \cdot (\nabla_{\perp} \times \mathbf{j}_{\perp}) = \frac{4\pi e}{c} \, \hat{\mathbf{b}} \cdot \left(\nabla_{\perp} \times \int d^{3} \mathbf{v} \, \langle \mathbf{v}_{\perp} h \rangle_{\mathbf{r}} \right)$$

$$\frac{\delta B_{\parallel \mathbf{k}}}{B_0} = \frac{\beta_e}{k_{\perp} \rho_e} \frac{1}{n_e} \int d^3 \mathbf{v} \, \frac{v_{\perp}}{v_{\text{th}e}} J_1 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) h_{\mathbf{k}} \ll \varphi$$

small factor!

Key point: magnetic spectra are slaved to the spectra of density and of φ :

$$\frac{\delta B}{B_0} \sim \frac{\beta_e}{k_\perp \rho_e} \, \varphi$$

Plan: Theory \Rightarrow Observables

1. Solve this system for h and φ :

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_{0} + C[h] + \chi$$

$$\mathbf{u}_{\perp} = \frac{\rho_{e} v_{\text{th}e}}{2} \hat{\mathbf{b}} \times \nabla_{\perp} \varphi$$

$$\langle \varphi \rangle_{\mathbf{R}} = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} J_{0} \left(\frac{k_{\perp} v_{\perp}}{\Omega_{e}} \right) \varphi_{\mathbf{k}}$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_{e}} \int d^{3}\mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}} \frac{1}{n_{e}} \int d^{3}\mathbf{v} J_{0} \left(\frac{k_{\perp} v_{\perp}}{\Omega_{e}} \right) h_{\mathbf{k}}$$

...and get spectra $E_{\varphi}(k_{\perp}) \propto k_{\perp}^{-\mu}$, $E_{h}(k_{\perp}) \propto k_{\perp}^{-\nu}$

2. Infer density spectra: $E_n(k_{\perp}) \propto k_{\perp}^{-\mu}$ because $\frac{\delta n_e}{n_e} = \frac{\varphi}{\alpha} = -\left(1 + \frac{T_e}{T_i}\right) \varphi$ magnetic-field spectra: $E_B(k_{\perp}) \propto k_{\perp}^{-\mu-2}$ because $\frac{\delta B}{B} \sim \frac{\beta_e}{k_{\perp} a_e} \varphi$

electric-field spectra: $E_E(k_\perp) \propto k_\perp^{-\mu+2}$ because $\mathbf{E}_\perp = -\nabla_\perp \phi \propto k_\perp \varphi$

Free Energy

1. Solve this system for h and φ :

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_{0} + C[h] + \chi$$

$$\mathbf{u}_{\perp} = \frac{\rho_{e} v_{\text{th}e}}{2} \hat{\mathbf{b}} \times \nabla_{\perp} \varphi$$

$$\langle \varphi \rangle_{\mathbf{R}} = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} J_{0} \left(\frac{k_{\perp} v_{\perp}}{\Omega_{e}} \right) \varphi_{\mathbf{k}}$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_{e}} \int d^{3}\mathbf{v} \, \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}} \frac{1}{n_{e}} \int d^{3}\mathbf{v} \, J_{0} \left(\frac{k_{\perp} v_{\perp}}{\Omega_{e}} \right) h_{\mathbf{k}}$$

Rather than "solving," we can resort to Kolmogorov-ology: scalings will be set assuming constant flux of some conserved quantity, viz., free energy:

$$\frac{d}{dt} \left[\frac{1}{n_e} \iint d^3\mathbf{v} d^3\mathbf{R} \, \frac{h^2}{2F_0} + \int d^3\mathbf{r} \, \frac{\varphi^2}{2\alpha} \right] = \frac{1}{n_e} \iint d^3\mathbf{v} d^3\mathbf{R} \, \frac{h\chi}{F_0} + \frac{1}{n_e} \iint d^3\mathbf{v} d^3\mathbf{R} \, \frac{hC[h]}{F_0}$$
free energy injection collisional dissipation (negative definite!)

Free Energy

1. Solve this system for h and φ :

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_{0} + C[h] + \chi$$

$$\mathbf{u}_{\perp} = \frac{\rho_{e} v_{\text{th}e}}{2} \hat{\mathbf{b}} \times \nabla_{\perp} \varphi$$

$$\langle \varphi \rangle_{\mathbf{R}} = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} J_{0} \left(\frac{k_{\perp} v_{\perp}}{\Omega_{e}} \right) \varphi_{\mathbf{k}}$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_{e}} \int d^{3}\mathbf{v} \, \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}} \frac{1}{n_{e}} \int d^{3}\mathbf{v} \, J_{0} \left(\frac{k_{\perp} v_{\perp}}{\Omega_{e}} \right) h_{\mathbf{k}}$$

Rather than "solving," we can resort to Kolmogorov-ology: scalings will be set assuming constant flux of some conserved quantity, viz., free energy:

$$\frac{d}{dt} \left[\frac{1}{n_e} \iint d^3 \mathbf{v} d^3 \mathbf{R} \frac{h^2}{2F_0} + \int d^3 \mathbf{r} \frac{\varphi^2}{2\alpha} \right] = \frac{1}{n_e} \iint d^3 \mathbf{v} d^3 \mathbf{R} \frac{h\chi}{F_0} + \frac{1}{n_e} \iint d^3 \mathbf{v} d^3 \mathbf{R} \frac{hC[h]}{F_0}$$
free energy injection collisional dissipation
$$\equiv \varepsilon \qquad \qquad \text{(negative definite!)}$$

NB: free energy has to get to small scales in velocity space, to dissipate.

Free Energy

In general, the free energy in δf kinetics is

$$\mathcal{F} = -\sum_{s} T_{s} \delta S = -\sum_{s} T_{s} \delta \left[\iint d^{3} \mathbf{v} d^{3} \mathbf{r} f_{s} \ln f_{s} \right] = \sum_{s} \iint d^{3} \mathbf{v} d^{3} \mathbf{r} \frac{T_{s} \delta f_{s}^{2}}{2F_{0s}}$$
$$= n_{e} T_{e} \left[\frac{1}{n_{e}} \iint d^{3} \mathbf{v} d^{3} \mathbf{R} \frac{h^{2}}{2F_{0}} + \int d^{3} \mathbf{r} \frac{\varphi^{2}}{2\alpha} \right] \text{ in our case}$$

This has a long history:

Kruskal & Oberman 1958 Howes et al. 2006

Bernstein 1958 Schekochihin et al. 2007-09

Fowler 1963, 68 Scott 2010

Krommes & Hu 1994 Banon, Jenko et al. 2011-14

Krommes 1999 Plunk et al 2012 Sugama et al. 1996 Abel et al. 2013

Hallatschek 2004 Kunz et al. 2015...

Rather than "solving," we can resort to Kolmogorov-ology: scalings will be set assuming constant flux of some conserved quantity, viz., free energy:

$$\frac{d}{dt} \left[\frac{1}{n_e} \iint d^3\mathbf{v} d^3\mathbf{R} \, \frac{h^2}{2F_0} + \int d^3\mathbf{r} \, \frac{\varphi^2}{2\alpha} \right] = \frac{1}{n_e} \iint d^3\mathbf{v} d^3\mathbf{R} \, \frac{h\chi}{F_0} + \frac{1}{n_e} \iint d^3\mathbf{v} d^3\mathbf{R} \, \frac{hC[h]}{F_0}$$
free energy injection collisional dissipation (negative definite!)

So our conserved quantity is (minus) entropy!

[AAS et al. 2008, PPCF 50, 24024]

Constant flux of free energy:

$$\frac{\hat{h}^2}{\tau} \sim \varepsilon,$$

$$\frac{\hat{h}^2}{\tau} \sim \varepsilon, \quad \hat{h} \equiv \frac{h}{F_0} \quad \text{at each scale } k_\perp^{-1}$$

Rather than "solving," we can resort to Kolmogorov-ology: scalings will be set assuming constant flux of some conserved quantity, viz., free energy:

$$\frac{d}{dt} \left[\frac{1}{n_e} \iiint d^3 \mathbf{v} d^3 \mathbf{R} \underbrace{\frac{h^2}{2F_0}} + \int d^3 \mathbf{r} \, \frac{\varphi^2}{2\alpha} \right] = \frac{1}{n_e} \iiint d^3 \mathbf{v} d^3 \mathbf{R} \, \frac{h\chi}{F_0} + \frac{1}{n_e} \iiint d^3 \mathbf{v} d^3 \mathbf{R} \, \frac{hC[h]}{F_0}$$
 free energy injection collisional dissipation (negative definite!)

