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Two signatures of quantum effects on radiation reaction in the collision of a ~ GeV electron-
beam with a high-intensity (~ 10> Wem™2) laser-pulse have been considered. We show that the
decrease in the average energy of the electron-beam may be used to measure the Gaunt factor
g (in the cases considered here the quantum efficiency parameter n ~ 0.1 and g < 0.5). We
derive an equation for the evolution of the variance in the energy of the electron-beam in the
quantum regime, 17 << 1. We show that the evolution of the variance may be used to demonstrate
quantitatively the quantum stochasticity of the radiation reaction and determine the parameter
regime where this is observable. For example, the stochasticity results in an increase in the
standard deviation in the energy of ~25% after 1 fs in the collision of a GeV electron-beam
with a laser-pulse of intensity 10! Wem™2,

1. Introduction

Radiation reaction is the recoil force on an accelerating charged particle caused by the particle
emitting electromagnetic radiation. This effect will play an important role in laser-matter in-
teractions at the intensities set to be reached by next generation high-intensity laser facilities
(2 102 Wcm™2) (as shown by several authors, for example Zhidkov et al. (2002); Ridgers
et al. (2012); Nakamura et al. (2012); Brady et al. (2012)), where radiation reaction can lead
to almost complete absorption of the laser-pulse (for example see Nerush et al. (2011); Ji et al.
(2014); Zhang et al. (2015); Grismayer et al. (2016)). At the parameters expected to be reached
in these interactions the electric field in the rest frame of the ultra-relativistic electrons in the
plasma created by the laser Egr approaches the critical field for quantum electrodynamics Eq =
1.38 x 10'® Vm~! (Heisenberg & Euler (1936)). In this case the emission of radiation by the
electrons must be described in the framework of strong-field quantum-electrodynamics (QED),
using the ‘Furry picture’ as explicated by Furry (1951). Specifically, when the quantum efficiency
parameter 7 = Egp/Eqi 2 0.1 the radiation reaction force becomes stochastic (Duclous et al.
(2011)) and the electron’s dynamics are no longer well approximated by deterministic motion
along a classical worldline (Shen & White (1972)).

This quantum regime has been reached in experiments at CERN SPS in the interaction of
~ 100 GeV electrons with the strong fields from the atoms in a crystal lattice, as described
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by Andersen et al. (2012), where the Gaunt factor for synchrotron emission was measured.
The analogous process of non-linear Compton scattering, more relevant to laser-plasma inter-
actions, has been studied experimentally at the Stanford Linear Accelerator in the interaction
between an electron beam of energy £ = 46.6 GeV and a counter-propagating high-intensity
(10" — 10" Wem™) laser-pulse as reported by Bula et al. (1996) (positron generation was
also observed in this experiment as described by Burke et al. (1997)). In this experiment the
laser intensity was too low to access the very non-linear regime of relevance to next generation

laser-matter interactions, where ay ~ \/1/12 /108 Wem™2um? > 1 is required (1 is the laser
wavelength). Current PW laser systems can achieve focused intensities of ~ 10> Wem™2 which
is sufficient to access the ap > 1 non-linear regime. In the interaction of an electron-beam
with energy & with a counter-propagating laser-pulse of intensity /,  can be parameterised

as 7 ~ 0.1(E/500 MeV) \/1/12 /102! Wem™2um?. The quantum, non-linear regime of Compton
scattering and the resultant radiation reaction can therefore be studied by accelerating the elec-
trons to energies greater than 5S00MeV. This is possible with laser wake field acceleration (first
described by Pukhov & Meyer-ter Vehn (2002)) which can produce electron beams of energy
> 500 MeV (for example see Clayton et al. (2010)). Therefore, all-optical equivalents of the
SLAC experiment are possible using PW lasers, indeed weakly non-linear Compton scattering
(but not radiation reaction) was recently observed in such a setup by Sarri et al. (2014). Devising
ways in which quantum effects on radiation reaction can be distinguished is therefore timely.

