SOLAR WIND TURBULENCE

Fouad Sahraoui Laboratoire de Physique des Plasmas CNRS-Ecole Polytechnique, Palaiseau, France

ÉCOLE POLYTECHNIQ

Points to discuss

- MHD turbulence:
 - Spatial anisotropy
 - Compressibility
- Kinetic turbulence: *sub-ion and sub-electrons scales*
 - Nature and dissipation mechanisms
 - Universality

The solar wind

The solar wind plasma is generally:

- Fully ionized (H⁺, e⁻)
- Non -relativistic (V_A<<c), V~350-800 km/s
- Collisionless

The magnetosphere

Fundamental plasma processes:

Shocks

BLPP

- Turbulence
- Magnetic reconnection
- Instabilities
- particle acceleration
- ...

Near-Earth vs distant astrophysical plasmas

[Scheckochihin et al., ApJS, 2009]

Parameter	Solar wind at 1 AU ^(a)	Warm ionized ISM ^(b)	Accretion flow near Sgr $A^{*(c)}$	Galaxy clusters (cores) ^(d)
$n_e = n_i, {\rm cm}^{-3}$	30	0.5	10^{6}	6×10^{-2}
T_e, K	$\sim T_i^{(e)}$	8000	1011	3×10^{7}
T_i, K	5×10^{5}	8000	$\sim 10^{12({ m f})}$?(e)
<i>B</i> , G	10^{-4}	10^{-6}	30	7×10^{-6}
<i>Pi</i>	3	14	4	130
$v_{\text{th}i}$, km s ⁻¹	90	10	10^{5}	700
v_A , km s ⁻¹	40	3	7×10^4	60
U, km s ^{-1(f)}	~ 10	~ 10	$\sim 10^4$	$\sim 10^2$
$L, \mathrm{km}^{(\mathrm{f})}$	$\sim 10^5$	$\sim 10^{15}$	$\sim 10^8$	$\sim 10^{17}$
$(m_i/m_e)^{1/2}\lambda_{\rm mfni}$, km	1010	2×10^{8}	4×10^{10}	4×10^{16}
λ_{mfpi} , km ^(g)	3×10^8	6×10^6	10^{9}	10^{15}
ρ_i , km	90	1000	0.4	10^{4}
ρ_e , km	2	30	0.003	200

Perresentative Perameters for Astrophysical Plasma

Solar wind turbulence

Dissipation mechanisms are still poorly understood

Incompressible MHD turbulence

Elsässer variables:
$$\mathbf{z}^{\pm} = \mathbf{v} \pm \frac{b}{\sqrt{\mu_0 \rho}} \equiv \mathbf{v} \pm V_A$$

 $\partial_t z^{\pm} \mp v_A \cdot \nabla z^{\pm} + z^{\mp} \cdot \nabla z^{\pm} = -\nabla p$
Linear term: $\mathbf{k}_{ll} \mathbf{v}_A \mathbf{z}^{\pm}$ Nonlinear term: $\mathbf{k}_{\perp} \mathbf{u}_{\perp} \mathbf{z}^{\pm}$

 $\chi = rac{k_{\perp} u_{\perp}}{k_{_{//}} v_{_{A}}}$ Ratio of nonlinear to linear terms

 $\chi \sim 1 \rightarrow$ Critically Balanced turbulence

Critical balance and spatial anisotropy

Critical balance [Goldreich & Sridhar, 1995]:

Linear (Alfvén) time ~ nonlinear (turnover) time $\Rightarrow \omega \sim k_{//}V_A \sim k_{\perp}u_{\perp}$ $\Rightarrow k_{//} \sim k_{\perp}^{2/3}$ (MHD scales)

 \Rightarrow k_{//} ~ k_{\perp}^{1/3} (sub-ion scales)

See also [Boldyrev, ApJ, 2005] and [Galtier et al., PoP, 2005]

Theory vs measurements

Kiyani et al., Phil.Trans.R.Soc.A, 2015

Theories predict wavenumber (**k**) spectra Observations provides frequency (ω_{sc}) spectra

 $\mathsf{B}^{2} \sim \omega_{\mathsf{sc}}^{-\alpha} \Longrightarrow \mathsf{B}^{2} \sim \mathsf{k}_{//}^{-\beta} \mathsf{k}_{\perp}^{-\gamma} ??$

The Taylor frozen-in flow hypothesis

 MHD turbulence in the solar wind: the Taylor's hypothesis can be valid

High SW speeds: V ~600km/s >> V_g~V_A~50km/s \Rightarrow

$$\omega_{sc} = \omega_{plas} + \mathbf{k.v} \sim \mathbf{k.v} = \mathbf{k_v v}$$

Inferring the k-spectrum is possible with one spacecraft, but only in one direction

• At sub-ion scales V ϕ ~k can be larger than V_{sw} (e.g. whistlers) \Rightarrow The Taylor's hypothesis can be violated