[AAS et al. 2008, PPCF 50, 24024]

Constant flux of free energy:
$$\frac{\hat{h}^2}{\tau} \sim \varepsilon, \quad \hat{h} \equiv \frac{h}{F_0} \quad \text{at each scale } k_{\perp}^{-1}$$
 cascade time
$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + (\mathbf{u}_{\perp})_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$$

$$\mathbf{u}_{\perp} = \frac{\rho_e v_{\mathrm{th}e}}{2} \, \hat{\mathbf{b}} \times \nabla_{\perp} \varphi$$

$$\langle \varphi \rangle_{\mathbf{R}} = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) \varphi_{\mathbf{k}}$$

Constant flux of free energy: $\frac{\hat{h}^2}{\tau} \sim \varepsilon$, $\hat{h} \equiv \frac{h}{F_0}$ at each scale k_{\perp}^{-1}

y:
$$\frac{\hat{h}^2}{\tau} \sim \varepsilon,$$
 cascade time

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + (\mathbf{u}_{\perp})_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$$

$$\mathbf{u}_{\perp} = \frac{\rho_{e} v_{\text{th}e}}{2} \, \hat{\mathbf{b}} \times \nabla_{\perp} \varphi \sim \rho_{e}^{2} \Omega_{e} k_{\perp} \varphi$$
$$\langle \varphi \rangle_{\mathbf{R}} = \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{R}} J_{0} \left(\frac{k_{\perp} v_{\perp}}{\Omega_{e}} \right) \varphi_{\mathbf{k}} \sim \hat{J}_{0} \varphi \sim \frac{\varphi}{\sqrt{k_{\perp} \rho_{e}}}$$

Cascade time:
$$\tau^{-1} \sim k_{\perp} \langle u_{\perp} \rangle_{\mathbf{R}} \sim \Omega_e (k_{\perp} \rho_e)^2 \hat{J}_0 \varphi \sim \Omega_e (k_{\perp} \rho_e)^{3/2} \varphi$$

$$\frac{\hat{h}^2}{\tau} \sim \varepsilon,$$

Constant flux of free energy:
$$\frac{\hat{h}^2}{\tau} \sim \varepsilon$$
, $\hat{h} \equiv \frac{h}{F_0}$ at each scale k_{\perp}^{-1}

cascade time

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + (\mathbf{u}_{\perp})_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$$

$$\mathbf{u}_{\perp} = \frac{\rho_{e} v_{\text{th}e}}{2} \,\hat{\mathbf{b}} \times \nabla_{\perp} \varphi \sim \rho_{e}^{2} \Omega_{e} k_{\perp} \varphi$$
$$\langle \varphi \rangle_{\mathbf{R}} = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} J_{0} \left(\frac{k_{\perp} v_{\perp}}{\Omega_{e}} \right) \varphi_{\mathbf{k}} \sim \hat{J}_{0} \varphi \sim \frac{\varphi}{\sqrt{k_{\perp} \rho_{e}}}$$

Cascade time:
$$\tau^{-1} \sim k_{\perp} \langle u_{\perp} \rangle_{\mathbf{R}} \sim \Omega_e (k_{\perp} \rho_e)^2 \hat{J}_0 \varphi \sim \Omega_e (k_{\perp} \rho_e)^{3/2} \varphi$$

NB:
$$\tau^{-1} \ll \Omega_e$$
 provided $\varphi \ll \frac{1}{(k_{\perp}\rho_e)^{3/2}}$ (we'll check this later)

$$\frac{\hat{h}^2}{\tau} \sim \varepsilon,$$

Constant flux of free energy:
$$\frac{\hat{h}^2}{\tau} \sim \varepsilon$$
, $\hat{h} \equiv \frac{h}{F_0}$ at each scale k_{\perp}^{-1}

$$\tau^{-1} \sim k_{\perp} \langle u_{\perp} \rangle_{\mathbf{R}} \sim \Omega_e (k_{\perp} \rho_e)^2 \hat{J}_0 \varphi \sim \Omega_e (k_{\perp} \rho_e)^{3/2} \varphi$$

Cascade time:
$$\tau^{-1} \sim k_{\perp} \langle u_{\perp} \rangle_{\mathbf{R}} \sim \Omega_e (k_{\perp} \rho_e)^2 \hat{J}_0 \varphi \sim \Omega_e (k_{\perp} \rho_e)^{3/2} \varphi$$

NB: $\tau^{-1} \ll \Omega_e$ provided $\varphi \ll \frac{1}{(k_{\perp} \rho_e)^{3/2}}$ (we'll check this later)

Constant flux of free energy:
$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_\perp \rho_e)^{-3/2}$$

$$\tau^{-1} \sim k_{\perp} \langle u_{\perp} \rangle_{\mathbf{R}} \sim \Omega_e (k_{\perp} \rho_e)^2 \hat{J}_0 \varphi \sim \Omega_e (k_{\perp} \rho_e)^{3/2} \varphi$$

Cascade time:
$$\tau^{-1} \sim k_{\perp} \langle u_{\perp} \rangle_{\mathbf{R}} \sim \Omega_e (k_{\perp} \rho_e)^2 \hat{J}_0 \varphi \sim \Omega_e (k_{\perp} \rho_e)^{3/2} \varphi$$

NB: $\tau^{-1} \ll \Omega_e$ provided $\varphi \ll \frac{1}{(k_{\perp} \rho_e)^{3/2}}$ (we'll check this later)

Gyroaveraged Response

Constant flux of free energy:
$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_\perp \rho_e)^{-3/2}$$

...and we now need a relationship between φ and \hat{h} :

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0\left(\frac{k_{\perp}v_{\perp}}{\Omega_e}\right) h_{\mathbf{k}}(v_{\perp})$$

Gyroaveraged Response

Constant flux of free energy:
$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_\perp \rho_e)^{-3/2}$$

...and we now need a relationship between φ and \hat{h} :

we'll show this decorrelates on the scale $\frac{\delta v_{\perp}}{v_{\perp he}} \sim \frac{1}{k_{\perp} \rho_e}$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0\left(\frac{k_{\perp}v_{\perp}}{\Omega_e}\right) h_{\mathbf{k}}(v_{\perp})$$

$$\approx \left(\frac{2\Omega_e}{\pi k_{\perp} v_{\perp}}\right)^{1/2} \cos\left(\frac{k_{\perp} v_{\perp}}{\Omega_e} - \frac{\pi}{4}\right)$$

oscillatory integral, sign changes with period

$$\frac{\Delta v_{\perp}}{v_{\rm the}} = \frac{2\pi}{k_{\perp}\rho_e}$$

Gyroaveraged Response

Constant flux of free energy:
$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_{\perp} \rho_e)^{-3/2}$$

...and we now need a relationship between φ and \hat{h} :

we'll show this decorrelates on the scale
$$\frac{\delta v_{\perp}}{v_{\rm the}} \sim \frac{1}{k_{\perp} \rho_e}$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0\left(\frac{k_{\perp}v_{\perp}}{\Omega_e}\right) h_{\mathbf{k}}(v_{\perp})$$

$$\varphi \sim \frac{1}{\sqrt{k_{\perp}\rho_e}} \frac{\hat{h}}{\sqrt{N}} \sim \frac{\hat{h}}{k_{\perp}\rho_e}$$
 from J_0 integral accumulates (gyroaverging) as a random walk, $N \sim \frac{v_{\rm th}e}{\delta v_{\perp}} \sim k_{\perp}\rho_e$

$$\varphi \sim \frac{1}{\sqrt{k_{\perp}\rho_e}} \frac{h}{\sqrt{N}} \sim \frac{h}{k_{\perp}\rho_e} \qquad \approx \left(\frac{2\Omega_e}{\pi k_{\perp}v_{\perp}}\right)^{1/2} \cos\left(\frac{k_{\perp}v_{\perp}}{\Omega_e} - \frac{\pi}{4}\right)$$

oscillatory integral, sign changes with period

$$\frac{\Delta v_{\perp}}{v_{\rm the}} = \frac{2\pi}{k_{\perp}\rho_e}$$

Nonlinear Phase Mixing

Constant flux of free energy:
$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_{\perp} \rho_e)^{-3/2}$$

...and we now need a relationship between φ and \hat{h} :

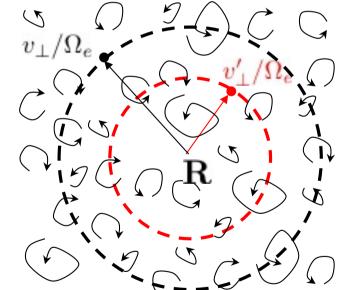
we'll show this decorrelates on the scale
$$\frac{\delta v_{\perp}}{v_{\mathrm{th}e}} \sim \frac{1}{k_{\perp}\rho_{e}}$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e} \right) h_{\mathbf{k}}(v_{\perp})$$

$$\varphi \sim \frac{1}{\sqrt{k_{\perp}\rho_e}} \frac{\hat{h}}{\sqrt{N}} \sim \frac{\hat{h}}{k_{\perp}\rho_e}$$

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + (\langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}}) \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$$

Two values of gyroveraged $\mathbf{E} \times \mathbf{B}$ velocity $\langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}}(v_{\perp})$ and $\langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}}(v'_{\perp})$ come from spatially decorrelated fluctuations if



$$\left| \frac{v_{\perp}}{\Omega_e} - \frac{v_{\perp}'}{\Omega_e} \right| \gtrsim \frac{1}{k_{\perp}} \quad \Rightarrow \quad \left| \frac{\delta v_{\perp}}{v_{\mathrm{th}e}} \sim \frac{1}{k_{\perp} \rho_e} \right|$$

coherence scale in velocity space, q.e.d.