In this paper we will derive equations describing the effect of radiation reaction on the
evolution of: (i) the expectation value of the momentum and energy of a population of electrons
and (ii) the variance in the energy distribution of the population. We will use these equations to
determine ways in which the two most important quantum effects may be determined, i.e. the
reduction in the radiated power due to the finite recoil of an electron during the emission of a
photon and the probabilistic nature of the emission commonly known as ‘straggling’ (see Shen
& White (1972) and Duclous et al. (2011)) or ‘quenching’ (see Harvey et al. (2017)).

In order to simplify the treatment of quantum radiation reaction we use a quasi-classical
approach described by Baier & Katkov (1968). Here we assume that the electromagnetic fields
may be split into two types depending on their frequency scale. Fields varying on the scale of the
laser frequency (including those due to collective plasma processes) are treated as classical back-
ground fields. The photons emitted by the electrons on acceleration by these background fields,
i.e. those responsible for the radiation reaction force, are treated in the framework of strong-field
QED (Furry (1951)). These photons are of much higher energy (typically >MeV) than the laser
photons (~eV). The accuracy of this quasi-classical approach has recently been demonstrated by
comparison to full QED calculations for the electron energies and laser intensities considered
here Dinu et al. (2016). Two further simplifying approximations are made (see Kirk et al.
(2009)). By making the quasi-static approximation we assume that the formation length of the
hard photons is much smaller than the scale over which the background fields vary and thus the
background fields may thus be treated as constant over the space-time interval during which the
emission occurs. This approximation is valid for ag > 1, which is the case in high-intensity laser
matter interactions (Di Piazza et al. (2010) has shown that ay > 10 is sufficient). By making the
weak-field approximation we assume that the emission rate of photons depends entirely on 77 and
not the field invariants ¥ = (E? — ¢2B?)/ Egrit and G = cE-B/ Egm. This is valid if these invariants
are much smaller than 7. For next-generation laser-matter interactions E, cB < 1073E,, so this
approximation is also reasonable. The weak-field approximation allows us to assume that the
rate of photon emission (and the energy spectrum of the emitted photons) is well described by
the well known rate in an equivalent set of constant fields as given in Ritus (1985) (for constant
crossed electric and magnetic fields) and Erber (1966) (for a constant magnetic field).

Using this quasi-classical model (making the quasi-static and weak-field approximations), it
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is possible to include the quantum radiation reaction force in a kinetic equation describing the
evolution of the electron distribution, as given by Shen & White (1972), Elkina ef al. (2011),
Sokolov et al. (2010), Neitz & Di Piazza (2013) and Ridgers et al. (2014). Although this equation
has been solved numerically using a Monte-Carlo algorithm (see Duclous et al. (2011); Elkina
et al. (2011); Ridgers et al. (2014); Gonoskov et al. (2015)) it has not been solved analytically for
even the simplest configuration of electromagnetic fields (for example a uniform, static magnetic
field as in Shen & White (1972)). On the other hand, a classical model of radiation reaction, using
the prescription of Landau & Lifshitz (Landau & Lifshitz (1987) — shown to be consistent with
the classical limit of strong field QED by Ilderton & Torgrimsson (2013)), can be included in the
electron equation of motion straightforwardly which has been solved in several cases for example
for electron motion in a rotating electric field (by Bell & Kirk (2008)) or a plane electromagnetic
wave (by DiPiazza (2008)). A modified classical model, where the radiated power is reduced
by the Gaunt factor, has been used to derive the dispersion relation for an electromagnetic wave
moving through a plasma where the electrons experience significant radiation reaction by Zhang
et al. (2015) (and the equivalent classical result by Bashinov & Kim (2013)). The kinetic equation
can be used to show that the modified classical model of radiation reaction is sufficient to describe
the average energy loss of the electrons (Ridgers et al. (2014)). In addition, the kinetic equation
can give insight about which observables can be used to measure various aspects of quantum
radiation reaction. Here we show that the measurements of the average energy loss can be used
to measure the Gaunt factor associated with the emission and that the evolution of the variance
of the electron energy distribution can be used to measure the degree of stochasticity of the
emission. The latter was discussed by Vranic et al. (2015) in the limit of small 7, here we extend
this result to arbitrary 7.

