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Electron–positron (e–p) plasmas are widely thought to be emitted, in the form of
ultra-relativistic winds or collimated jets, by some of the most energetic or powerful
objects in the Universe, such as black-holes, pulsars, and quasars. These phenomena
represent an unmatched astrophysical laboratory to test physics at its limit and,
given their immense distance from Earth (some even farther than several billion light
years), they also provide a unique window on the very early stages of our Universe.
However, due to such gigantic distances, their properties are only inferred from the
indirect interpretation of their radiative signatures and from matching numerical
models: their generation mechanism and dynamics still pose complicated enigmas to
the scientific community. Small-scale reproductions in the laboratory would represent
a fundamental step towards a deeper understanding of this exotic state of matter.
Here we present recent experimental results concerning the laser-driven production
of ultra-relativistic e–p beams. In particular, we focus on the possibility of generating
beams that present charge neutrality and that allow for collective effects in their
dynamics, necessary ingredients for the testing pair-plasma physics in the laboratory.
A brief discussion of the analytical and numerical modelling of the dynamics of
these plasmas is also presented in order to provide a summary of the novel plasma
physics that can be accessed with these objects. Finally, general considerations on the
scalability of laboratory plasmas up to astrophysical scenarios are given.

1. Introduction
Pair-plasmas, i.e. plasmas consisting of negatively and positively charged particles

bearing the same mass and (absolute) charge, have been gathering increasing interest
among plasma researchers in the last years. Magnetized e–p plasmas are predicted
to exist in pulsar magnetospheres (Ginzburg 1971; Sturrock 1971; Ruderman and
Sutherland 1975; Manchester and Taylor 1977; Michel 1982, 1991), in bipolar outflows
(jets) in active galactic nuclei (AGN, Begelman et al. 1984; Miller and Witta 1987), at
the centre of our own galaxy (Burns 1983), in the early universe (Gibbons et al. 1983),
and in inertial confinement fusion schemes using ultraintense lasers (Liang et al. 1998;
Gahn et al. 2000). Non-relativistic pair plasmas have also been created in experiments
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2 G. Sarri et al.

(Greaves et al. 1994; Greaves and Surko 1995; Zhao et al. 1996) and, recently,
Helander and Ward (2003) discussed the possibility of pair production in large toka-
maks due to collisions between multi-MeV runaway electrons and thermal particles.
Remarkably, (Oohara and Hatakeyama 2003; Hatakeyama and Oohara 2005; Oohara
et al. 2005) plasmas composed of (two populations of) fully ionized particles with
approximately the same mass and absolute charges of opposite polarity (+/−), have
recently been created in the laboratory (Oohara and Hatakeyama 2003) by creating
a large ensemble of fullerene ions (C+

60 and C−
60, in equal numbers), thus allowing for

a study of the properties of pair plasmas with no concern for mutual annihilation
(recombination), which limits the lifetime of e–p plasmas. Theoretical proposals for
prolific production of pair plasmas during the collision of ultraintense laser beams
have also been put forward (see Di Piazza et al. (2012) and references therein), which
might become realistic with the advent of the next generation of laser facilities.

As mentioned above, the magnetospheres of rotating compact astrophysical objects
are generally thought to be filled with an e–p plasma, produced in pair cascades in
the intense fields near the surface of the compact object. Although the exact details
of how and where these cascades are occurring is incomplete, it is evident that the
resulting pair plasma might play a central role in the dynamics of these objects,
since the pairs produced ultimately populate any outflow, and the currents they
carry inevitably determine the electromagnetic (EM) structure. Pulsars are perhaps
the best known example, where e–p pair production is an essential ingredient of
global models (Kennel and Coroniti 1984). Magnetic fields at the surface of a
pulsar are typically very strong, and can in some cases reach a significant fraction
of the critical field strength Bcrit = m2c3/e� = 4.414 × 1013 G. These fields rotate
with the pulsar and pair production can proceed by a number of channels in such
intense electric and magnetic fields. The standard picture assumes an initial particle
is accelerated in either the rotational or space charge limited electric field, and emits
a photon, that initiates a pair cascade (Ruderman and Sutherland 1975; Arons and
Scharlemann 1979; Levinson et al. 2005; Reville and Kirk 2010; Timokhin and
Arons 2013). The magnetic field strength is typically strong enough to ensure that
the resulting pair plasma co-rotates with the pulsar. Beyond some critical point,
co-rotation must cease, since it would require superluminal motion. To avoid this,
the particles escape along open field lines, in the form of a relativistic pair wind. The
details of how energy is dissipated in these winds is an active area of research (Kirk
et al. 2009). A similar mechanism is thought to operate around rotating black holes,
with an external magnetic field threading an accretion disc. It has also been suggested
that the launching of jets from a rotating black-hole might rely on copious pair
production near the black hole ergosphere, sufficient to permit force-free conditions
in the magnetosphere. Blandford and Znajek (1977) have shown that, under these
conditions, energy and angular momentum can be extracted electromagnetically,
consistently with observations of AGN. These theoretical predictions are now well
supported by three-dimensional magneto-hydrodynamics simulations including the
effects of general relativity (Komissarov and Barkov 2009; Sadowski et al. 2014).
As with the pulsar wind, the resulting outflow is pair dominated, until a significant
amount of the ambient matter has been entrained. A similar mechanism is thought to
be responsible for the launching of gamma-ray burst (GRB) jets, however, significant
pair-production can also occur in the optically thick outflow, in these energetic events
(Meszaros and Rees 1992).

The above phenomena, namely pulsar winds, AGN jets and GRBs, represent some
of the most extreme environments in the Universe, with plasma conditions that are
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Laser-driven electron–positron beams 3

unattainable in terrestrial laboratories. In fact, producing a genuine pair plasma
in the laboratory at all has proved to be extremely challenging experimentally. By
exploiting recent advances in laser plasma acceleration, it is possible now to initiate
a pair cascade in a high-Z metal target, using a laser-wakefield accelerated ultra-
relativistic electron beam. In this article, we will discuss recent results concerning
laser-driven generation of e–p beams, with particular attention to the possibility of
generating neutral beams that allow for collective effects in their dynamics. This
would open a new branch of experimental physics, namely the study of pair plasmas
in the laboratory, which will be applicable to our understanding of the dynamics of
ultra-massive astrophysical objects.

In Sec. 2, the theory behind the quantum EM cascade initiated by an ultra-
relativistic electron in a high-Z material is summarized. In Secs 3 and 4, we will
discuss recent results reported in the literature concerning positron production either
via direct laser irradiation of a solid target or via laser-wakefield accelerated electrons,
respectively. Section 5 will summarize recent theoretical results on solitary waves in
e–p plasma, whereas Sec. 6 will discuss numerical work on the interaction with
these plasmas with background electron–ion plasma. Section 7 will show general
considerations on how to rescale laboratory results to astrophysical conditions and
conclusive remarks will be given in Sec. 8.

2. Theory of quantum electromagnetic cascades in solids driven by an electron
beam

The propagation of an ultra-relativistic electron beam through a high-Z solid
target triggers the onset of a quantum EM cascade that might comprise three main
steps: generation of a real high-energy photon via bremsstrahlung (Koch and Motz
1959), production of an e–p pair during the propagation of a high-energy photon in
the field of a nucleus (sometimes referred to as the Bethe–Heitler process) (Heitler
1954), and direct production of an e–p pair mediated by the emission of a virtual
photon during the propagation of an electron through the field of a nucleus (Baier
and Katkov 2008). Hereafter, we will focus our attention on positron production as a
result of EM cascades in high-Z targets in the ultra-relativistic regime. We can thus,
neglect additional electron and positron energy losses as resulting, for instance, from
additional scattering mechanisms (such as Compton, Möller, and Bhabha scattering)
and from the ionization of the atoms themselves. In the following discussion, we will
also adopt units whereby the electron mass me, speed of light c, and the Planck’s
constant h are all equal to 1.

For sufficiently thick targets, we expect the newly generated electrons and positrons
to be the seed for an additional chain of reactions, effectively inducing a multi-step
cascade. In order to quantify this phenomenon, it is useful to rescale the target
thickness d in terms of the radiation length of the material (Lrad) (Tsai 1974). For an
order-of magnitude estimate of Lrad, we can assume here to be in the total-screening
regime which, for an electron with energy ε emitting a photon with energy ω, occurs
if the parameter S ≡ αZ1/3ε(ε − ω)/ (ω) is much larger than unity (here, α ≈ 1/137
is the fine structure constant and a Thomas–Fermi model of the atom is assumed
(Beresteskii et al. 2008)). In this regime, and by including Coulomb corrections, the
radiation length is approximately given by Beresteskii et al. (2008):

Lrad ≈ 1/[4α(Zα)2nλ2
CL0], (2.1)
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4 G. Sarri et al.

where n is the number of atoms per unit volume, λC = 3.9×10−11 cm is the Compton
wavelength, and L0 = log(183Z−1/3) − f (Zα), with f (x) =

∑∞
a=1 x2/a(a2 + x2).