[AAS et al. 2008, PPCF 50, 24024]

Nonlinear Phase Mixing

Constant flux of free energy:
$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_\perp \rho_e)^{-3/2}$$

...and we now need a relationship between φ and \hat{h} :

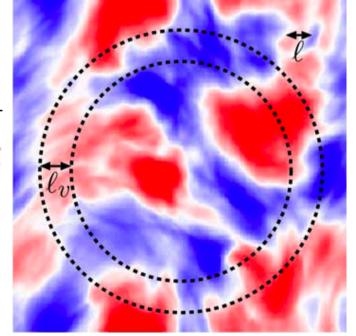
we'll show this decorrelates on the scale
$$\frac{\delta v_{\perp}}{v_{\rm the}} \sim \frac{1}{k_{\perp} \rho_e}$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega_e}\right) h_{\mathbf{k}}(v_{\perp})$$

$$\varphi \sim \frac{1}{\sqrt{k_{\perp}\rho_e}} \frac{\hat{h}}{\sqrt{N}} \sim \frac{\hat{h}}{k_{\perp}\rho_e}$$

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + (\mathbf{u}_{\perp})_{\mathbf{R}} \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$$

Two values of gyroveraged $\mathbf{E} \times \mathbf{B}$ velocity $\langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}}(v_{\perp})$ and $\langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}}(v'_{\perp})$ come from spatially decorrelated fluctuations if



$$\left| \frac{v_{\perp}}{\Omega_e} - \frac{v_{\perp}'}{\Omega_e} \right| \gtrsim \frac{1}{k_{\perp}} \quad \Rightarrow \quad \frac{\delta v_{\perp}}{v_{\mathrm{th}e}} \sim \frac{1}{k_{\perp} \rho_e}$$

$$\frac{\delta v_{\perp}}{v_{\rm the}} \sim \frac{1}{k_{\perp} \rho_e}$$

coherence scale in velocity space, q.e.d.

[Tatsuno et al. 2009, PRL 103, 015003]

Constant flux of free energy:
$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_\perp \rho_e)^{-3/2}$$

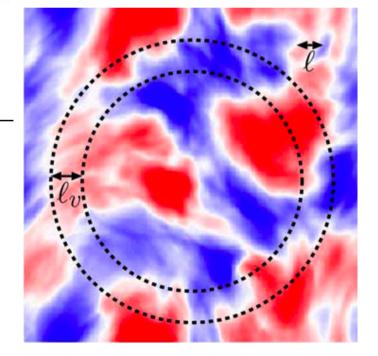
...and we now need a relationship between φ and \hat{h} :

we'll show this decorrelates on the scale
$$\frac{\delta v_{\perp}}{v_{\rm the}} \sim \frac{1}{k_{\perp} \rho_e}$$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \, \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} \, J_0 \left(\frac{k_\perp v_\perp}{\Omega_e} \right) h_{\mathbf{k}}(v_\perp)$$

$$\varphi \sim \frac{1}{\sqrt{k_{\perp}\rho_e}} \frac{\hat{h}}{\sqrt{N}} \sim \frac{\hat{h}}{k_{\perp}\rho_e}$$

Thus, we have a phase-space cascade ("entropy cascade"), simultaneous in position and velocity.



$$\frac{\delta v_{\perp}}{v_{\rm the}} \sim \frac{1}{k_{\perp} \rho_e}$$

coherence scale in velocity space.

Constant flux of free energy:
$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_\perp \rho_e)^{-3/2}$$

...and we now need a relationship between φ and \hat{h} :

we'll show this decorrelates decorrelates on the scale $\frac{\delta v_{\perp}}{v_{\perp be}} \sim \frac{1}{k_{\perp} \rho_e}$

$$\varphi(\mathbf{r}) = \frac{\alpha}{n_e} \int d^3 \mathbf{v} \langle h \rangle_{\mathbf{r}} = \alpha \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_e} \int d^3 \mathbf{v} J_0\left(\frac{k_{\perp}v_{\perp}}{\Omega_e}\right) h_{\mathbf{k}}(v_{\perp})$$

$$\varphi \sim \frac{1}{\sqrt{k_{\perp}\rho_e}} \frac{\hat{h}}{\sqrt{N}} \sim \frac{\hat{h}}{k_{\perp}\rho_e}$$

-1.520 $p \, v_{
m the}$ -2.5-3 -3.52 -4.5

Thus, we have a phase-space cascade ("entropy cascade"), simultaneous in position and velocity.

Spectral representation in terms of Hankel transform:

$$\tilde{h}_{\mathbf{k}}(p) = 2\pi \int dv_{\perp} v_{\perp} J_0(pv_{\perp}) h_{\mathbf{k}}(v_{\perp})$$

Phase-space spectrum: $E_h(k_{\perp}, p) = p |\tilde{h}_{\mathbf{k}}(p)|^2$

[Plunk et al. 2010, JFM, 664, 407]

 $p v_{\text{th}e} \sim k_{\perp} \rho_e$

coherence scale in velocity space.

[Tatsuno et al. 2009, PRL 103, 015003]

 $k_{\perp}\rho_e$

20

50

Constant flux of free energy:

$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_\perp \rho_e)^{-3/2} \Rightarrow \hat{h}^3 \sim \frac{\varepsilon}{\Omega_e} (k_\perp \rho_e)^{-1/2}$$

$$\varphi \sim \frac{1}{\sqrt{k_\perp \rho_e}} \frac{\hat{h}}{\sqrt{N}} \sim \frac{\hat{h}}{k_\perp \rho_e}$$

Constant flux of free energy:

$$\hat{h}^2 \varphi \sim \frac{\varepsilon}{\Omega_e} (k_{\perp} \rho_e)^{-3/2} \quad \Rightarrow \quad \hat{h}^3 \sim \frac{\varepsilon}{\Omega_e} (k_{\perp} \rho_e)^{-1/2}$$

$$\varphi \sim \frac{1}{\sqrt{k_\perp \rho_e}} \frac{\hat{h}}{\sqrt{N}} \sim \frac{\hat{h}}{k_\perp \rho_e}$$

$$\hat{h} \sim \left(\frac{\varepsilon}{\Omega_e}\right)^{1/3} (k_{\perp} \rho_e)^{-1/6} \implies E_h \propto k_{\perp}^{-4/3}$$

$$\varphi \sim \frac{1}{\sqrt{k_{\perp}\rho_e}} \frac{\hat{h}}{\sqrt{N}} \sim \frac{\hat{h}}{k_{\perp}\rho_e} \qquad \varphi \sim \left(\frac{\varepsilon}{\Omega_e}\right)^{1/3} (k_{\perp}\rho_e)^{-7/6} \implies E_{\varphi} \propto k_{\perp}^{-10/3}$$

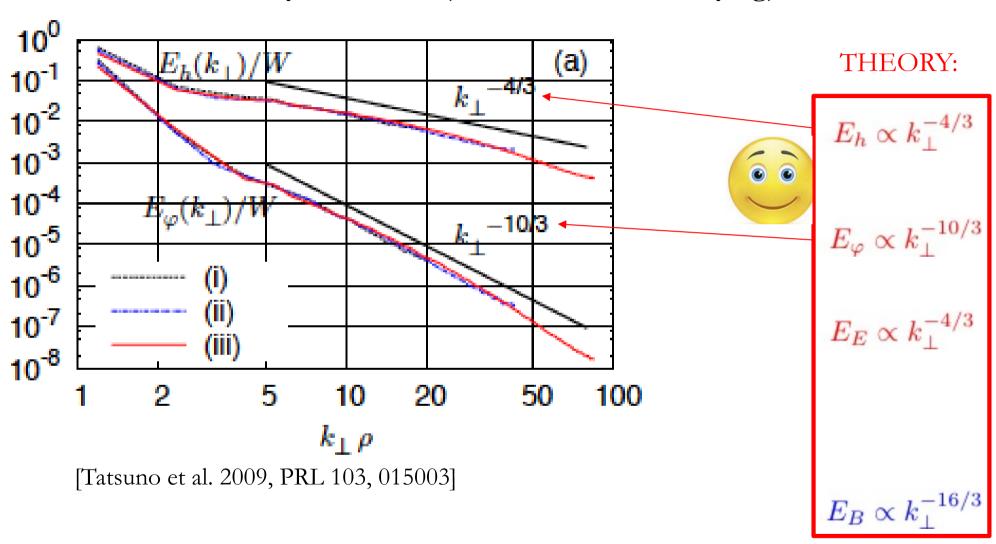
$$E \sim k_{\perp} \phi$$
 \Rightarrow $E_E \propto k_{\perp}^{-4/3}$