2. Radiation reaction models

In this section we describe the radiation reaction models considered here: (i) classical — using
the ultra-relativistic form of the Landau & Lifshitz prescription; (ii) modified classical — as the
classical model but including a function describing the reduction in the power radiated due
to quantum effects, the Gaunt factor g (Blackburn et al. (2014); Ridgers et al. (2014)); (iii)
stochastic — a probabilistic treatment of the emission consistent with the approximations made
in the quantum emission model described above and in more detail by Ridgers et al. (2014).
The stochastic model is the most physical as it includes both the important quantum effects (the
Gaunt factor and quantum stochasticity).

Using the quasi-classical approach we may write the evolution of the single-particle electron
distribution function, including the radiation reaction force, as
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fd*xd’p is the number of electrons at position x with momentum p (velocity v). E and B are the
large-scale electromagnetic fields (treated classically). (3f/d1)%, is an emission operator which
describes the radiation reaction force and is particular to which of the three cases given above is

under consideration (denoted by the superscript X).

2.1. ‘Classical’ and ‘modified classical’ emission operators

The classical and modified classical emission operators, assuming that photon emission is in
the direction of propagation of the electron, take the following form
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where g(n) is the Gaunt factor for synchrotron emission, i.e. a function that gives the reduction

in the radiated power P, due to quantum modifications to the synchrotron spectrum. P, is

parameterised in terms of 7 as

2apc 2

Py = 31 mec 772

and g(n) is defined as
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F . and F are the classical and quantum synchrotron spectra respectively. For completeness their
forms are given in appendix A. An accurate fit to this function is g(n) ~ [1 + 4.8(1 + 1) In(1 +
1.7n7) + 2.441717%/3 (Baier et al. (1991)).

In section 3 we will show that the classical and modified classical emission operators given in
equation (2.1) describe radiation reaction forces of the form

F(n,x)dy.

P, 8P .
F,= —_CP Frod 1 = — - 1Y
C C

respectively.

2.2. ‘Stochastic’ emission operator

The stochastic emission operator is as follows

2
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where the first term describes the movement of electrons out of a given region in phase space due
to emission. The second term describes electrons moving into the region under consideration by
leaving regions of higher energy as they emit. 7 = yb and have assumed the electrons are ultra-
relativistic, such that b = |[E; + v X B|/E;. We have also assumed that photon emission is in the
direction of propagation of the electron. y = (hvb)/(2m,c?) is the quantum efficiency parameter
for an emitted photon (with energy hv). The explicit form of the photon emission rate A, and the
probability p, that an electron with energy parameterised by 7 emits a gamma-ray photon with
energy parameterised by y are given in appendix A.

3. Moment equations

While we have not obtained exact solutions to equation (2.1) including the stochastic emission
operator given in equation (2.2), progress can be made by determining the equation for the
evolution of the expectation value of the electron momentum E[p] and variance in the electron
energy distribution V[y]. The average over the distribution function f of a momentum dependent
quantity y(p) is defined as

W) = f Ppu(p)f(x, B, ).
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3.1. The temporal evolution of E[p]

The equation for the evolution of the expectation value of the momentum of the electron
population E[p] = (p) has been derived previously by Elkina ef al. (2011). The equation for
the evolution of the average energy E[y] = (y) of the population has been derived by Ridgers
et al. (2014):

(dE[p]) __(&Pab) a1

dt c

Here the angled brackets represent averages over momentum, i.e. (...) = f ... fd®p. In appendix
B we show how this equation can be derived by taking the first moment of the stochastic emission
operator in equation (2.2).