Intuitively, a radiation length can be seen as the average distance needed to perform
one step of the cascade (either photon creation by bremsstrahlung or generation of
an e–p pair). For example, the radiation length for Pb, Ta, and Au are LPb

rad ≈ 5.6
mm, LTa

rad ≈ 4.1 mm, and LAu
rad ≈ 3.3 mm, respectively. It is thus convenient to express

the target thickness in units of the material’s radiation length � = d/Lrad.
e–p production via virtual photon (a process sometimes called direct electro-

production (Heitler 1954)) is the dominant mechanism only for very thin targets
(� � 1) and we will therefore neglect its contribution in the rest of the manuscript.
We then have only to consider bremsstrahlung and the Bethe–Heitler process, and
it is straightforward to see that, in this case, the electron and positron distribution
functions (f− and f+, respectively) will have the same shape (Rossi 1952)

∂f±

∂�
= −

∫ 1

0

dv ψrad(v)

[
f±(E, �) − 1

1 − v
f±

(
E

1 − v
, �

)]

+

∫ 1

0
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(
E

v
, �

)
, (2.2)

whereas the photon distribution function (fγ ) can be written as

∂fγ
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=

∫ 1

0
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[
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v
, �

)
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(
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)]
− μ0fγ (E, �), (2.3)

where we have defined

ψrad(v) =
1

v

[
1 + (1 − v)2 − (1 − v)

(
2

3
− 2b

)]
, (2.4)

ψpair(v) = v2 + (1 − v)2 + v(1 − v)

(
2

3
− 2b

)
, (2.5)

with μ0 = 7/9 − b/3 and b = 1/18 log(183/Z1/3), are related to the cross section of
bremsstrahlung and pair photo-production in the field of a heavy atom with charge
number Z (see Rossi (1952) for details).

As an example, we plot in Fig. 1 the amount of electrons and positrons escaping a
solid target once a beam with 2.7×109 electrons with a flat spectrum ranging from 120
MeV to 1 GeV enters a lead target of different thicknesses �. In a first approximation,
we can see that the number of electrons decreases roughly exponentially, whereas
the number of positrons initially increases and then starts to decrease exponentially
as well. The latter behaviour is easily understood if we consider that, after a certain
thickness, there is a non-negligible probability that also the newly generated positrons
will start an EM cascade.

From this simple model we can, in a first approximation, assume that each
electron/positron (photon) after a radiation length emits a photon (transforms into an
e–p pair) with half of the energy of the initial electron (with the electron and positron
sharing half of the energy of the initial photon). Adopting this approximation, we
can see that the maximum yield of positrons with an energy exceeding E occurs for a
target thickness dmax ∼ Lrad log(〈Ee〉/E)/ log(2) (Rossi 1952), where 〈Ee〉 is the average
energy of the initial electron distribution. For the simple example discussed above,
we have �max ≈ 2. This can be intuitively understood if we consider that the electron
will take on average one radiation length to generate a photon, which subsequently
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Laser-driven electron–positron beams 5

Figure 1. Number of positrons (a) and electrons (b) with energy exceeding 120 MeV escaping
a lead target of different thicknesses � once an electron beam with a flat spectrum ranging
from 120 MeV to 1 GeV (total number of electrons: 2.7 × 109) propagates through it. Image
taken from Sarri et al. (2013a).

will need another radiation length to generate an e–p pair. With this model, we see
also that up to ≈2.5 × 108 relativistic positrons can be generated, i.e. approximately
one-tenth of the initial electrons entering the solid target. It is worth pointing out

that the number of positrons generated will roughly scale as: Ne+ ∝
(
Z2nd

)j
, where

n is the number of atoms per unit volume in the material, d is the thickness of the
solid target, and j ≈ 1 for the trident process and j ≈ 2 for the Bethe–Heitler process
(Sarri et al. 2013b, 2015).

Finally, the ultra-relativistic nature of the particles involved implies that the
divergence of the electrons and positrons escaping the rear side of the target be
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6 G. Sarri et al.

roughly inversely proportional to their Lorentz factor. In the case of a thickness of
exactly one radiation length, the cone angle will be 〈θ2

e+〉 ≈ 1/γ 2
e+ (Rossi 1952) whereas

for thicker target, a semi-empirical law can be given (Heitler 1954)√
〈θ2

e+〉 ≈ 19.2

p

√
�, (2.6)

with p being the momentum of the particle in MeV c−1. We still have an inverse
proportionality with the particle Lorentz factor, with the only difference that the
divergence increases also with the square root of the thickness of the material.
Equation (2.6) is valid, however, only for a collimated electron beam. If the electron
beam is already divergent (with cone-angle θe−), the divergence of the escaping e–
p beam will instead be given by the geometrical sum of the two angles: 〈θreal〉 ≈√

〈θe+〉2 + 〈θe− 〉2.
As a final remark, it is important to note the consistency of these simple theoretical

considerations with semi-empirical models extrapolated from experimental data in
conventional accelerators upon which nuclear Monte-Carlo scattering codes such as
GEANT4 and FLUKA (Battistoni et al. 2007) are largely based (see Yan et al.
(2013a,b) for examples of modelling of these phenomena using these codes).

3. Direct laser-solid irradiation
The question then naturally arises: how can we generate an initial electron beam

that we can then use to trigger the EM cascade inside a high-Z solid target? In
conventional particle accelerators, such as the e–p collider (LEP), an electron beam
is first accelerated by a few-meters long linear accelerator (LINAC). However, much
more compact acceleration schemes have been identified in laser-plasma accelerators.
The first intuitive approach is to focus a high-power laser onto the surface of a thin
metallic foil. Without going into the details of the physics involved, we can just say
that a laser beam with a non-perfect contrast (i.e. presenting a low-intensity pedestal
before the arrival of the high-intensity peak of the pulse) will form a relatively cold
pre-plasma on the irradiated surface of the target. This rather high-density plasma
will be heated by inverse bremsstrahlung and its temperature can be approximated
as (Langdon 1980):

KBTe ≈ 1.5
(
ZI 2

L16t10fs/ne23

)2/9
, (3.1)

where KBTe is the electron temperature in keV, Z is the target atomic number, ne23

is the electron density in units of 1023 cm−3, IL16 is the laser intensity in units of
1016 W cm−2, and t10fs is the duration of the laser in units of 10 fs. The subsequent
arrival of the high-intensity part of the laser will thus interact with this preformed

plasma, generating, via �J × �B heating (sometimes also referred to as ponderomotive
acceleration) (Kruer and Estabrook 1985), a divergent population of hot electrons
with a characteristic temperature of

KBTJ×B

mec2
≈

√
1 +

ILλ
2
L

2.8 × 1018Wcm−2μm2
(3.2)

where mec
2 is the electron rest energy, and IL and λL are the laser intensity and

central wavelength, respectively. If the laser polarization has a non-zero component
parallel to the target normal, a resonant absorption mechanism must also be taken
into account, producing electrons with a typical temperature given by Wilks and
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Laser-driven electron–positron beams 7

Kruer (1997)

KBTres ≈ 10(KBTeIL15λLμm)1/3, (3.3)

where IL15 is the laser intensity in units of 1015 W cm−2 and λLμm is the laser central
wavelength in micron.

If the target is sufficiently thick, we can use the same solid to both generate
the electrons and to serve as a medium to sustain the EM cascade to generate the
positrons. This approach was indeed adopted by Chen and collaborators in a series of
experiments (Chen et al. 2009a,b, 2010, 2014) carried out using the Titan laser at the
Jupiter laser facility at Lawrence Livermore National Laboratory and the OMEGA
EP laser hosted by Rochester’s Laboratory for Laser Energetics (Waxer et al. 2005).
In both cases, the laser pulse duration was in the picosecond range, and the laser
pulse energy varied from 100 J up to 850 J implying a peak laser power in the
TW range. Fast-focusing optics ensured a laser focal spot of a few up to tens of
microns, with an associated peak intensity of the order of 1019–1020 W cm−2 onto
the surface of mm-scale high-Z solid targets. Assuming a ns pedestal with a contrast
of ≈10−5 (Wilks and Kruer 1997; Chen et al. 2009a), we can estimate from (3.1) a
temperature of the preformed plasma of the order of 20 keV for Au and a slightly
higher temperature for the hot electrons arising from resonance absorption. On the

other hand, the �J ×�B mechanism will give an estimated hot electron temperature of
about 3 MeV for a laser intensity of 1020 W cm−2. It is thus clear that this would be
the dominant mechanism via which relativistic electrons of enough energy to generate
an e–p pair can be generated (electron energy at least twice the electron rest mass).
However, it must be taken into account that nonlinear interactions of the intensity
peak of the laser pulse with the preformed plasma can lead to a local enhancement
of the laser intensity, especially via self-focussing effects (Sprangle et al. 1987), or to a
self-modulated electron wakefield acceleration (Krall et al. 1993). These effects might
explain why the recorded electron temperatures in this experiment were higher than
those expected from a ponderomotive scaling (3.2).

By employing an e–p magnetic spectrometer, an approximate number of 1011

electrons per steradian was obtained, in line with previous results on electron
acceleration in laser-solid interactions (Gibbon et al. 2004). These electrons will
present a wide divergence (of the order of tens of degrees), implying a typical electron
density at the rear side of the solid target (assuming a thickness of 1 mm) of the
order of 1015–1016 cm−3. The propagation of these electrons inside the solid target
triggers an EM cascade whose main products are photons, electrons, and positrons.
As intuitively expected, the positron yield is expected to increase with the target
areal density and the target atomic number. In particular, the Bethe–Heitler process
would imply a positron yield that scales with Z4 and the square of the target areal
density (Sarri et al. 2013b) explaining why a detectable positron signal was obtained
only for the highest atomic number (Au) used. In this case, the authors report on
approximately 108 positronMeV−1 steradian−1 if a 1 mm thick Au target is used
implying a conversion into positrons of the order of a few percent. It must be noted
here that the radiation length for Au is of the order of 3.3 mm (� ≈ 0.3) implying
that both the Trident process (dominant for � � 10−2) and higher order processes
(significant only for � > 1) can be neglected and only the Bethe–Heitler process
is effectively responsible for the positron generation. In this case though, positron
production is maximized for � ≈ 2 (see Fig. 1) indicating that a higher positron yield
could have been obtained if a thicker target had been used.
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8 G. Sarri et al.