$$\frac{\delta B}{B_0} \sim \frac{\beta_e}{k_\perp \rho_e} \, \varphi \sim \beta_e \left(\frac{\varepsilon}{\Omega_e}\right)^{1/3} (k_\perp \rho_e)^{-13/6}$$

$$\Rightarrow$$
 $E_B \propto k_{\perp}^{-16/3}$

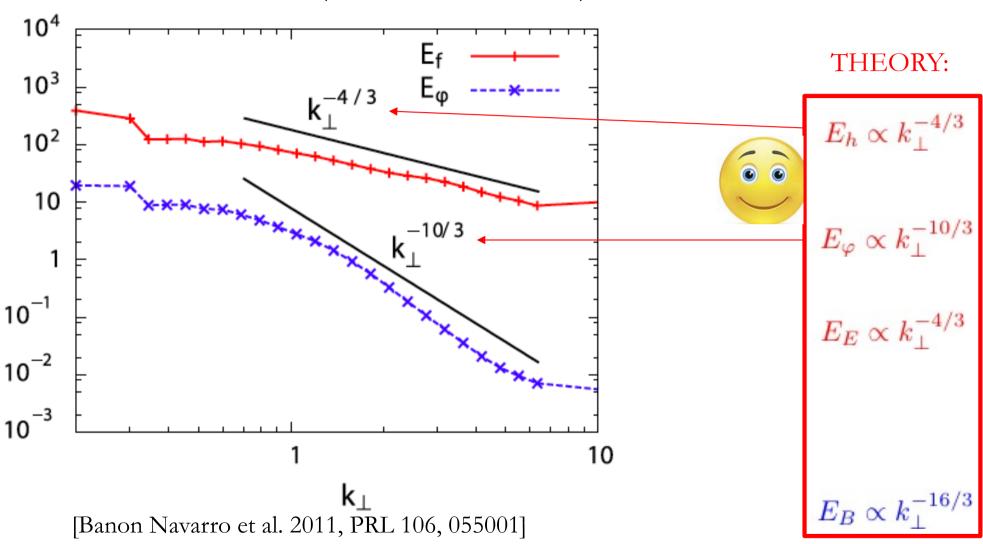
Theory vs. Simulations

GK SIMULATIONS by T. Tatsuno (2D, electrostatic, decaying):



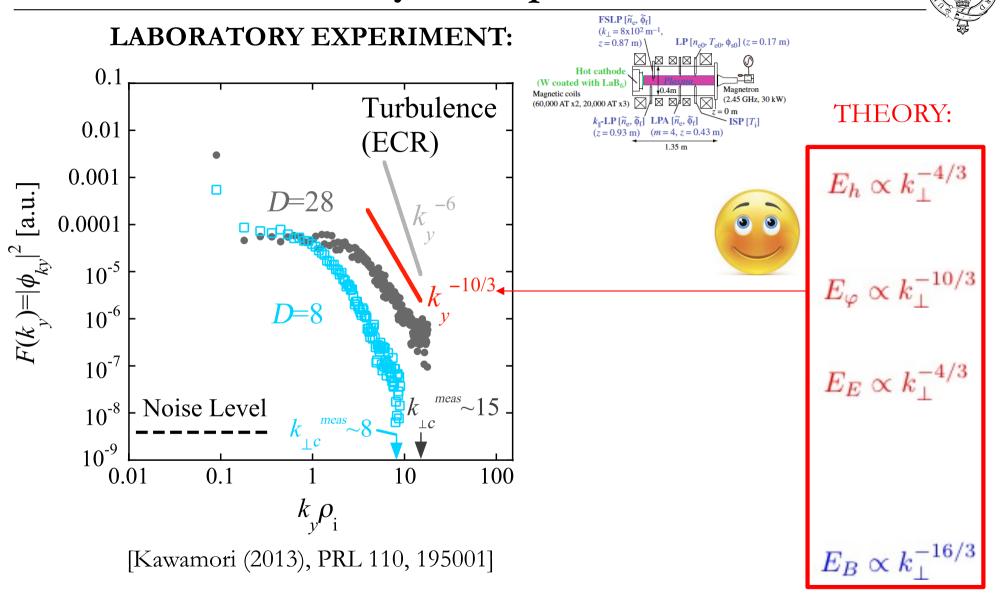
Theory vs. Simulations

GK SIMULATIONS (3D electrostatic, ITG):



This was done for ion entropy cascade, but in the electrostatic limit, the theory and results are exactly the same [AAS et al. 2008, PPCF 50, 24024]

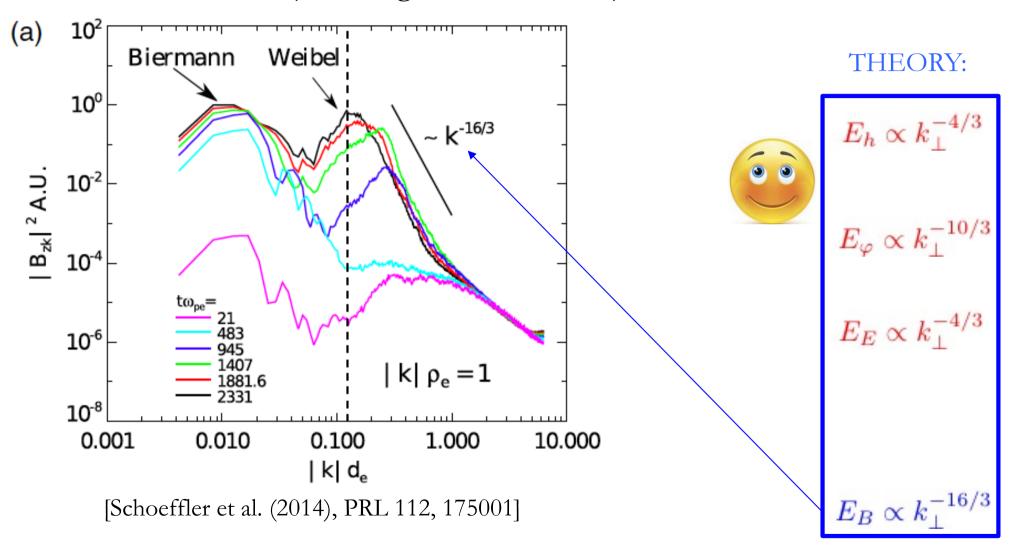
Theory vs. Experiment!



This was done for ion entropy cascade, but in the electrostatic limit, the theory and results are exactly the same [AAS et al. 2008, PPCF 50, 24024]

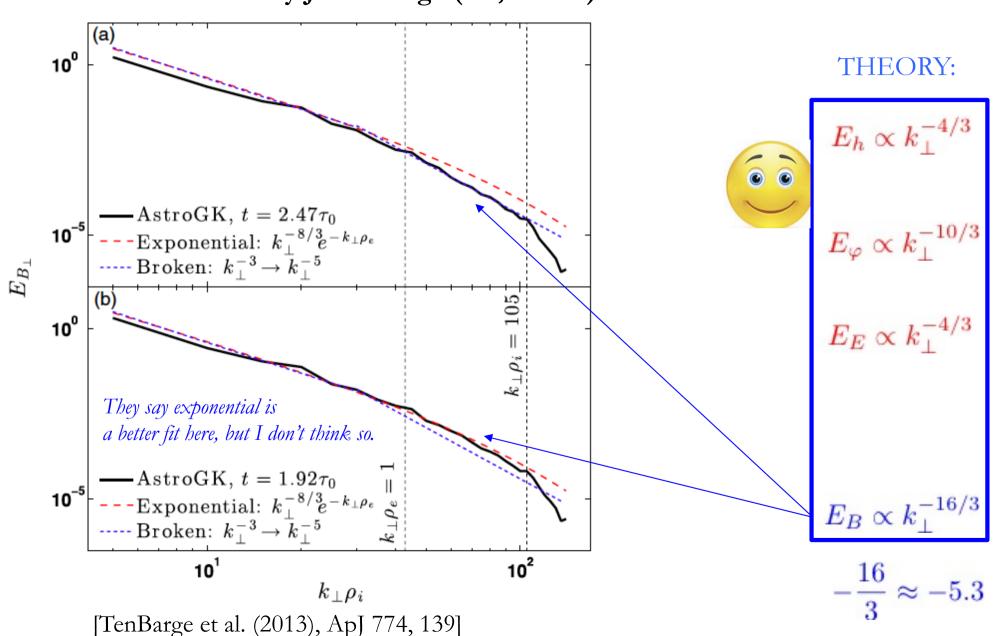
Theory vs. Simulations

PIC SIMULATIONS (3D, self-generated m. field):