Taking the first moment of the classical and modified classical emission operators given in
equation (2.1), as detailed in appendix B, yields

(3.2)

dE[pl\ _ (Pub) (dE[p]) _(gPab)
dt cl - ¢ dt mod cl - ¢

3.2. The temporal evolution of V[y]

Following the derivation in appendix B we can obtain the following equation for the evolution
of the variance in the Lorentz factor y of the electron distribution:

(d‘;[ty]) _ _,ygPa)  (S) (3.3)

mec? m2ct’
Viyl = <yz>_<7>2 and 4y = y—E[y]. Consistent with the result found by Vranic et al. (2015), the
equation for dV[y]/dt contains two terms. The first is always negative. This is because electrons
at higher energy radiate more energy than those at lower energy, causing a decrease in the width
of the energy distribution. The second term is positive and is a result of the stochastic nature of
the emission.
The function S () is given by
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g2(n), which is analogous to g(7), is defined as

7/2
XF(, x)dy 144 (2
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As for g, it is useful to find an accurate fit to g,. We find the following g(n) ~ [1 + (1 +
4.528n) In(1 + 12.29n) + 4.63217*]~7/5. This gives the correct limits forn < 1 and > 1 (g, ~ 1
and g, ~ 0.167577/3 respectively). g», as a function of 7, along with the fit are shown in figure
1. In the limit where 7 < 1 and the energy distribution is Gaussian with +/V[y] < E[y] (and
assumed to be a Gaussian at all times), equation (3.3) reduces to

(dvm) N afcb2( 55b
), A \2443
which is consistent with the equation derived by Vranic et al. (2015) (equation (14) in their
paper).

8
E[y]* - FVIEDI), (3.4)
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Ficure 1. g,(n) (solid line) and the fit used here (dashed line).

We may also derive the corresponding expressions for dV[y]/dt from the classical and modi-
fied classical emission operators in equation (2.1) (the derivation is given in appendix B).

(dV[y]) _ P (dV[y]) _ _,l4vgPa) (3.5)
¢l mod cl

dt m,c? dt m,c?

4. Comparison to QED-PIC simulations

In order to test the validity of the expression for V[y] above we have simulated the interaction
of an electron-beam with a counter-propagating circularly polarised plane-wave using the QED-
PIC code EPOCH (Arber et al. (2015)). EPOCH includes the stochastic emission model using
a Monte-Carlo algorithm (described in detail by Ridgers er al. (2014)). It also includes the
classical and modified classical emission operators by directly solving equations (2.1) by first-
order Eulerian integration.

The simulation parameters were as follows. The laser had a wavelength of one micron and
intensity 10! Wem™2, entering the simulation domain at x = —40 microns and the laser-pulse
had a half-Gaussian temporal envelope with a rise time of 1 fs. 4000 grid cells were used
to discretise a spatial domain extending from —40 microns to 40 microns. 103 macroparticles
were used to represent an electron bunch consisting of 10° electrons. The electron bunch had
a Gaussian spatial profile, centred on 39.7 microns, with a FWHM of 0.17 microns and had
initial distribution f(x,p,t = 0) = [n./(VaW)16(p,)5(p,) exp[—(ps + Yomec)?/W?] where p =
(Px» Py, P7) is the momentum coordinate in phase space and 7, the number density of electrons in
the beam. yy was the initial average energy of the bunch and W its characteristic width.

Figure 2 shows a comparison of the spatially integrated electron energy distribution (where
N is the total number of electrons in each enerrgy bin of width 4y = 9.8) using classical,
modified classical and stochastic emission operators with the initial spectrum at ¢+ = 10.5 fs,
where ¢ = 0 is defined as being 135 fs from the start of the simulation. We see that the modified
classical and classical emission operators both give a decrease in the variance of the electron
distribution whereas the stochastic emission operator gives an increase in the variance. Figure
3 shows temporal the evolution of the mean Lorentz factor E[y] and the standard deviation of
the Lorentz factor /V[y]. The QED-PIC simulations demonstrate the validity of equations (3.1),
(3.2),(3.3) & (3.5).