The divergence of the positrons escaping the target will be given, in a first
approximation, by the geometrical sum of the initial electron divergence 〈θe− 〉 and
the divergence associated with the positron generation 〈θe+〉 (see Sec. 2). Assuming
a central positron energy of about 10 MeV, 〈θ2

e+〉 ≈ 1/γ 2
e+ ≈ 3◦, i.e. much smaller

than the initial electron divergence (tens of degrees). The divergence of the escaping
positron beam is thus dominated by the initial divergence of the electrons and it will
be of the order of tens of degrees. In this configuration, we are thus in the presence of
a broadly divergent and highly non-neutral e–p population (≈5% of positrons) with a
typical maximum density of the order of 1015–1016 cm−3. Its relativistically corrected
collisionless skin depth can be estimated to be of the order of �e ≈ 100–150μm
implying that, in principle, collective behaviour of the e–p population is possible,
since the diameter of the beam is of the order of D ≈ 600μm (D > �e) and the
longitudinal size of the beam is of the order of L ≈ 300μm > �e (assuming that
the beam temporal duration is of the order of 1 ps, i.e. comparable to that of the
laser beam). Nevertheless, this will be true only in the close proximity of the rear
surface of the solid target. Moreover, the high-degree of non-neutrality makes it hard
to appreciate the contribution of the positrons in the dynamics, which will virtually
coincide with that of a purely electronic population.

It is also worth noticing that, without any additional plasma-like effects, the
positrons are expected to exit the solid target with a spectral shape comparable
to that of the electrons, i.e. Maxwellian. In an interesting series of experiments at
higher laser energy, Chen and collaborators reported on the generation of quasi-
monoenergetic positron populations (Chen et al. 2010, 2014) with a maximum central
energy of 19 MeV and an energy spread of the order of 10–20%. This improved
positron spectrum will be indeed more appealing for further storage and acceleration,
but it still far from a real applicability to laboratory astrophysics studies. The peaking
of the positron spectrum can be attributed to a further acceleration at the rear of
the target as induced by strong electrostatic (ES) fields set by the charge imbalance
brought forward by the sheath of high-density electrons. This process, usually referred
to as target normal sheath acceleration (Macchi et al. 2013), is indeed the dominant
mechanism for laser-driven ion-acceleration at moderate laser intensities.

Despite the intrinsic interest of these experimental results, they do present limiting
factors if an application to laboratory astrophysics is sought. In particular, it is difficult
to achieve a neutral e–p population (or, at least, a situation in which the positron
contribution in the beam’s dynamics is non-negligible). Moreover, the intrinsically
high divergence obtained (of the order of tens of degrees, as dictated by the initial
broad divergence of the electron generation mechanism) induces a quick drop in the
particle density during propagation. It must be pointed out here that recent results
obtained using the OMEGA EP laser facility suggest that subsequent magnetic
collimation of the e–p beam might slightly enhance the positron percentage of the
beam, which is anyhow significantly lower than 50% (Chen et al. 2010). Besides,
the rather demanding laser parameters required (energies in the kJ regime in a time
duration of the order of picoseconds) make these results hardly scalable to higher
energies.

4. Laser-wakefield-accelerated electron beams propagating through a solid
target

The main limitations of the approach discussed in the last section can all be
pinpointed to the relatively inefficient method used for the generation of a relativistic
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Laser-driven electron–positron beams 9

electron beam. The low energy and broad divergence of the positrons are indeed
directly related to those of the electrons. It is clear that positron generation via EM
cascade in a solid target will greatly benefit from a higher quality electron beam
(narrower divergence and higher energy). Conventional particle accelerators are able
to provide that, but stringent constraints on the stability of generated beams do not
allow for an in-situ generation of e–p beams via cascading. Indeed cascading is only
used at an initial stage, in order to provide a low-energy positron population that can
be stored in a storage ring and further accelerated (Potier and Rinolfi 1998). There are
plans to use magnetic chicanes to recombine separate electron and positron beams
(Muggli et al. 2013), but this configuration presents issues regarding ES stability
of recombination. An alternative mechanism to ensure high-quality and high-energy
electron beams is provided by laser-wakefield acceleration. Without going into the
details of the scheme (see Esarey et al. (2009) for an up-to-date review on the subject),
it will suffice here to say that electron beams with narrow divergence (≈ mrad) and
high energy (now exceeding 1 GeV per electron) are now obtainable with widely
available laser systems (laser energies of the order of a few Joules in pulse durations
of the order of tens of femtoseconds) (Leemans et al. 2006, 2014; Wang et al. 2013).

We might then expect that a positron population with better qualities can be
obtained if the electron beam acceleration stage (laser wakefield in a gas) and the
electron/positron production stage (EM cascade in a solid) are physically separated.
This approach was first adopted during a series of pioneering experiments by Gahn
and collaborators (Gahn et al. 2000, 2002) whereby an ultra-short (duration of 130 fs)
and low-energy laser pulse (energy of the order of 200 mJ) was focussed at the edge
of a high-density gas-jet with an electron density of the order of 0.3 nc where nc

represent the plasma critical density (nc ≈ 1.7 × 1021 cm−3 for 790 nm light). In this
regime, electrons are predominantly accelerated by direct laser acceleration (Pukhov
et al. 1999). This mechanism is much less efficient than laser wakefield acceleration
(Esarey et al. 2009), and only provides an electron population with a wide divergence
and a Maxwellian energy distribution. The situation is thus comparable to electron
acceleration in a solid, with the additional drawback that direct laser acceleration
in gases generates an even lower number of electrons (approximately 109 relativistic
electrons per shot in Waxer et al. (2005)). However, the use of such a short laser pulse
(duration of the order of 100 fs) ensures a much shorter electron population and
therefore a much shorter positron bunch. In this series of experiments, the electrons
generated by direct laser acceleration were then directed onto a 2 mm thick lead
target (� ≈ 0.36) and direct evidence of the generation of positrons with an energy
of the order of 2 MeV was given. Again, the positron population represented only
a few percent of the electron/positron cloud escaping the target, suggesting that
the presence of positrons in the dynamics of the electron/positron cloud would be
negligible.

It is thus clear that separating the electron acceleration stage (laser–gas interaction)
from the positron generation stage (electron–solid interaction) became an appealing
option only with the advent of the laser-wakefield acceleration. In this case, GeV-
like electron beams with an overall charge of the order of 10 s of pC and a very
narrow divergence (of the order of a few mrad) can be generated (see Leemans
et al. (2006), (2014) and Wang et al. (2013) for recent experimental results in this
area). Coupling a laser-wakefield accelerator with a solid target for the generation
of positrons was first tested in a series of experiments at the HERCULES laser
(Yanovsky et al. 2008) hosted by the Centre for Ultrafast Optical Science at the
University of Michigan. In these experiments (Sarri et al. 2013a,b), a low-power laser
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10 G. Sarri et al.

beam (0.8 J in 30 fs corresponding to a peak power of 27 TW) was focussed at the
edge of a low-density gas-jet (ne ≈ 5 × 10−3 nc) to generate, via ionization injection
(Clayton et al. 2010), an electron beam with a broad spectrum peaking at 150 MeV,
an overall charge of 50 pC, and a full width half-maximum divergence of θe− = 1.4
mrad. This electron beam was then directed onto a solid target of different material
and thickness, producing a collimated (

√
〈θ2

e+〉 ≈ 3 mrad to be compared with ≈ 350
mrad in the case of direct laser irradiation of the solid, see Sec. 3) and high-energy
(Ee+ � 150 MeV) positron beam with a maximum overall charge of 5–6 pC (i.e. ≈
10% of the initial electron beam). The beam’s divergence agrees with the expected
theoretical value if we consider that these results were obtained for solids with a
thickness comparable to the radiation length of each material (� � 1). In this case, the
positron beam divergence can be estimated as (see Sec. 2): 〈θreal〉 ≈

√
〈θe+〉2 + 〈θe− 〉2 =√

1/γ 2
e+ + (θe−)2 ≈ 3.6 mrad for γe+ ≈ 300 (Sarri et al. 2013a), in good agreement with

the experimental findings. Moreover, the positron yield is seen to scale with the square
of the target thickness and the fourth power of the atomic number, as expected for a
Bethe–Heitler process. Thanks to the low divergence and ultra-short beam duration
(≈30 fs), the positron density achieved in this experiment is ne+ = 2 × 1014 cm−3.
Despite the high-quality of the beam generated, Monte-Carlo simulations (using
the code FLUKA (Battistoni et al. 2007)) indicate that positrons represent only
10% of the e–p beam escaping the target indicating, once again, that the positrons
will only have a negligible contribution to the dynamics of the electron/positron
cloud.