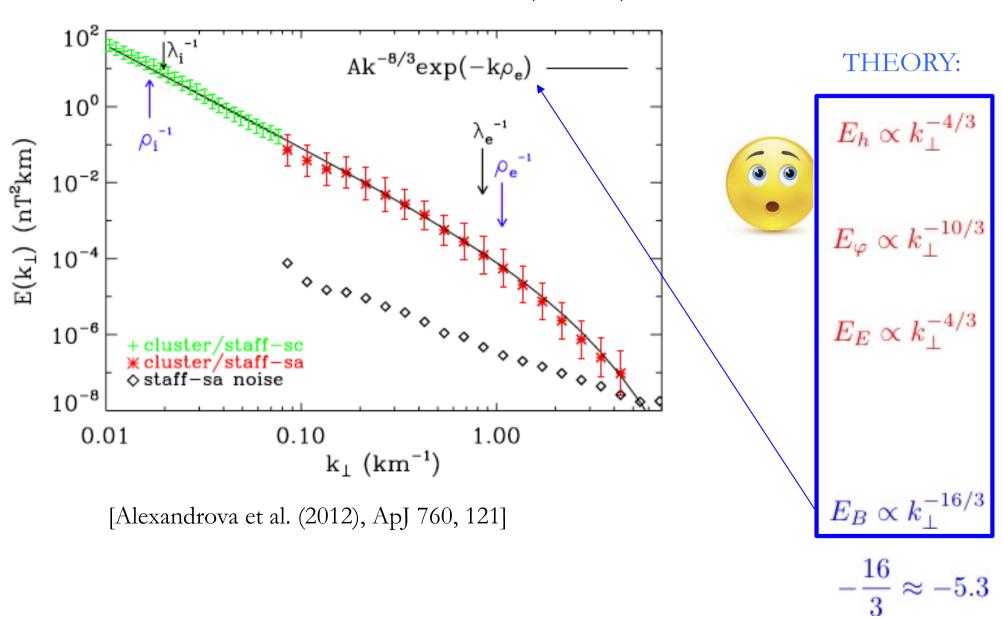


Theory vs. Simulations

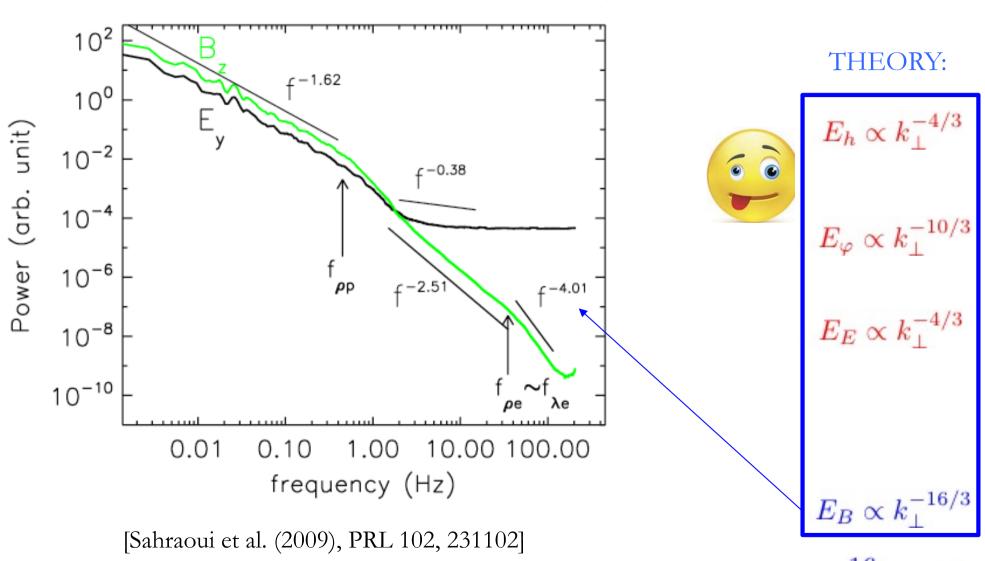
GK SIMULATIONS by J. TenBarge (3D, forced):



SOLAR WIND OBSERVATIONS (Cluster):

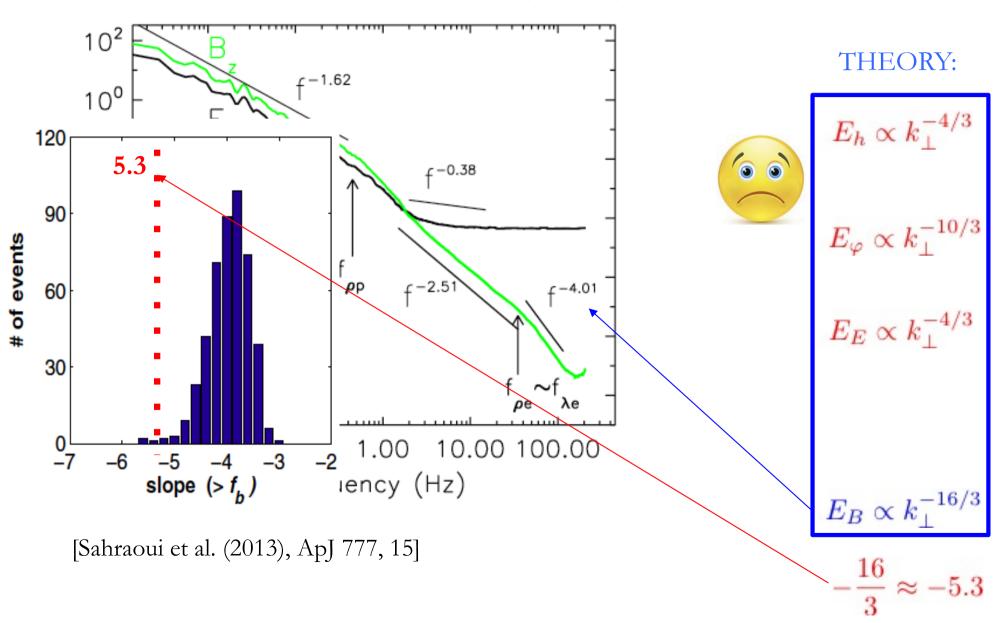


SOLAR WIND OBSERVATIONS (Cluster):

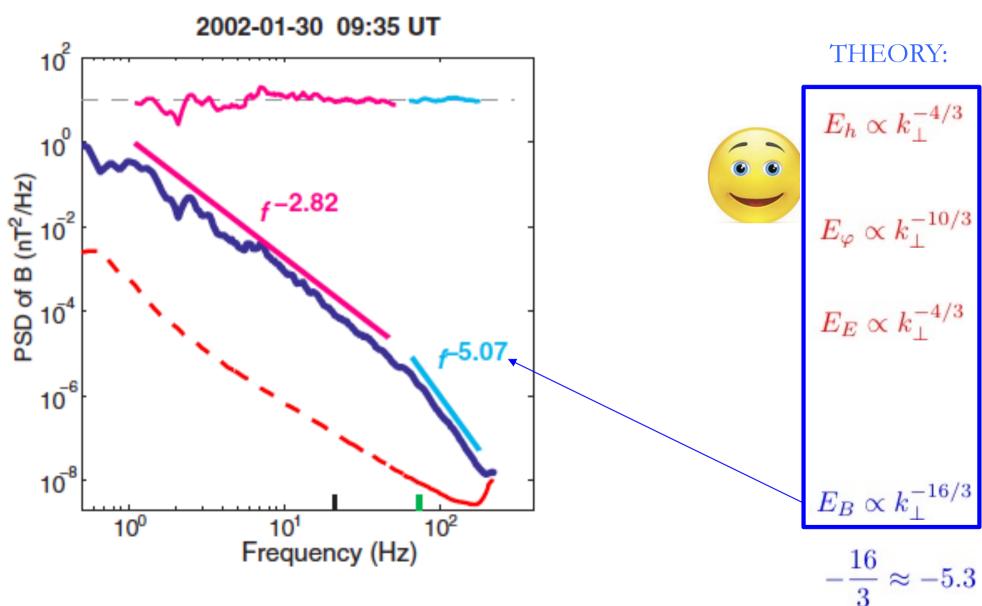


$$-\frac{16}{3} \approx -5.3$$

SOLAR WIND OBSERVATIONS (Cluster):