Single spacecraft analysis of turbulence anisotropy (I)

 $V//B \rightarrow k_v = k_{//}$

Single satellite analysis \rightarrow use of the Taylor assumption: $\omega_{sc} \sim \mathbf{k} \cdot \mathbf{V}_{sw} \sim k_v V_{sw}$

 $V \perp B \rightarrow k_v = k_{\perp}$ 10² spectral index **Ir(P)** (arb. units) -1.6 -1.8 10° -5/3 ^{\$} θ_B: 80°–90 -2.2 θ_B: 0°–10΄ 45 90 135 180 n 10⁻² $\theta_{\rm R}$ (degrees) 10⁻² 10° 10^{-1} Frequency (Hz)

 $\Theta_{BV} \rightarrow 0 \Rightarrow B^2 \sim k_{//}^{-2} \Rightarrow$ Consistent with the critical balance [Horbury et al., PRL, 2008]

Single spacecraft analysis of turbulence anisotropy (II)

Results confirmed by other studies

[Chen et al., PRL, 2010] (multispacecraft analysis but used Taylor hypothesis) [Podesta, ApJ, 2009]

In situ measurements of anisotropy (I) Multi-spacecraft analysis

ESA/Cluster (launched 2000) separation >100km

NASA/MMS (launched 2015) separation ~10km

3D measurements of

- > gradients: $J=\nabla xB$, $\omega = \nabla xv...$
- > ω -k spectra of turbulence -> anisotropy, full "dispersion relations", ...

In situ measurements of anisotropy (II) Multi-spacecraft analysis

The anisotropy (\perp B) is along $V_{sw} \rightarrow$ SW expansion effect?

[Grappin et al., 1993; Saur & Bieber, 1999; Dong et al., 2014]

Energy dissipation rate: incompressible model

Exact law (BG13)

(3) Isothermal MHD turbulence

In the inertial zone we obtain (Banerjee & Galtier, PRE, 2013)

$$-2\varepsilon = \frac{1}{2}\nabla_{\mathbf{r}} \cdot \overbrace{\left\langle \left[\frac{1}{2}\delta(\rho\mathbf{z}^{-}) \cdot \delta\mathbf{z}^{-} + \delta\rho\delta e\right] \delta\mathbf{z}^{+} + \left[\frac{1}{2}\delta(\rho\mathbf{z}^{+}) \cdot \delta\mathbf{z}^{+} + \delta\rho\delta e\right] \delta\mathbf{z}^{-} + \overline{\delta}(e + \frac{v_{A}^{2}}{2})\delta(\rho\mathbf{z}^{-} + \rho\mathbf{z}^{+})\right\rangle}^{-\frac{1}{4}\left\langle \frac{1}{\beta'}\nabla' \cdot (\rho\mathbf{z}^{+}e') + \frac{1}{\beta}\nabla \cdot (\rho'\mathbf{z}'^{+}e) + \frac{1}{\beta'}\nabla' \cdot (\rho\mathbf{z}^{-}e') + \frac{1}{\beta}\nabla \cdot (\rho'\mathbf{z}'^{-}e)\right\rangle}$$

$$+\left\langle \left(\nabla\cdot\mathbf{v}\right)\left[R'_{E}-E'-\frac{\bar{\delta}\rho}{2}\left(\mathbf{v}_{\mathsf{A}}'\cdot\mathbf{v}_{\mathsf{A}}\right)-\frac{P'}{2}+\frac{P'_{M}}{2}\right]\right\rangle +\left\langle \left(\nabla'\cdot\mathbf{v}'\right)\left[R_{E}-E-\frac{\bar{\delta}\rho}{2}\left(\mathbf{v}_{\mathsf{A}}\cdot\mathbf{v}_{\mathsf{A}}'\right)-\frac{P}{2}+\frac{P_{M}}{2}\right]\right\rangle$$

$$+\left\langle \left(\nabla\cdot\mathbf{v}_{\mathsf{A}}\right)\left[R_{H}-R_{H}^{\prime}+H^{\prime}-\overline{\delta}\rho(\mathbf{v}^{\prime}\cdot\mathbf{v}_{\mathsf{A}})\right]\right\rangle +\left\langle \left(\nabla^{\prime}\cdot\mathbf{v}_{\mathsf{A}}^{\prime}\right)\left[R_{H}^{\prime}-R_{H}+H-\overline{\delta}\rho(\mathbf{v}\cdot\mathbf{v}_{\mathsf{A}}^{\prime})\right]\right\rangle$$

where

BLPP

$$E = \rho(\mathbf{v} \cdot \mathbf{v} + \mathbf{v}_A \cdot \mathbf{v}_A)/2 + \rho e, \ E' = \rho'(\mathbf{v}' \cdot \mathbf{v}' + \mathbf{v}'_A \cdot \mathbf{v}'_A)/2 + \rho' e';$$