Next we consider the ratio & of the classical term to the quantum term in equation (3.3) for the
evolution of the variance.
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Figure 2. Electron distribution after # = 10.5 fs compared to initial distribution using the stochastic,
modified classical and classical emission operators.
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Figure 3. Left: mean Lorentz factor versus time using the various emission models from simulation and
as predicted by equations (3.1) and (3.2). Right: standard deviation in Lorentz factor versus time from
simulation and as predicted by equations (3.3) and (3.5).
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Considering the idealised case where f = n,/(2fyom.c)o(p,)o(p.) for yomec(l — f) < |p.l <
yomec(1 + f) and assuming g = g, = 1, we obtain

- 1.6 4.1
3 B 1o 4.1)

o = 2yob. a(f) = (1+ f° = (1 = £ and B(f) = (1 +31)(1 = f)* = (1 = 3/)(1 + f)’. Note
that & > 1 indicates that the quantum term is initially dominant and we can expect the variance
to increase initially. As the variance increases and the expectation value of the y decreases we
expect the classical term to eventually become dominant and so we would expect the variance to
peak and then decrease after some time. This behaviour is clearly seen in figure 3.

From equation (4.1) (and also equation (3.4)) we see that £ depends on three variables: the
average Lorentz factor of the electron bunch yy; the width of the electron distribution 2 fy, and
the laser intensity / (which determines b). Figure 4 show & (including g & g») as a function of /
& yo (for f = 0.2) and f & I (for yom.c*> = 1.5 GeV). The prediction of & = 1 from equation
(4.1) is shown to be reasonably accurate despite the assumption of g = g» = 1.
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Ficure 5. Temporal evolution of the change in standard deviation in the electron energy distribution in
simulations 1-4.

In order to investigate whether the expression for ¢ in equation (4.1) predicts whether
the quantum or classical term dominates the evolution of the variance we performed further
EPOCH simulations of the interaction of an electron-beam (again with initial distribution
F&p.t = 0) = [1n,/(NTW)6(p,)S(p) expl—(px + Yomc)*/W2]) and a counter-propagating
plane-wave of intensity /. The following parameters were chosen:

Simulation | 7/10>'Wem™ yomecz/GeV FWHM/GeV | Symbol

1 1.0 1.0 0.81 A
2 0.3 0.5 0.21 O
3 1.0 1.5 0.17 o
4 0.3 L5 1.3 |

We have shown where these simulations lie in the parameter space shown in figure 4 according
to the symbols given in the table and assuming f = W. We chose the simulations so that one lies
on each side of the & = 1 line. The time evolution of the change in the standard deviation of
the electron energy distribution in these simulations is shown in figure 5. We see that only those
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simulations where equation (4.1) predicts that the quantum term is dominant show an increase in
the variance (and so the standard deviation).

5. Discussion

The results of this investigation can be summarised as follows:

(i) E[p] evolves in the same way for the stochastic and modified classical emission operators
and differently for the classical emission operator.

(i) V[y] evolves differently for all operators. In particular, the stochastic emission operator
can result in an increase in V[y] whereas the classical and modified classical operators can only
cause a decrease in V[y] (as seen by Vranic et al. (2015) for n <« 1).

Result (i) requires further explanation. Although we have shown that (dE[p]/dt);; and
(dE[p]/dt)imoact evolve according to the same equation, from this it does not necessarily follow
that the expectation values themselves are the same for these two emission models (as noted
by Elkina et al. (2011)). We have previously shown in Ridgers et al. (2014) that, in fact, the
expectation values of the momenta using these two models do agree to a high degree of accuracy
and this was shown again for the parameters considered here in figure 3. We would expect this in
the classical limit where n < 1. In this case the classical term in equation (3.3) dominates (from
equation (4.1) we see that £ « 1) and rapidly reduces the variance of the electron bunch and the
electron distribution in both the modified classical and stochastic models is f o< 6(p — (p)). The
time evolution of E[y] depends on (gP.;) which is equal to g({n))P.;({n)) for both models when
f is narrow in momentum-space. However, in the simulation whose results are shown in figure 3
n > 0.1. From figure 2 we see that in this case the electron energy distribution is very different
when the stochastic emission operator is used compared to when the deterministic operator is
used. Despite this the evolution of E[y] is the same due to the functional form of gP.. When
n > 1 gP. o« ?/3. This almost linear dependence on 17 means that the difference in the evolution
of E[y] between the models should be small. Finally we note that, as shown in figure 3, E[y]
predicted by the classical emission model differs markedly from that predicted by the modified
classical and stochastic models due to the neglect of the Gaunt factor g in the classical model.