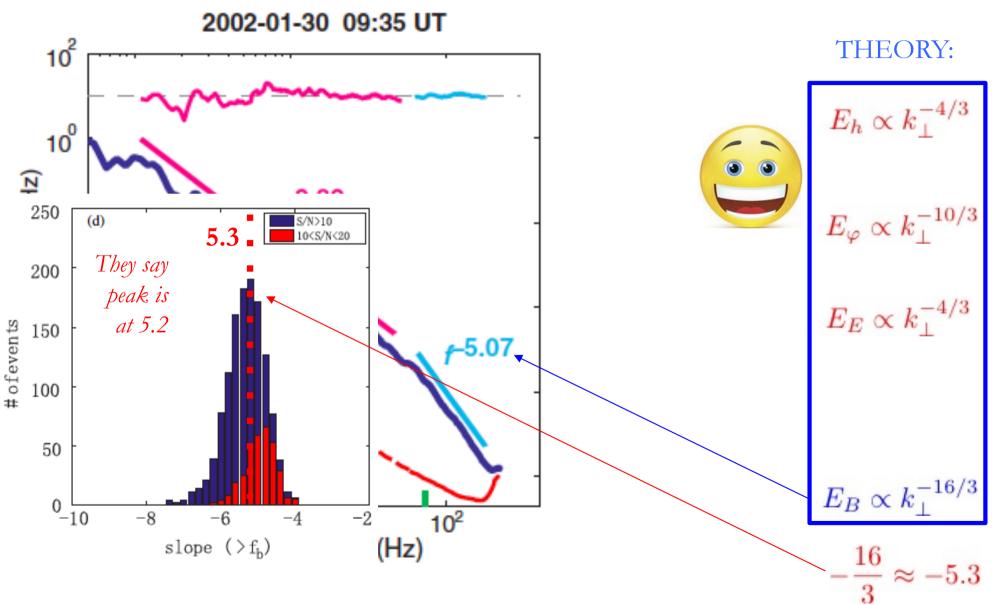


MAGNETOSHEATH OBSERVATIONS (Cluster):



[Huang, Sahraoui et al. (2014), ApJ 789, L28]

MAGNETOSHEATH OBSERVATIONS (Cluster):



[Huang, Sahraoui et al. (2014), ApJ 789, L28]

"Kolmogorov" Scale

Where does the electron entropy cascade cut off?

$$\begin{split} \frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h &= -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi \\ \uparrow & \uparrow \\ \text{nonlinear advection} & \text{collisional dissipation} \\ \tau^{-1} \sim k_{\perp} \langle u_{\perp} \rangle_{\mathbf{R}} \sim \Omega_e (k_{\perp} \rho_e)^{3/2} \varphi & C \sim \nu_e \, v_{\text{the}}^2 \frac{\partial^2}{\partial v_{\perp}^2} \sim \nu_e \left(\frac{\delta v_{\perp}}{v_{\text{the}}} \right)^{-2} \\ \sim \Omega_e \left(\frac{\varepsilon}{\Omega_e} \right)^{1/3} (k_{\perp} \rho_e)^{1/3} & \sim \nu_e \, (k_{\perp} \rho_e)^2 \end{split}$$
 because
$$\varphi \sim \left(\frac{\varepsilon}{\Omega_e} \right)^{1/3} (k_{\perp} \rho_e)^{-7/6} \end{split}$$

"Kolmogorov" Scale

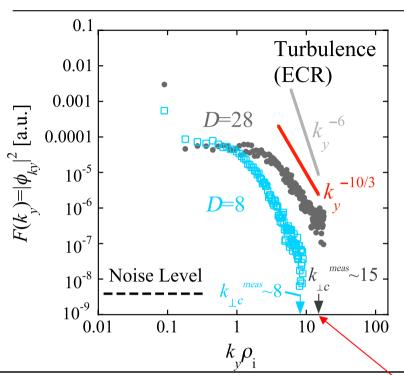
Where does the electron entropy cascade cut off?

resolution are linked!

NB: spatial and velocity nonlinear time "Dorland number" at Larmor scale

$$\tau_{\rho_e}^{-1} \sim \Omega_e \varphi_{\rho_e} \sim \frac{\Omega_e}{\beta_e} \frac{\delta B_{\rho_e}}{B_0}$$

"Kolmogorov" Scale



This appears to have been checked in a laboratory experiment (for ions)

[Kawamori (2013), PRL 110, 195001]

Collisional cutoff:

$$\frac{1}{k_{\perp c}\rho_e} \sim \frac{\delta v_{\perp c}}{v_{\rm the}} \sim (\nu_e \tau_{\rho_e})^{3/5} \equiv \text{Do}^{-3/5}$$

NB: spatial and velocity resolution are linked!

nonlinear time "Dorland number" at Larmor scale

$$\tau_{\rho_e}^{-1} \sim \Omega_e \varphi_{\rho_e} \sim \frac{\Omega_e}{\beta_e} \frac{\delta B_{\rho_e}}{B_0}$$

Validity of Low-Frequency Limit

$$\tau^{-1} \sim \tau_{\rho_e}^{-1} (k_\perp \rho_e)^{1/3} \ll \Omega_e \quad \Leftrightarrow \quad k_\perp \rho_e \ll (\Omega_e \tau_{\rho_e})^3 \sim \varphi_{\rho_e}^{-3} \sim \left(\frac{1}{\beta_e} \frac{\delta B_{\rho_e}}{B_0}\right)^{-3}$$

Collisional cutoff:

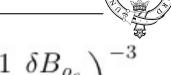
$$\frac{1}{k_{\perp c}\rho_e} \sim \frac{\delta v_{\perp c}}{v_{\rm the}} \sim (\nu_e \tau_{\rho_e})^{3/5} \equiv \text{Do}^{-3/5}$$

NB: spatial and velocity resolution are linked!

nonlinear time "Dorland number" at Larmor scale

$$\tau_{\rho_e}^{-1} \sim \Omega_e \varphi_{\rho_e} \sim \frac{\Omega_e}{\beta_e} \frac{\delta B_{\rho_e}}{B_0}$$

Validity of Low-Frequency Limit



$$\tau^{-1} \sim \tau_{\rho_e}^{-1} (k_\perp \rho_e)^{1/3} \ll \Omega_e \quad \Leftrightarrow \quad k_\perp \rho_e \ll (\Omega_e \tau_{\rho_e})^3 \sim \varphi_{\rho_e}^{-3} \sim \left(\frac{1}{\beta_e} \frac{\delta B_{\rho_e}}{B_0}\right)^{-3}$$

Thus, the entropy cascade stays within low-frequency limit if $\varphi_{\rho_e} \ll \mathrm{Do}^{-1/5}$, or

$$arphi_{
ho_e} \ll \left(rac{
u_e}{\Omega_e}
ight)^{1/6}$$
 can't be too difficult!

Otherwise all sorts of high-frequency physics will kick in...

Collisional cutoff:
$$\frac{1}{k_{\perp c}\rho_e} \sim \frac{\delta v_{\perp c}}{v_{\rm th}e} \sim (\nu_e \tau_{\rho_e})^{3/5} \equiv {\rm Do}^{-3/5}$$

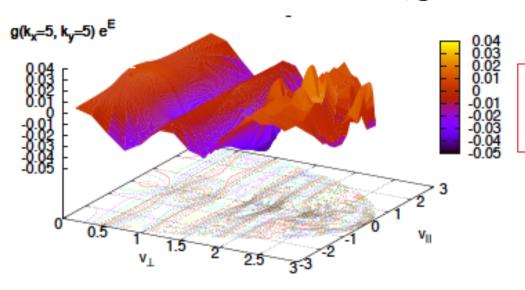
NB: spatial and velocity nonlinear time resolution are linked!

"Dorland number" at Larmor scale

$$\tau_{\rho_e}^{-1} \sim \Omega_e \varphi_{\rho_e} \sim \frac{\Omega_e}{\beta_e} \frac{\delta B_{\rho_e}}{B_0}$$

Linear (||) vs. Nonlinear (\(\perp\)) Phase Mixing

Quick treatment:



NONLINEAR (perpendicular):

$$\frac{\delta v_{\perp c}}{v_{\rm the}} \sim (\nu_e \tau_{\rho_e})^{3/5} \equiv \mathrm{Do}^{-3/5} \ll 1$$

Since cascade is nonlinear, mixing occurs in one turnover time (fast)

$$\frac{1}{k_{\perp c}\rho_e} \sim \frac{\delta v_{\perp c}}{v_{\rm the}} \sim (\nu_e \tau_{\rho_e})^{3/5} \equiv \text{Do}^{-3/5}$$

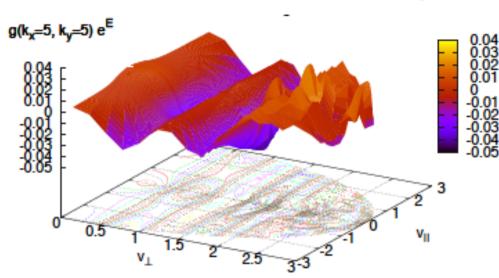
NB: spatial and velocity nonlinear time resolution are linked! at Larmor scale

nonlinear time "Dorland number" at Larmor scale

$$\tau_{\rho_e}^{-1} \sim \Omega_e \varphi_{\rho_e} \sim \frac{\Omega_e}{\beta_e} \frac{\delta B_{\rho_e}}{B_0}$$