In order to increase the number of positrons in the beam, two main paths can
be pursued: we can either increase the thickness of the solid target, or we can
increase the energy and charge of the initial electron beam. By direct comparison of
Figs 1(a) and (b), we can also see that increasing the thickness of the solid target
brings another interesting effect: for each material we can isolate a target thickness
after which the ratio between the number of escaping electrons and positrons remains
approximately constant. For Pb, this appears to occur at approximately five radiation
lengths in which the number of positrons and electrons with energy exceeding 120 MeV
is approximately 5×107 in both cases. This scenario was tested by Sarri and collabor-
ators in a follow-up experiment carried out using the Astra-Gemini laser hosted by the
Rutherford Appleton Laboratory (Hooker et al. 2006). The details of this experiment
can be found in Sarri et al. (2015) and we here only focus on the main results.

By focussing a much more powerful laser beam (approximately 15 J in 45 fs,
resulting in a peak power of the order of 300 TW) onto a low-density gas-jet, a
broadband and energetic electron beam was accelerated following ionization injection
(Clayton et al. 2010) (maximum energy of the order of 600 MeV, charge of 300 pC, and
divergence of the order of a few mrad). This electron beam then propagated through
a lead target of different thicknesses (from 1 to approximately 8 radiation lengths)
producing a positron population of different density, spectrum, and divergence (see
Sarri et al. (2013a,b)).

It is interesting to note that the maximum positron number was reached for
approximately two radiation lengths (in agreement with the theoretical estimates
shown in Sec. 2) inducing an estimated density of relativistic positrons of the
order of 1017 positrons per centimetre cubed, i.e. comparable to what is achievable
in conventional large-scale accelerators (see, for instance, the results obtained in
SLAC (Ng et al. 2001; Blue et al. 2003)). For thicker targets, a regime is reached
(approximately at 5 radiation lengths) whereby the number of escaping electrons and
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E e
+ Ne

+ MeV−1 Sr−1 τe+ θe+ ne+ ne+/(ne−+ne+ )

Gahn et al. (2002) 2 104–105 0.13 / / /
Chen et al. (2009a) 10 108 1–10 350 1 × 1014 5%–10%
Chen et al. (2010) 20 1010 1–10 350 1 × 1013 1%
Sarri et al. (2013b) 150 5 × 103 0.03 3 2 × 1014 1%–10%
Sarri et al. (2015) 400 3 × 105 0.04 20 1 × 1017 0%–50%

Table 1. Summary of the main parameters for the experiments reported in the literature
concerning laser-driven positron generation. Please note that all the values listed are purely
indicative and must serve only as an order-of-magnitude reference. E e+ represents the maximum
recorded energy in MeV, N e+ MeV−1 Sr−1 gives an indication of the typical number of positrons
per MeV per steradian, τe+ is the laser pulse duration in picoseconds, θe+ is the divergence of
the high energy positrons in mrad, ne+ is an estimated maximum positron density at the rear
of the solid target in particles per centimetre cubed, and ne+/(ne−+ne+ ) gives an indication of
the percentage of positrons in the escaping electron–positron cloud.

positrons is approximately equal, indicating the generation of a neutral beam with
a particle laboratory density of 2 × 1016 cm−3 (related proper density of 1 × 1015

cm−3). In this regime, the beam diameter is larger than the relativistic collision-less
skin depth (�e ≈ c/ωpe, where ωpe is the relativistically corrected plasma frequency).
We are then in the presence of a neutral e–p plasma, a unique state of matter to
be produced in the laboratory that finally opens up the possibility for experimental
studies with clear relevance to astrophysical scenarios (Sarri et al. 2015).

In conclusion, an indicative summary of the characteristics of the experimentally
obtained laser-driven positron populations reported in the literature is given in
Table 1, clearly elucidating the superior performance of schemes adopting laser
wakefield acceleration for the generation of the primary electrons needed to initiate
the EM cascade.

In the following two sections, a summary of the theoretical works reported in
the literature describing peculiar characteristics of e–p plasmas is given, with an
emphasis on both the astrophysical scenarios in which they might play a role, and
the experimental validations that can be provided.

5. Theory for linear and nonlinear waves in pair (electron–positron) plasmas
5.1. Basics – physics of pair-plasmas and intrinsic linear modes

From a theoretical point of view, e–p plasmas are modelled as pair plasmas (p.p.),
i.e. plasmas whose constituents are characterized by the same mass and (absolute)
charge. The dynamics of such plasmas brings forward a number of new phenomena,
some of which are rather unexpected. Contrary to the traditional textbook plasma
picture, where distinct frequency scales are imposed by the mass difference between
electrons and ions (Krall and Trivelpiece 1973; Stix 1992; Swanson 2003), the two
pair species (i.e. electrons and positrons) respond on the same scale; in other words,
the characteristic plasma frequencies for both components of opposite charge are
identical (Stewart and Laing 1992; Iwamoto 1993; Zank and Greaves 1995). On the
other hand, rather surprisingly, the dynamical characteristics of pair plasmas cannot
always be inferred by simply taking the limit of equal (ion and electron) masses,
formally.

Before presenting a summary of the main theoretical results reported in the
literature, it is worth highlighting potential issues regarding fluid models, in particular
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12 G. Sarri et al.

Figure 2. Summary of fundamental electrostatic modes propagating in electron–positron
plasmas. (Table reprinted from Zank and Greaves (1995).)

MHD, in highly collisionless systems. It is not immediately clear that the distribution
function should be Maxwellian, nor is the pressure tensors guaranteed to be isotropic.
In astrophysical systems, in which the Reynolds numbers are extremely large, and
hence, the flows highly turbulent, it is not unreasonable to assume that scattering
on magnetic fluctuations is sufficient to smooth out any large scale temperature
anisotropy. Indeed, if the pressure is highly anisotropic, non-resonant mirror and
firehose instabilities quickly drive the plasma back to a state of isotropy. Similar
conclusions can be drawn in laboratory plasma situations.

Stewart and Laing (Stewart and Laing 1992) presented a study of normal p.p.
modes via a multifluid description. Zank and Greaves (1995) have discussed the
linear properties of various ES and EM modes in unmagnetized and in magnetized
pair plasmas. The same authors have also considered two-stream instability and non-
envelope solitary wave solutions. Linear modes and associated instabilities in p.p.
have also recently been revisited from a kinetic-theoretical point of view in Tsytovich
and Wharton (1978) and Vranjes and Poedts (2005).

The fundamental dispersion profile of ES waves in e–p plasmas comprises an
acoustic mode (subject to heavy Landau damping, in practice)

ω2 = C2
s k

2

and a Langmuir-like mode

ω2 = ω2
p, e + ω2

p, p + C2
s k

2

featuring a frequency gap in the infinite wavelength limit, viz. ω(k = 0) =
√

ω2
p, e+ω2

p, p

(=
√

2ωp in symmetric plasmas) (Iwamoto 1993; Zank and Greaves 1995; Verheest
and Cattaert 2004). In the latter expressions, Cs  1√

2
( Te

me
+

Tp
mp

)1/2 represents the sound

speed (Verheest and Cattaert 2004), ωp, e = ( ne,0e2

ε0me
)1/2 is the electron plasma frequency

and ωp, p = ( np,0e2

ε0mp
)1/2 is the positron plasma frequency (note that the latter coincide

in symmetric e–p plasmas, i.e. if np,0 = ne,0), while ω and k are the wave frequency
and wavenumber in the usual notation. In magnetized pair plasma, besides the ES
upper-hybrid waves, one also encounters perpendicularly propagating ordinary and
extraordinary modes as well as magnetic field-aligned EM waves, characterized in
this case by linear polarization. Remarkably, no Faraday rotation occurs in pair
plasmas. An elegant kinetic description of numerous linear collective modes in a
non-relativistic pair magnetoplasma has been presented by Iwamoto (1993).

An exhaustive study of linear modes in both unmagnetized (B = 0) and magnetized
(B �= 0) cases can be found in Iwamoto (1993), and is here omitted for brevity. The
main modes are summarized in Figures 2 and 3. Interestingly, an alternative approach
to pair plasmas has been created in the laboratory by Hatakeyama and coworkers
(Oohara and Hatakeyama 2003), who created a large ensemble of fullerene ions
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Figure 3. Summary of fundamental electromagnetic modes propagating in electron–positron
plasmas. (Table reprinted from Zank and Greaves (1995).)

(C+
60 and C−

60, in equal numbers). This system mimics e–p plasmas and enables the
study of their properties with no concern for mutual annihilation (recombination),
which limits e–p plasma lifetime in the lab. Those experimental investigations suggest
the existence of three distinct modes (Oohara and Hatakeyama 2003). Two of these
modes, namely an acoustic mode and a Langmuir-like high-frequency mode, are
straightforward to predict via, e.g. two-fluid theory (Iwamoto 1993; Zank and Greaves
1995; Kourakis et al. 2006; Esfandyari-Kalejahi et al. 2006a,b), as discussed above.
A third, intermediate-frequency mode was also reported (Oohara and Hatakeyama
2003), and it was viewed as a controversial topic by theoreticians: interpretations
suggested include soliton-trains (Verheest and Cattaert 2004), ion acoustic wave
acceleration by surplus electrons (Saleem et al. 2006) and Bernstein–Greene–Kruskal
(BGK)-like trapped ion modes (Schamel and Luque 2005; Schamel 2008).