$$R_E = \rho(\mathbf{v} \cdot \mathbf{v}' + \mathbf{v}_A \cdot \mathbf{v}'_A)/2 + \rho e', \ R'_E = (\rho' \mathbf{v}' \cdot \mathbf{v} + \mathbf{v}'_A \cdot \mathbf{v}_A)/2 + \rho' e;$$

$$R_H = \rho(\mathbf{v} \cdot \mathbf{v}'_A + \mathbf{v}' \cdot \mathbf{v}_A)/2, \ R'_H = \rho'(\mathbf{v}' \cdot \mathbf{v}_A + \mathbf{v} \cdot \mathbf{v}'_A)/2$$

$$H = \rho \mathbf{v} \cdot \mathbf{v}_A, \ H' = \rho' \mathbf{v}' \cdot \mathbf{v}'_A; \ \beta = 2C_S^2/v_A^2; \ \beta' = 2C_S'^2/v_A'^2$$

Compressible energy dissipation rate in the solar wind I

Low compressibility but significant enhancement of the dissipation rate → heating the solar wind

[Banerjee+, 2016, Hadid+, 2017a,b, Andrés+, 2017a,b]

Dissipation rate vs turbulent Mach number

Compressible energy dissipation rate in the solar wind II

Stronger anisotropy in the slow solar wind

Compressible energy dissipation rate in the magnetosheath

Sub-ion scale turbulence

First evidence of

Cascade from MHD to sub-electron scales in solar wind turbulence

New sub-electron

Dissipation range

Cascade Channels vs theories

1. Fluid models: Hall-MHD, EMHD, Twofluid [e.g., Biskamp 1997, Galtier 2006]

 $\mathbf{E} + \mathbf{V} \times \mathbf{B} = \underbrace{\frac{1}{en} \mathbf{J} \times \mathbf{B}}_{en} - \frac{\nabla P_e}{en} + \dots$

- 2. Landau-fluid models [e.g., Snyder & Hammett, Passot & Sulem, 2006]
- 3. Gyrokinetic theory $(k_{//} << k_{\perp}, \omega << \omega_{ci})$ [Schekochihin et al. 2006; Howes et al., 2011]
- 4. Hybrid, Full PIC & Vlasov [Gary et al. 2011; Servidio 2011, Valentini 2012, Califano]

KAW vs whistler turbulence

 Whistler turbulence exists [Hamilton+, 2008; Gary & Smith; 2009; Smith+, 2012; He+,2012; Cerri et al., 2016]

Current sheets vs waves

Ion scale CS in the magnetosheath

MHD scale CS in the SW

[Osman+, PRL, 2012]

See also Gosling+, ApJL,2007 in fast solar wind; Chian+, ApJL,2011 in CMEs, and many more others

Universality?

Dissipation rate vs slopes

Amplitude fluctuation vs slopes

Cross helicity vs slopes

Other possible explanations

Magnetosheath turbulence

Sub-electron scale turbulence I

Ultimate (KAW) cascade below ρ_e ? Exponential dissipation ? Universal scaling ?

See Alex's talk

Sub-electron scale turbulence II

[Sahraoui+, ApJ, 2013; Huang+, ApJL, 2014]

Magnetosheath (high SNR) 50 0L -8 -4 -2 -6 slope $(> f_{\rho})$

-2

-4

THOR mission (Phase A, ESA/M4)

Main targets:

- Solar wind,
- IP shocks,
- Foreshock,
- Shock,
- Magnetosheath

Table 22: THOR mission phases							
Phase	Orbit	T [h]	ΔV to next orbit				
1	4 x 16 R e	44.53	204 m/s				
2	4 x 26 R e	81.81	214 m/s				
3	4 x 61 R e	330.37	260 m/s				
	14 x 61 R E						

Each of the mission phases lasts one full year. The total ΔV needed for orbital maneuvers is 678 m/s. Phase 3 involves Moon flybys to save ΔV .

Nominal mission: 3 years

3D velocity distributions functions (VDFs)

	Electrons		ions/solar wind			ions / sheath&shock				
	dt	dE/E	dθ	dt	dE/E	dθ	dt	dt_α	dE/E	dθ
THOR	5ms	10%	5°	0.15s	5%	3°	0.15s	0.3s	10%	10°
Solar Orbiter	4s	10%	10°	4s	7.5%	<2°				
MMS	30ms	17%	6°	0.15s	10%	5°	0.15s	10s	10%	5°
Cluster	4s	13%	5.6°	4s	18%	5.6°	4s	4s	18%	11°
WIND	3s	20%	5.6°	3s	20%	5.6°	3s		20%	11°

ESA/Solar Orbiter

- Launch 2018
- Distance : 0.28 AU
- In-situ data & remote sensing

Solar Orbiter

Exploring the Sun-Heliosphere Connection

NASA/Solar Probe Plus

BLPP

- Distance : 0.03 AU
- In-situ data & remote sensing