Linear (||) vs. Nonlinear (\(\perp\)) Phase Mixing

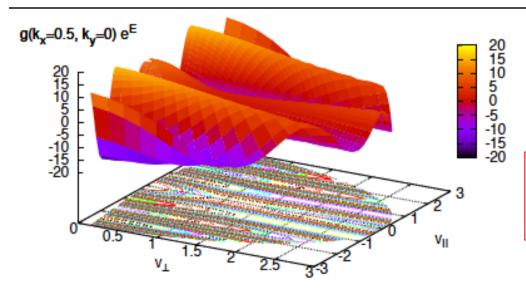
Quick treatment:



NONLINEAR (perpendicular):

$$\frac{\delta v_{\perp c}}{v_{\rm the}} \sim (\nu_e \tau_{\rho_e})^{3/5} \equiv \mathrm{Do}^{-3/5} \ll 1$$

Since cascade is nonlinear, mixing occurs in one turnover time (fast)



LINEAR (parallel):

"ballistic response"

$$\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h = \dots \quad \Rightarrow \quad h \propto e^{-ik_{\parallel} v_{\parallel} t}$$

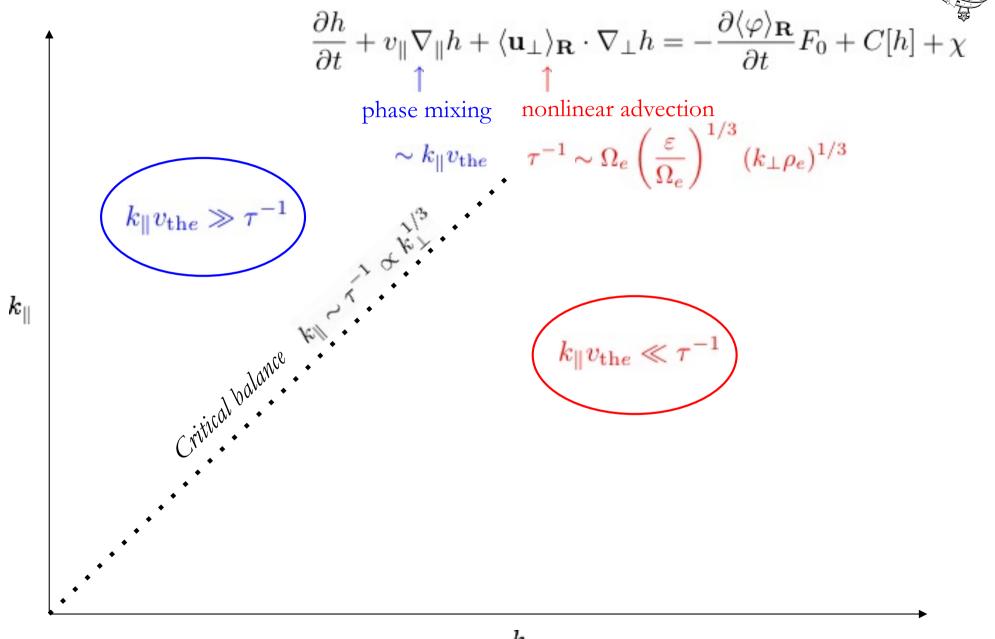
$$rac{\delta v_{\parallel}}{v_{
m th}e} \sim rac{1}{k_{\parallel}v_{
m th}e\,\,t} \sim 1$$
 af

after one turnover time

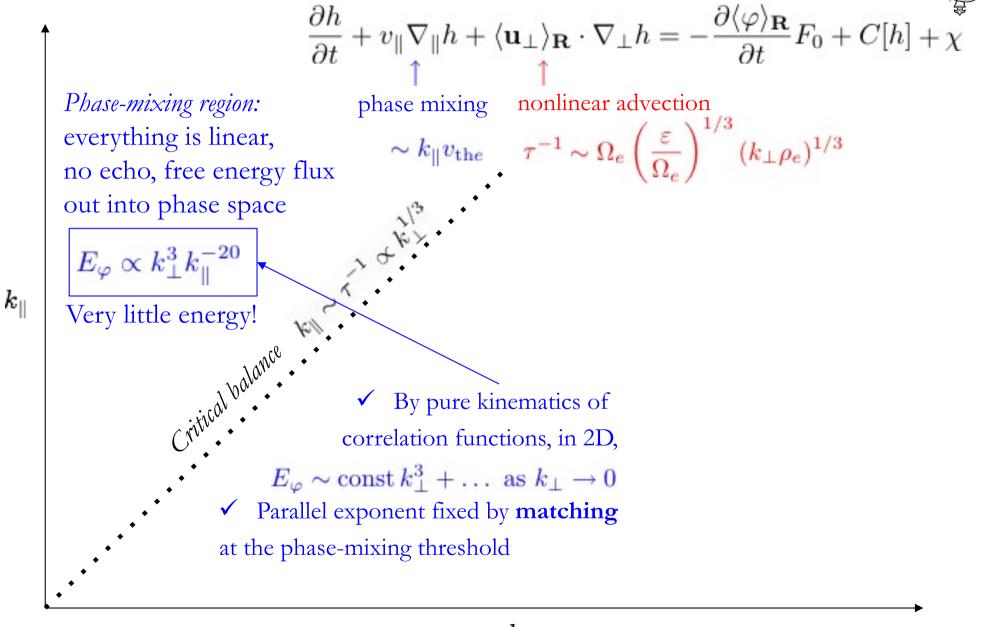
if "critical balance" holds,

so linear phase mixing is slow

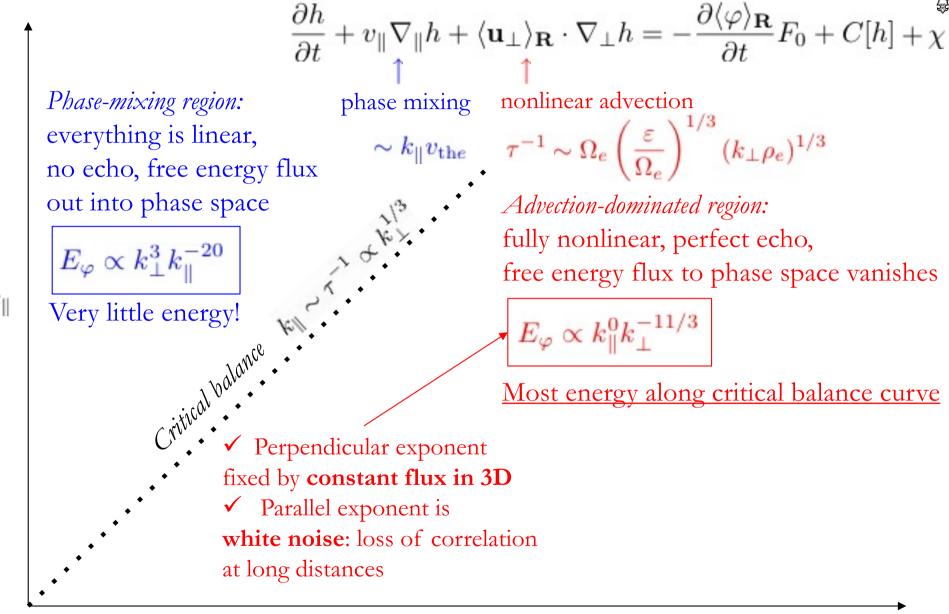
Linear Phase Mixing and Critical Balance



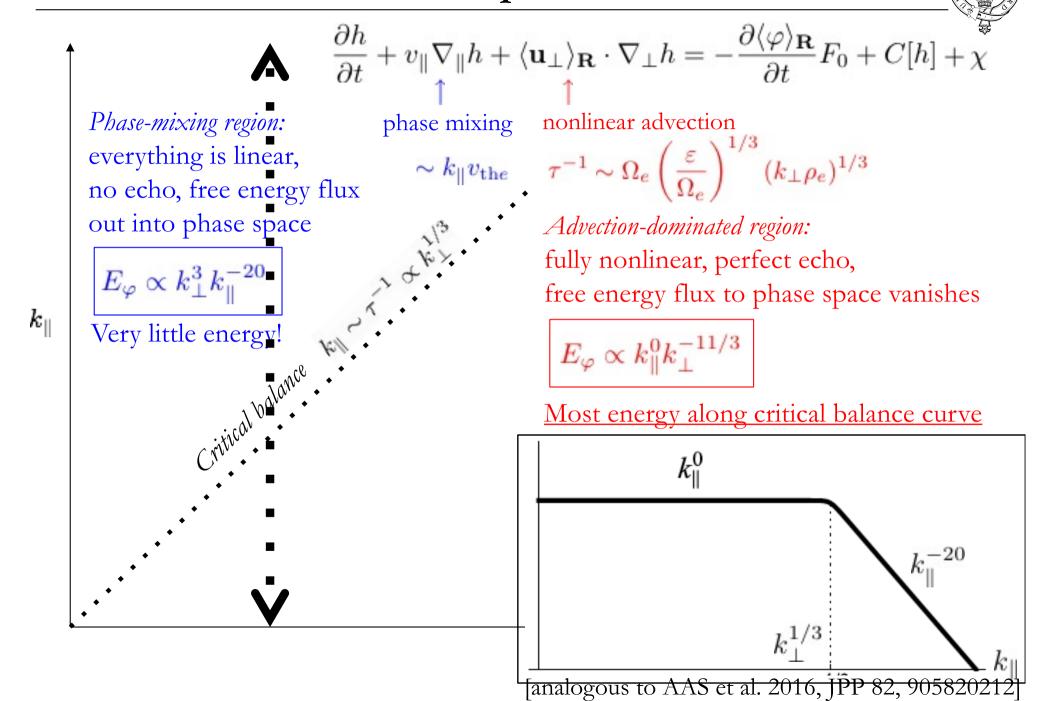
Linear Phase Mixing and Critical Balance