5.2. Nonlinear effects

Solitons. Nonlinear excitations (in the form of solitary waves or shocks) in pair-
plasmas have been studied quite extensively. Large amplitude structures have been
modelled via the pseudo-potential approach (see e.g. in Verheest and Cattaert (2004)
and references therein), and also by the associated Bernoulli quasi-fluid model
(Verheest et al. 2004). Small-amplitude, weakly superacoustic pulses are modelled
by the Korteweg–de Vries (KdV) formalism in the long wavelength limit (Hasegawa
and Ohsawa 2004; Verheest and Cattaert 2004; Verheest 2006). In this widely used
qualitative paradigm, the ES potential (disturbance) function φ (assumed to be weak)
is shown to be governed by a nonlinear partial derivative equation (PDE) in the form
(Verheest 2006 and Kourakis et al. 2009).

∂φ

∂τ
+ Aφ

∂φ

∂ξ
+ B

∂3φ

∂ξ 3
= 0 , (5.1)

where ξ = ε1/2(x − Cst) is a slow travelling wave space coordinate and τ = ε3/2t is a
slow time variable. The resulting ES structure therefore is stationary in a frame moving
at the speed of sound Cs. Verheest (2006) has shown that the nonlinearity coefficient

A is related to the plasma parameters as A ∼
[
1+γe +

Tp

Te
(1+γp)

]
, assuming polytropic

indices γe/i (viz., a pressure-density relation pe ∼ n
γ
e for electrons, and similarly for

positrons), hot (subsonic) electrons and ‘cooler’ (supersonic) positrons (in the opposite
case, a permutation between subscripts p and e is imposed). Furthermore, the diffusion

coefficient is B ∼ (1 − Tp

Te
)2/(1 +

Tp

Te
). Te and Tp denote the temperature of the electron

and positron component, respectively.
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Figure 4. The dispersion curves for electrostatic modes in unmagnetized pair plasma (B = 0)
are shown. These include an acoustic mode (lower curves), which is in practice heavily damped
(and does not exist in symmetric-temperature e–p plasmas), and a Langmuir-type mode (upper
curves). The curves correspond to values Tp/Te = 0.1 (small dashes), Tp/Te = 0.5 (long dashes),
and Tp/Te = 0.9 (full curves). The normalized variables in the horizontal and vertical axes

are respectively X = k2Te/(meω
2
p) and Y = ω2/ω2

p, where ω2
p = ω2

p, e + ω2
p, p is the sum of the

frequency (square) of the pair species. Note that these curves are valid for Te < Tp; on the
other hand, if Tp > Te, the same curves are obtained, but the subscripts e and p should be
swapped for a correct interpretation of the above values. (Figure reprinted with permission
from (Verheest 2006).)

The analytical expression for the bell-shaped (ES pulse soliton) solution reads

φ = φ0 sech2

(
ξ − vt

L

)
, (5.2)

where the solitonic pulse’s maximum amplitude is φ0 = 3v/A and its width is
L =

√
4B/v. This expression defines a monoparametric family of solutions in terms

of the real parameter v (the soliton speed increment above the sound speed). Restoring
the initial coordinates, it is straightforward to show that the total soliton speed is given
by vsol = Cs + εv, suggesting a weakly supersonic propagation speed. Interestingly, it
can be shown that there are no stationary-profile nonlinear structures in symmetric
unmagnetized pair plasmas; in other words, pulse solitons may (only) be sustained
by a temperature (or density) asymmetry between the pair species, and vanish in
its absence (note that B = 0 in the limit Tp = Te). It can be seen that the same
is actually true for the ‘acoustic’ mode (lower branch in Fig. 4), which is sustained
by thermodynamic difference between the two pair species (and vanishes without it)
(Verheest 2006).

Envelope solitons, modulational instability. Modulational instability (MI) and
envelope solitons have also been studied, with respect to both ES (Esfandyari-
Kalejahi et al. 2006a) and EM (Kourakis et al. 2007) modes. According to a
generic picture (Kourakis and Shukla 2005), wavepackets can be modulated due
to external effects (interaction with the turbulent plasma environment, wave-coupling,
‘noise’), hence the amplitude, say ψ , becomes a modulated wave itself, encompassing
the carrier wave exp[i(kx − ωt)]; in other words, the ES potential function reads
φ  εψ exp[i(kx − ωt)] + O(ε2) (omitting higher-order terms in higher harmonics).
The wavepacket envelope ψ is a slowly evolving function of space and time, which
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can be shown to obey a nonlinear PDE in the form (Esfandyari-Kalejahi et al. 2006a)

i
∂ψ

∂T
+ P

∂2ψ

∂ζ 2
+ Q|ψ |2ψ = 0. (5.3)

Here, ζ = ε(x − vgt) is a space variable moving at the group velocity vg = ω′(k)
(expressing a slow evolution in space, viz. ε � 1), where ω = ω(k) is the dispersion
relation of the carrier, and T = ε2 is a ‘slow’ time variable. The dispersion coefficient

P is given by 1
2

∂2ω
∂k2 (note that it vanishes for the acoustic mode in Fig. 1), while

the nonlinearity coefficient is given by a lengthy expression of the temperature and
number density ratios, Tp/Te and np,0/ne,0, respectively (Esfandyari-Kalejahi et al.
2006a). The wavepacket may thus manifest a tendency for instability (MI) for carrier-
wavenumber values above a certain threshold (i.e. for short wavelengths): this is
actually the root of Q, which can be shown to depend on the plasma configuration
and intrinsic plasma values (see e.g. in Esfandyari-Kalejahi et al. (2006a)). A detailed
analysis shows that energy localization may occur in the unstable (wavepacket) region,
via the spontaneous formation of stable envelope structures (bright envelope solitons)
(Kourakis and Shukla 2005), which mimic optical pulses in waveguides (or in optical
fibers in long-distance communications).

The role of configurational asymmetry between the pair components (electrons–
positrons). Although symmetric pair components were originally assumed (i.e. at equal
number density and temperature) in the modelling of p.p., it was soon realized that
this picture may not be realistic. The remarkable features of symmetric and ‘pure’ pair-
plasmas may be modified in the presence of either temperature fluctuations (thermal
mismatch between the two species), or density fluctuations creating a charge imbalance
between the pair species. An overall charge imbalance may also be attributed to the
presence of a ‘third’ species in the background. For instance, e–p plasmas may also
contain positive ions, in addition to electrons and positrons. Electron–positron–ion
(e–p–i ) plasmas are widely thought to occur in astrophysics, e.g. in AGN (Miller
and Witta 1987), in pulsar magnetospheres (Michel 1982), and also in tokamaks
and in the laboratory (Surko et al. 1986; Surko and Murphy 1990; Berezhiani et
al. 1992; Greaves et al. 1994; Greaves and Surko 1995). E-p-i plasmas have also
been studied, in this direction, with respect to low (ion-acoustic) (Salahuddin et al.
2002) and higher frequency (Esfandyari-Kalejahi et al. 2006a,b) ES modes. Magnetic
field-aligned nonlinear Alfvén waves in an ultra-relativistic pair plasma have been
investigated by Sakai and Kawata (1980) and Verheest (1996). Zhao et al. (1994) have
performed three-dimensional EM particle simulations of nonlinear Alfvén waves in
an e–p magnetoplasma. EM p.p. wave modulation due to ponderomotive coupling to
slow ES plasma perturbations was considered by Cattaert and collaborators (Cattaert
et al. 2005).

Nonlinear profile of e–p–i plasmas. The nonlinear dynamical profile of e–p–i is rich.
On the pair species vibration scale, nonlinear excitations predicted include solitons,
either of ES (Verheest 2006; Lazarus et al. 2008; Kourakis et al. 2009) or EM
(Verheest and Cattaert 2005) type, modelled e.g. by KdV type theories. A Zakharov–
Kuznetsov model was also proposed, in higher dimensionality, for magnetized e–p–i
plasmas (Williams and Kourakis 2013). Furthermore, envelope solitons have been
shown to occur on the high (pair-) frequency scale, as part of the evolution of either
EM (Kourakis et al. 2007) or ES (Kourakis et al. 2006) wavepackets. On the other
side of the scale, low-frequency oscillations of the massive background component
(defects, or heavy ions) have been investigated via a Krylov–Bogoliubov–Mitropolsky
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Figure 5. Soliton stability diagram for e–p–i plasmas. The critical threshold of the temperature
ratio σ = Tp/Te where the nonlinearity coefficient A in (5.1) vanishes is shown against the
(scaled) background ion density β = Zini/ne,0. Note that β = 0 represents ‘pure’ e–p plasmas
(no ions), while σ = 1 represents symmetric-temperature e–p–i plasmas. The shaded region
below (above) the curve corresponds to parameter values where A is positive (negative), i.e.
where positive (negative) polarity potential pulses occur. (Figure reprinted with permission
from Kourakis et al. (2009).)

perturbation technique, and were shown to be modulationally unstable at finite
wavelengths (Salahuddin et al. 2002; Jehan et al. 2008).

Asymmetric pair-ion plasmas. It may be added, for completeness, that in an
analogous qualitative picture (pair constituents, plus a heavier charged background
species), one may anticipate the existence of a small fraction of charged massive
particles in fullerene pair-ion plasma (Oohara and Hatakeyama 2003), either
intrinsically as defects, or injected intentionally (doping) as a means of controlling
plasma behaviour. Assuming the existence of a massive background species, of either
positive or negative charge, the role of charged impurities (defects) in pair-plasmas was
investigated e.g. in Kourakis and Saini (2010), where it was shown to affect the onset
and characteristics (growth rate, wavenumber threshold) of MI of ES wavepackets. A
temperature or/and density asymmetry may therefore act as an ‘order’ parameter in a
way, and affect the characteristics and stability profile of linear waves and nonlinear
structures (Kourakis et al. 2009); cf. Fig. 5.

6. Numerical simulation of beam-plasma instabilities
Plasma instabilities, which are driven by relativistic beams of leptons, have received

widespread attention in an astrophysical context after observations confirmed that
accreting compact objects (neutron stars or black holes) can emit relativistic plasma
flows in the form of a jet. Examples for relativistic flows are pulsar winds and the
jets of microquasars (Zhang 2013), AGN (Urry and Padovani 1995) and GRBs (Piran
2004). Plasma instabilities develop, when these relativistic outflows interact with an
ambient plasma. This ambient plasma can be the stellar wind of the progenitor star
that was emitted prior to the stellar collapse or the interstellar medium, like in the
case of long GRBs. It can be the stellar wind of a companion star or the interstellar
medium for microquasars or pulsar winds. The huge jets of AGN are slowed down
by their interaction with the intergalactic medium.
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The plasma instabilities, which develop when a relativistically moving plasma
interacts with an ambient medium, have been studied theoretically and by means
of particle-in-cell (PIC) simulations (Dawson 1983). The bulk of the theoretical and
simulation work has focused on instabilities in a spatially uniform plasma, which
contains multiple beams of electrons or beams of electrons and positrons. The
pioneering work concentrated on electron beam instabilities, which are driven by an
unmagnetized relativistic beam of electrons with the number density nb and a bulk
electron population with a number density n0. We will describe the three types of
waves that are destabilized by such a beam. We go for this purpose into the reference
frame defined by nbvb = −n0v0, where v0 is the mean speed of the bulk electrons. The
ions are considered to be an immobile positively charged background. The net current
vanishes in this frame of reference. The relativistic factor γ of the beam electrons in
the reference frame of the bulk electrons is practically equal to the Lorentz factor γb

of vb if nb � n0. The character of the instability depends on the angle between the
wavevector of the unstable wave k and the beam velocity vector vb.

The ES two-stream instability has a wavevector k ‖ vb. Its exponential growth rate
scales with γ −1

b . This instability plays an important role for non-relativistic systems,
but it is outrun by the other instabilities already at mildly relativistic values of vb.
A second instability, which is commonly referred to as the filamentation instability
or beam-Weibel instability, has a wavevector k ⊥ vb. The filamentation instability
yields the aperiodic growth of magnetic fields at an exponential growth rate ∝ γ

−1/2
b

if both counterstreaming electron beams have a similar density and temperature.
Otherwise the instability becomes partially ES (Tzoufras et al. 2006). The oblique
mode instability becomes important if n0 � nb. Its wavevector is oriented obliquely
with respect to vb and the maximum value of its exponential growth rate scales as
γ

−1/3
b . This instability is almost ES. The scaling of the growth rates with γb has been

verified in Dieckmann et al. (2006). Bret et al. (2008) has determined the range of
parameters in which the individual instabilities dominate. Relativistic electron beam
instabilities and their nonlinear saturation mechanisms have been reviewed in Bret
et al. (2010). The effects of a magnetic field, which is aligned with vb, has been
examined in Bret et al. (2006). Lemoine and Pelletier (2011) and Lemoine et al.
(2014) consider the effects of such instabilities on relativistic shocks and on particle
acceleration.

Relativistic plasma outflows contain a sizeable fraction of positrons. The PIC
simulations in Silva et al. (2003), Jaroschek et al. (2004), Jaroschek et al. (2005) and
Sakai et al. (2000) were amongst the first to address the relativistic e–p filamentation
instability in three dimensions. The instabilities, which are driven by beams of pair
plasma, cannot be distinguished from those of electron beams if no background
magnetic field is present and if the wave amplitudes are small. This changes if
baryons are present (Fiore et al. 2006) or if the wave amplitudes are no longer linear.
The ES field, which is driven by the magnetic pressure gradient in the latter case, is
weakened by the presence of positrons and the particles interact only via magnetic
forces (Dieckmann et al. 2009).

More recent analytic and simulation work has focused on the formation and
evolution of shocks in pair plasmas. Early PIC simulations of two e–p clouds, which
collided at a nonrelativistic speed, were performed in one (Hoshino et al. 1992) and
in two dimensions (Kazimura et al. 1998). It was pointed out in Medvedev and Loeb
(1999) that the magnetic fields, which are driven by the filamentation instability, give
rise to the shock. That led to the suggestion that strong magnetic fields could be
generated by this instability close to the internal shocks in the jets of GRBs (Brainerd
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2000; Medvedev and Loeb 1999), which triggered further PIC simulation studies of
colliding pair plasmas e.g. those in Nishikawa et al. (2005), Milosavljevic and Nakar
(2006), Milosavljevic et al. (2006) and Nishikawa et al. (2009). The effects of spatially
uniform or striped magnetic fields in pulsar winds have been examined in a one-
dimensional PIC simulation (Nagata et al. 2008) and in two-dimensional simulations
(Sironi and Spitkovsky 2009, 2011). A recent work has also studied the growth of the
filamentation instability from noise levels to the formation of a full shock and the
analytic estimate was confirmed by a PIC simulation (Bret et al. 2013, 2014).

Practically all PIC simulation studies have shown that if two lepton beams of
comparable densities interact, then the filamentation instability dominates the plasma
dynamics already at moderate relativistic factors of the collision speed or beam
speed. The final state of this instability is composed of an ensemble of current flux
tubes, which interact via collective EM forces. The flux tubes merge and the directed
flow energy is gradually transferred to heat via reconnection processes (Polomarov
et al. 2008). The currents are dissipated on electron time scales in a closed spatially
uniform system. The currents are replenished if unperturbed plasma streams in, which
happens close to shocks. Energetic leptons, which cross such a complex distribution of
magnetic fields, experience a myriad of magnetic deflections and they radiate via the
synchrotron jitter mechanism (Keenan and Medvedev 2013). The emitted photons are
however not very energetic in most astrophysical jets due to relatively weak magnetic
fields (Reville and Kirk 2010).

This previous work has assumed that the plasma is collisionless. This assumption is
realistic for most astrophysical plasmas as far as binary interactions between plasma
particles is concerned. However, the energetic leptons in relativistic jets will radiate
and interact with photons. The emission of EM radiation cools off the lepton clouds.
The scattering of particles by the photons is similar to binary collisions between
particles. It will thus affect the filamentation instability by significantly modifying the
distribution function of the particles, that might start to lose collective behaviour.
In this respect, filamentation might even be suppressed, if scattering becomes more
important than the collective interactions between particles. It thus remains unclear
how such wave-particle collisions will affect the collective plasma dynamics under
realistic conditions. This issue is now being addressed with PIC simulation studies
(Lobet et al. 2014), but one has to keep in mind that such codes do not take
into account all radiation emission and absorption mechanisms and that the PIC
codes use approximations to describe these processes. Experimental studies of the
interaction of relativistic lepton clouds thus remain the only means to test how
robust the previous conclusions regarding lepton beam-driven instabilities and shocks
are.

It has to be pointed out that the energy contained in a laser pulse is not yet
sufficient to generate lepton clouds, which are large compared to the plasma scales of
interest. The cloud dimensions would have to be of the order of hundreds of lepton
skin depths in order to support a full leptonic shock, which is way beyond reach
for contemporary lasers. The PIC simulation in Vieira et al. (2012) shows though
that the lepton clouds generated in the laboratory may be large enough to trigger
filamentation instabilities. Electron skin depth-sized lepton clouds actually favour the
growth of the filamentation instability over the two-stream and oblique modes. Their
wavevector is orthogonal to the mean velocity vector of the lepton cloud and the
unstable spectrum of filamentation modes can extend to high wavenumbers if the
leptons are sufficiently cool; the small wavelength of filamentation modes implies
that they fit even into small lepton clouds. The resolution of the two-stream modes
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or the oblique modes would require a lepton cloud with a length along the cloud
propagation direction that exceeds by far the electron skin depth.

7. Scaling to astrophysical dimensions
Despite the fact that the physical process of interest in astrophysical and laboratory

systems generally operate on vastly different scales, both temporally and spatially, if
both systems can be accurately modelled by a similar set of equations, it is generally
possible to find a set of transformations that map one system onto the other. This
process is relatively straightforward, and simply requires finding the relations between
scaling coefficients of the dynamical variables i.e. x → αx, t → βt etc. that renders the
governing system of equations invariant (Ryutov et al. 1999). The scaling relations for
various fluid and kinetic plasma systems can be found in the literature: hydrodynamics
(Ruytov et al. 1999), MHD (Ruytov et al. 2001; Cross et al.), radiation-MHD (Cross
et al.; Ryutov et al. 2001), non-relativistic kinetic plasma (Ruytov et al. 2012; Connor
and Taylor 1977).