Linear Phase Mixing and Critical Balance



 k_{\perp}



 $\frac{\partial h}{\partial t} + v_{\parallel} \nabla_{\parallel} h + \langle \mathbf{u}_{\perp} \rangle_{\mathbf{R}} \cdot \nabla_{\perp} h = -\frac{\partial \langle \varphi \rangle_{\mathbf{R}}}{\partial t} F_0 + C[h] + \chi$

Phase-mixing region: everything is linear, no echo, free energy flux out into phase space

$$E_{arphi} \propto k_{\perp}^3 k_{\parallel}^{-20}$$
 Very little energy!

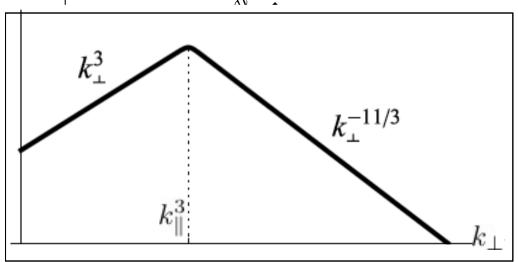
phase mixing nonlinear advection

$$\sim k_{\parallel} v_{
m the}$$
 $au^{-1} \sim \Omega_e \left(rac{arepsilon}{\Omega_e}
ight)^{1/3} (k_{\perp}
ho_e)^{1/3}$

Advection-dominated region: fully nonlinear, perfect echo, free energy flux to phase space vanishes

$$E_\varphi \propto k_\parallel^0 k_\perp^{-11/3}$$

Most energy along critical balance curve

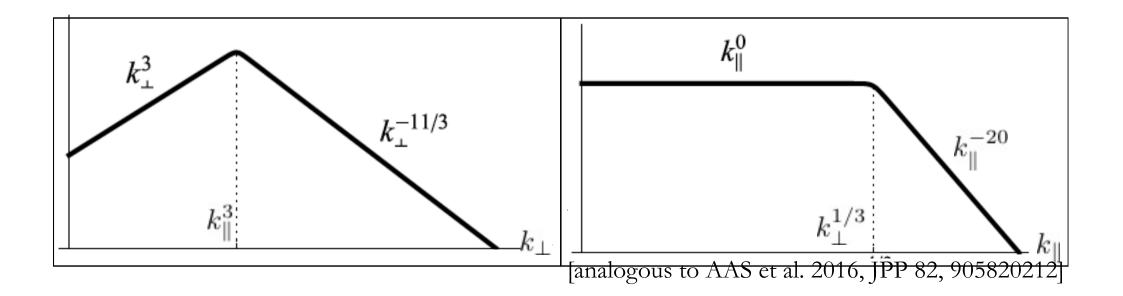


 k_{\perp}

[analogous to AAS et al. 2016, JPP 82, 905820212]

These are "2D spectra" of φ .

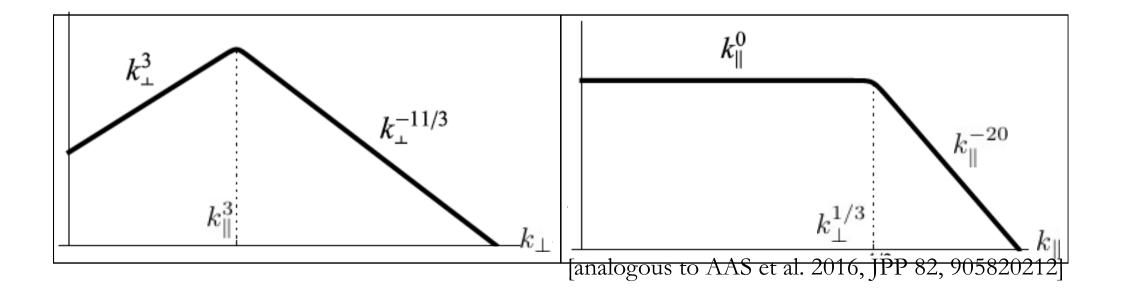
$$ightharpoonup$$
 Magnetic-field spectra are $E_B(k_\parallel,k_\perp) \propto \frac{E_{arphi}(k_\parallel,k_\perp)}{k_\perp^2}$



These are "2D spectra" of φ .

- ightharpoonup Magnetic-field spectra are $E_B(k_\parallel,k_\perp) \propto \frac{E_{\varphi}(k_\parallel,k_\perp)}{k_\perp^2}$
- To get "1D spectra," integrate over wavenumber ranges bounded by critical balance:

$$E_{\varphi}^{(1\mathrm{D})}(k_{\perp}) \propto \int_{0}^{k_{\perp}^{1/3}} dk_{\parallel} k_{\parallel}^{0} k_{\perp}^{-11/3} \sim k_{\perp}^{-10/3}, \ E_{\varphi}^{(1\mathrm{D})}(k_{\parallel}) \propto \int_{k_{\parallel}^{3}}^{\infty} dk_{\perp} k_{\parallel}^{0} k_{\perp}^{-11/3} \sim k_{\parallel}^{-8}$$
 (same as derived above) very steep! NB: this is also the frequency spectrum



Phase-Space Spectra

These are "2D spectra" of φ .

- ightharpoonup Magnetic-field spectra are $E_B(k_\parallel,k_\perp) \propto \frac{E_\varphi(k_\parallel,k_\perp)}{k^2}$
- To get "1D spectra," integrate over wavenumber ranges bounded by critical balance:

$$E_{\varphi}^{(1\mathrm{D})}(k_{\perp}) \propto \int_{0}^{k_{\perp}^{1/3}} dk_{\parallel} k_{\parallel}^{0} k_{\perp}^{-11/3} \sim k_{\perp}^{-10/3}, \ E_{\varphi}^{(1\mathrm{D})}(k_{\parallel}) \propto \int_{k_{\parallel}^{3}}^{\infty} dk_{\perp} k_{\parallel}^{0} k_{\perp}^{-11/3} \sim k_{\parallel}^{-8}$$

➤ This all the tip of a larger iceberg – **PHASE-SPACE TURBULENCE**:

Hermite spectrum: $E_h(m,k_\parallel) \propto m^{-19/2}$ $m \sim (\delta v_\parallel/v_{
m th}e)^{-2}$ Hankel spectrum: $E_h(p) \propto p^{-4/3}$ Spectrum of perpendicular Spectrum of parallel phase-mixing (entropy cascade) phase-mixing: [Plunk et al. 2010, JFM, 664, 407] super-steep, so Landau damping is heavily reduced! Cf. linear case: $E_h \propto m^{-1/2}$

[Kanekar et al. 2014, JPP 81, 305810104]

Details: another talk... or (<u>exercise</u>) derive this yourself by analogy with this paper

Conclusions

- Turbulence associated with the kinetic species at sub-Larmor scales can be understood in terms of entropy cascade, intimately associated with nonlinear perpendicular phase mixing (small-scale spatial structure imprints itself on the velocity space due to Larmor gyration of particles).
- > Spectra at electron sub-Larmor scales:

density
$$E_n \propto k_\perp^{-10/3}$$
, electric field $E_E \propto k_\perp^{-4/3}$, magnetic field $E_B \propto k_\perp^{-16/3}$

These appear to have numerical, experimental and perhaps observational support.

- Parallel phase-mixing is a subdominant effect (but this has **not** been checked!)
- ➤ Phase-space dynamics, statistics, scalings, etc. remain largely unexplored.

 THIS IS THE NEW FRONTIER (imho): both for theoreticians & for observers.

PPCF 50, 24024 (2008) ApJS 182, 310 (2009), sec. 7.12 PRL 103, 015003 (2009) JPP 82, 905820212 (2016) "Turbulent Dissipation Challenge" what it should be about: cascade via phase space or position space?

THOR? velocity-space structure!