Since the experiments reported in this paper are collisionless and relativistic, one
could consider the full Vlasov equation together with Maxwell’s equations. The
resulting system is cumbersome, and provides little insight. Instead we take a simplified
set of equations, appropriate for a cold relativistic plasma fluid. Assuming pair
annihilation, and radiation reaction effects are negligible on the timescales of interest,
the relevant equations for each species α are

∂nα

∂t
+ ∇ · nαvα = 0, (7.1)

d pα

dt
= q

(
E +

1

c
vα × B

)
, (7.2)

where nα is the lab-frame density, and pα = γαmvα is the cold fluid momentum of
each species. Since we are ultimately interested in the growth of kinetic instabilities,
the displacement current cannot be neglected, as has been done in previous non-
relativistic kinetic treatments (Ryutov et al. 1999; Connor and Taylor 1977). Our
system of equations is closed by Maxwell’s equations

∇ × E = −1

c

∂B

∂t
, (7.3)

∇ × B =
1

c

∂ E
∂t

+
4π

c

∑
α

nαqαvα, (7.4)

where it is understood the summation is over all species of the plasma.
We seek a set of linear transformations for the varying quantities that leaves

the above system of equations invariant. It is easily verified that the following
transformation satisfies this condition:

x → a x; t → a t; E → b E; B → b B; γ → ab γ ; n → (b/a) n, (7.5)

where a and b are dimensionless constants. Since our experimental beams are highly
relativistic, it is customary to approximate the particle’s velocities to be exactly c, and
consider only the particle momentum: p = γmc. It is clear from the scaling relations
that the velocity is indeed invariant in all systems. In the context of high-intensity
laser experiments, scaling from the laboratory to astrophysical systems, generally
requires a � 1 (large systems and long temporal scales) and b � 1 (smaller fields,
low densities).
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Finally we note that these scalings preserve the dimensionless quantity

εB =
B2

4πγnmc2
(7.6)

which, for a magnetic field direction perpendicular to the flow, is the ratio of energy
flux carried by the EM field to that of the (cold) fluid. In our experiments, the time
and length scales of interest are those associated with the (inverse) electron/positron
plasma frequency and collision less skin-depth respectively.

ωpet =

√
4πne2

γm
t and

xωpp

c
=

√
4πne2

γmc2
x. (7.7)

These quantities are also preserved under the above transformations.

8. Conclusions
Recent experimental results concerning laser-driven production of e–p beams have

been discussed. Laboratory experiments are finally allowing for the generation of
e–p beams with present charge neutrality and plasma-like effects, thus providing an
appealing experimental scenario for the study of key phenomena of pair plasma
physics in the laboratory, which can then be scaled to astrophysical scenarios. A
summary of the main analytical and numerical results in the field of pair plasma
physics is also provided.

Acknowledgements
G.S. wishes to acknowledge support from EPSRC (Grant No.: EP/L013975/1).

I.K. warmly acknowledges a number of inspiring discussions with Frank Verheest
(Universiteit Gent, Belgium) and Manfred A. Hellberg (University of Kwazulu-Natal,
Durban, South Africa) on topics included in the material presented herein.

REFERENCES

Arons, J. and Scharlemann, E. T. 1979 Astrophys. J. 231, 854.

Baier, V. N. and Katkov, V. M. 2008 Pisma Zh. Eksp. Teor. Fiz. 88(2), 88.

Battistoni, G. et al. 2007 AIP Conf. Proc. 896, 31.

Begelman, M. C., Blandford, R. D. and Rees, M. D. 1984 Rev. Mod. Phys. 56, 255.

Beresteskii, V. B., Lifshitz, E. M. and Pitaevskii, L. P. 2008 Quantum Electrodynamics. Oxford:
Butterworth-Heinemann.

Berezhiani, V. I., Tskhakaya, D. D. and Shukla, P. K. 1992 Phys. Rev. A 46, 6608.

Blandford, R. D. and Znajek, R. L. 1977 MNRAS 179, 433.

Blue, B. E. et al. 2003 Phys. Rev. Lett. 90, 214 801.

Brainerd, J. J. 2000 Astrophys. J. 538, 628.

Bret, A., Dieckmann, M. E. and Deutsch, C. 2006 Phys. Plasmas 13, 082 109.

Bret, A., Gremillet, L., Benisti, D. and Lefebvre, E. 2008 Phys. Rev. Lett. 100, 205 008.

Bret, A., Gremillet, L. and Dieckmann, M. E. 2010 Phys. Plasmas 17, 120 501.

Bret, A., Stockem, A., Narayan, R. and Silva, L. O. 2014 Phys. Plasmas 21, 072 301.

Bret, A. et al. 2013 Phys. Plasmas 20, 042 102.

Burns, M. L. 1983 Positron-Electron Pairs in Astrophysics (ed. M. L. Burns, Harding, A. K. and R.
Ramaty). New York: American Institute of Physics, pp. 281.

Cattaert, T., Kourakis, I. and Shukla, P. K. 2005 Phys. Plasmas 12(1), 012 319.

Chen, H., Wilks, S., Bonlie, J., Liang, E., Myatt, J., Price, D., Meyerhofer, D. and Beiersdorfer, P.
2009a Phys. Rev. Lett. 102, 105 001

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S002237781500046X
Downloaded from https:/www.cambridge.org/core. Balfour Library (Pitt Rivers Museum), on 01 May 2017 at 20:41:02, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S002237781500046X
https:/www.cambridge.org/core


Laser-driven electron–positron beams 21

Chen, H. et al. 2009b Phys. Plasmas 16, 122 702.

Chen, H. et al. 2010 Phys. Rev. Lett. 105, 015 003.

Chen, H. et al. 2014 Phys. Plasmas 21, 040 703.

Clayton, C. E. et al. 2010 Phys. Rev. Lett. 105, 105 003.

Connor, J. W. and Taylor, J. B. 1977 Nuclear Fusion 17, 1047.

Cross, J. E., Reville, B. and Gregori, G. 2014 ApJ, 795, 59.

Dawson, J. M. 1983 Rev. Mod. Phys. 55, 403.

Dieckmann, M. E., Frederiksen, J. T., Bret, A. and Shukla, P. K. 2006 Phys. Plasmas 13, 112 110.

Dieckmann, M. E., Shukla, P. K. and Stenflo, L. 2009 Plasma Phys. Control. Fusion 51, 065 015.

Di Piazza, A., Müller, C., Hatsagortsyan, K. Z. and Keitel, C. H. 2012 Rev. Mod. Phys. 84, 1177.

Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Rev. Mod. Phys. 81, 1229.

Esfandyari-Kalejahi, A., Kourakis, I., Mehdipoor M. and Shukla, P. K. 2006a J. Phys. A: Math.
Gen. 39, 13 817.

Esfandyari-Kalejahi, A., Kourakis, I. and Shukla, P. K. 2006b Phys. Plasmas 13, 122310/1–9.

Fiore, M., Silva, L. O., Ren, C., Tzoufras, M. A. and Mori, W. B. 2006 Mon. Not. R. Astron. Soc.
372, 1851.

Gahn, C., Tsakiris, G. D., Pretzler, G., Witte, K. J., Delfin, C., Wahlstrom, C.-G. and Habs, D.
2000Appl. Phys. Lett. 77, 2662.

Gahn, C., Tsakiris, G. D., Pretzler, G., Witte, K. J., Thirolf, P., Habs, D., Delfin, C. and Wahlstrom,
C.-G. 2002 Phys. Plasmas 9, 987.

Gibbon, P., Beg, F. N., Clark, E. L., Evans, R. G. and Zepf, M. 2004 Phys. Plasmas 11, 4032.

Gibbons, G. W., Hawking, S. W. and Siklos, S. 1983 The Very Early Universe. Cambridge: Cambridge
University Press.

Ginzburg, V. L. 1971 Sov. Phys. Usp. 14, 83

Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.

Greaves, R. G., Tinkle, M. D. and Surko, C. M. 1994 Phys. Plasmas 1, 1439.

Hasegawa, H. and Ohsawa, Y. J. 2004 Phys. Soc. Japan 73(7), 1764.

Hatakeyama, R. and Oohara, W. 2005 Phys. Scr. 116, 101.

Heitler, W. 1954 The Quantum Theory of Radiation. Oxford: Clarendon Press.

Helander, P. and Ward, D. J. 2003 Phys. Rev. Lett. 90, 135 004.

Hooker, C. J. et al. 2006 J. Physique IV 133, 673.

Hoshino, M., Arons, J., Gallant, Y. A. and Langdon, A. B. 1992 Astrophys. J. 390, 454.

Iwamoto, N. 1993 Phys. Rev. E 47, 604.

Jaroschek, C. H., Lesch, H. and Treumann, R. A. 2004 Astrophys. J. 616, 1065.

Jaroschek, C. H., Lesch, H. and Treumann, R. A. 2005 Astrophys. J. 618, 822.

Jehan, N., Salahuddin, M., Saleem, H. and Mirza, A. M. 2008 Phys. Plasmas 15, 092 301.

Kazimura, Y., Sakai, J. I., Neubert, T. and Bulanov, S. V. 1998 Astrophys. J. 498, L183.

Keenan, B. D. and Medvedev, M. V. 2013 Phys. Rev. E 88, 013 103.

Kennel, C. F. and Coroniti, F. V. 1984 Astrophys. J. 283, 710.

Kirk, J. G., Lyubarsky, Y. and Petri, J. 2009 The Theory of Pulsar Winds and Nebulae, Astrophysics
and Space Science Library, 357, 421–450.

Kirk, J. G. and Reville, B. 2010 Astrophys. J. 710, L16.

Koch, H. W. and Motz, J. 1959 Rev. Mod. Phys. 31, 920.

Komissarov, S. S. and Barkov, M. V. 2009 MNRAS 397, 1153.

Kourakis, I., Esfandyari-Kalejahi, A., Mehdipoor, M. and Shukla, P. K. 2006 Phys. Plasmas 13(5),
052117.

Kourakis, I., Moslem, W. M., Abdelsalam, U. M., Sabry, R. and Shukla, P. K. 2009 Plasma Fusion
Res. 4, 018.

Kourakis, I. and Saini, N. S. 2010 J. Plasma Phys. 76(3–4), 607.

Kourakis, I. and Shukla, P. K. 2005 Nonlinear Process. Geophys. 12, 407.

Kourakis, I., Verheest, F. and Cramer, N. 2007 Phys. Plasmas 14(2), 022 306.

Krall, J. et al. 1993 Phys. Rev. E 48, 2157.

Krall, N. A. and A. W. Trivelpiece 1973 Principles of Plasma Physics, New York: McGraw-Hill, pp.
9.

Kruer, W. L. and Estabrook, K. 1985 Phys. Fluids 28, 430.

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S002237781500046X
Downloaded from https:/www.cambridge.org/core. Balfour Library (Pitt Rivers Museum), on 01 May 2017 at 20:41:02, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S002237781500046X
https:/www.cambridge.org/core


22 G. Sarri et al.

Langdon., A. B. 1980 Phys. Rev. Lett. 44, 575.

Lazarus, I. J., Bharuthram, R. and Hellberg, M. A. 2008 J. Plasma Phys. 74, 519.

Leemans, W. P. et al. 2006 Nature Phys. 2, 696.

Leemans, W. P. et al. 2014 Phys. Rev. Lett. 113, 245002.

Lemoine, M. and Pelletier, G. 2011 Mon. Not. R. Astron. Soc. 417, 1148.

Lemoine, M., Pelletier, G., Gremillet, L. and Plotnikov, I. 2014 Mon. Not. R. Astron. Soc. 440, 1365.

Levinson, A. et al. 2005 Astrophys. J. 631, 456.

Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887

Lobet, M., Ruyer, C., Debayle, A., d’Humières, E., Grech, M., Lemoine, M. and Gremillet, L. 2014
Phys. Rev. Lett., submitted.

Macchi, A., Borghesi, M. and Passoni, M. 2013 Rev. Mod. Phys. 85, 751.

Manchester, R. N. and Taylor, J. H. 1977 Pulsars. San Francisco: Freeman.

Medvedev, M. V. and Loeb, A. 1999 Astrophys. J. 526, 697.

Meszaros, P. and Rees, M. J. 1992 MNRAS 257, 29P.

Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.

Michel, F. C. 1991 Theory of neutron Star Magnetospheres. Chicago: University of Chicago Press.

Pulsars: Problems and Progress (Astrophysical Society of the Pacific Conference Series 105), (ed. S.
Johnston, M. A. Walker and M. Bailes) San Francisco: ASP, 1996.

Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer-Verlag, pp. 202.

Milosavljevic, M. and Nakar, E. 2006 Astrophys. J. 641, 978.

Milosavljevic, M., Nakar, E. and Spitkovsky, A. 2006 Astrophys. J. 637, 765.

Muggli, P. et al. 2013 ArXiv:1306.4380v1.

Nagata, K., Hoshino, M., Jaroschek, C. H. and Takabe, H. 2008 Astrophys. J. 680, 627.

Ng, J. S. T. et al. 2001 Phys. Rev. Lett. 87, 244 801

Nishikawa, K. I., Hardee, P., Richardson, G., Preece, R., Sol, H. and Fishman, G. J. 2005 Astrophys.
J. 622, 927.

Nishikawa, K. I. et al. 2009 Astrophys. J. 698, L10.

Oohara, W., Date, D. and Hatakeyama, R. 2005 Phys. Rev. Lett. 95, 175 003.

Oohara, W. and Hatakeyama, R. 2003 Phys. Rev. Lett. 91, 205 005.

Piran, T. 2004 Rev. Mod. Phys. 76, 1143.

Polomarov, O., Kaganovich, I. and Shvets, G. 2008 Phys. Rev. Lett. 101, 175 001.

Potier, J. P. and Rinolfi, L. 1998 Proc. 6th European Particle Accelerator Conference, Stockholm,
Sweden, pp. 859–861.

Pukhov, A., Sheng, Z.-M. and Meyer-ter-Vehn, J. 1999 Phys. Plasmas 6, 2847.

Reville, B. and Kirk, J. G. 2010 Astrophys. J. 715, 186.

Rossi, B. 1952 High-Energy Particles. New York: Prentice-Hall.

Ruderman, M. A. and Sutherland, P. G. 1975 Astrophys. J. 196, 51.

Ruderman, M. A. and Sutherland, P. G. 1975 Astrophys. J. 196, 51.

Ryutov, D. et al. 1999 Astrophys. J. 518, 821.

Ryutov, D. et al. 2001 Phys. Plasmas 8, 1804.

Ryutov D. et al. 2012 Plasma Phys. Control. Fusion 54, 105 021.

Sadowski, A. et al. 2014 MNRAS 439, 503.

Sakai, J. and Kawata, T. J. 1980 Phys. Soc. Japan 49, 753.

Sakai, J., Nakayama, T., Kazimura, Y. and Bulanov, S. 2000 J. Phys. Soc. Japan 69, 2503.

Salahuddin, M., Saleem, H. and Saddiq, M. 2002 Phys. Rev. E 66, 036 407.

Saleem, H., Vranjes, J. and Poedts, S. 2006 Phys. Lett. A 350, 375.

Sarri, G. et al. 2013a Plasma Phys. Control. Fusion 55, 124 017.

Sarri, G. et al. 2013b Phys. Rev. Lett. 110, 255 002.

Sarri, G. et al. 2015 Nat. Comm 6, 6747.

Schamel, H. 2008 J. Plasma Phys. 74, 725.

Schamel, H. and Luque, A. 2005 New J. Phys. 7, 69.

Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B. and Medvedev, M. V. 2003
Astrophys. J. 596, L121.

Sironi, L. and Spitkovsky, A. 2009 Astrophys. J. 698, 1523.

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S002237781500046X
Downloaded from https:/www.cambridge.org/core. Balfour Library (Pitt Rivers Museum), on 01 May 2017 at 20:41:02, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S002237781500046X
https:/www.cambridge.org/core


Laser-driven electron–positron beams 23

Sironi, L. and Spitkovsky, A. 2011 Astrophys. J. 741, 39.

Sprangle, P. et al. 1987 IEEE Trans. Plasma. Sci. PS-15, 145.

Stewart, G. A. and Laing, E. W. 1992 J. Plasma Phys. 47, 295.

Stix, Th. 1992 Waves in Plasmas, New York: American Institute of Physics, pp. 6 and 26.

Sturrock, P. A. 1971 Astrophys. J. 164, 529.

Surko, C. M., Levelhal, M., Crane, W. S., Passne, A. and Wysocki, F. 1986 Rev. Sci. Instrum 57,
1862.

Surko, C.M. and Murphy, T. 1990 Phys. Fluid B 2, 1372.

Swanson, D. G. 2003 Plasma Waves, Bristol, UK: Institute of Physics, pp. 19.

Timokhin, A. N. and Arons, J. 2013 MNRAS 429, 20.

Tsai, Y. 1974 Rev. Mod. Phys. 46 815.

Tsytovich, V. and Wharton, C. B. 1978 Commun. Plasma Phys. Control. Fusion 4, 91.

Tzoufras, M., Ren, C., Tsung, F. S., Tonge, J. W., Mori, W. B., Fiore, M., Fonseca, R. A., and Silva,
L. O. 2006 Phys. Rev. Lett. 96, 105 002.

Urry, C. M. and Padovani, P. 1995 Publ. Astron. Soc. Pac. 107, 715.

Verheest, F. 1996 Phys. Lett. A 213, 177.

Verheest, F. 2005 Nonlinear Proc. Geophys. 12, 569.

Verheest, F. 2006 Phys. Plasmas 13, 082 301.

Verheest, F. and Cattaert, T. 2004 Phys. Plasmas 11, 3078.

Verheest, F., Cattaert, T., Lakhina, G. S. and Singh, S. V. 2004 J. Plasma Phys. 70(2), 237.

Vieira, J., Fang, Y., Mori, W. B., Silva, L. O. and Muggli, P. 2012 Phys. Plasmas 19, 063 105.

Vranjes, J. and Poedts, S. 2005 Plasma Sources Sci. Technol. 14, 485.

Wang, X. et al. 2013 Nature Commun. 4, 1.

Waxer, L. J. et al. 2005 Opt. Photon. News 16, 30.

Wilks, S. C. and Kruer., L. 1997 IEEE J. Quantum Electron. 33, 1954.

Williams, G. and Kourakis, I. 2013 Phys. Plasmas 20, 122 311.

Yan, Y. et al. 2013a Phys. Plasmas 20, 103 106.

Yan, Y. et al. 2013b Phys. Plasmas 20, 103 114.

Yanovsky, V. et al. 2008 Opt. Express 16, 2109.

Zank, G. P. and Greaves, R. G. 1995 Phys. Rev. E 51, 6079.

Zhang, S. N. 2013 Frontiers Phys. 8, 630.

Zhao, J., Nishikawa, K. and Sakai, J. I. 1994 Phys. Plasmas 1, 103.

Zhao, J., Sakai, J. I. and Nishikawa, K. 1996 Phys. Plasmas 3, 844.

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S002237781500046X
Downloaded from https:/www.cambridge.org/core. Balfour Library (Pitt Rivers Museum), on 01 May 2017 at 20:41:02, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S002237781500046X
https:/www.cambridge.org/core