dV[yl/dt is always negative for both the classical and deterministic emission operators. Phys-
ically, this is because electrons at higher energy radiate more energy than those at lower energy,
causing a decrease in the width of the energy distribution. The classical operator predicts a more
rapid decrease due to the assumption that g = 1 and the consequent overestimate of the scaling
of the power radiated by the electrons with increasing 7. For the stochastic emission operator
dV[y]/dt can be either positive or negative and so V[y] can increase or decrease. The evolution of
VI[yl is determined by the balance between the quantum term T (which causes V[y] to increase
due the probabilistic nature of the emission) and the classical term T¢ (which, as just described,
causes V[y] to decrease as higher energy electrons radiate more energy). We have shown that
which of these terms dominates depends on the width of the energy distribution and 5. For large
width the classical term increases in importance as it depends on 4y = y — (y). For high 7 the
quantum term becomes more important due to its scaling with * compared to at most 7’ for
the classical term (assuming A4y ~ 7). In equation (4.1) we have provided a formula for the
determination of which term is dominant.

The first of these results, i.e. that the evolution of the expectation value is the same for the
modified classical and stochastic (but not classical) models, is useful in two ways. Firstly it
shows that measuring the expectation value of an electron bunch after interaction with a high-
intensity laser-pulse can give information about one quantum effect: the reduction of the total
power emitted as expressed by g. It cannot, however, give information about the probabilistic
nature of the emission, usually called ‘straggling’ (Shen & White (1972); Blackburn et al.
(2014)). Secondly the result suggests that the ‘modified classical’ model of radiation reaction is



10 C. P. Ridgers et al

sufficient for the calculation of laser absorption in high-intensity laser-plasma interactions. Laser
absorption in this context depends on the average energy loss by the electrons (and positrons)
in the plasma due to radiation reaction. The second result, i.e. the evolution of the variance
differs between the models, can be used to measure straggling. An increase in the variance of
the energy distribution of electrons must be due to the probabilistic nature of the emission. As
further work we propose a comparison of QED-PIC simulations of laser absorption in laser-
plasma interactions using the different emission models and an investigation of the use of the
variance to observe straggling in 3D simulations of the interaction of a focusing laser-pulse with
a counter propagating electron bunch produced by laser wake field acceleration (with a realistic
energy spectrum).

6. Conclusions

We have derived equations for the evolution of the expectation value of the momentum and
variance in the energy of an electron population subject to three different radiation reaction
models. We have considered ‘classical’ and ‘modified classical’ models, where the radiation
reaction is deterministic and the power emitted is the classical synchrotron power in the former
case and in the latter case accounts for reduction to the power emitted by quantum effects (the
Gaunt factor g). We have also considered a ‘stochastic’ model which calculates the emission
using a more physically correct probabilistic treatment. We have shown that the expectation
value of the energy evolves in almost the same way for the stochastic and modified classical
models but differently for the classical model. The variance of the energy distribution evolves
differently for all the models. This suggests that measuring the decrease in the expectation value
of the energy is sufficient to measure the Gaunt factor but that a measurement of the variance is
required to distinguish quantum stochastic effects.
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Appendix A. Functions describing synchrotron emission

The rate of photon emission (making the quasi-static and weak-field approximations) is

V3a e /2
My = [ a
c Y 0

The quantum synchrotron function is given in Sokolov & Ternov (1968) eq. (6.5). In our
notation it is, for y < /2,

F (77,)().

4,(n) =

4 2 2 co
Fn) = Ko )+ (1 - ;X)y f dt Ks/3(1)
:

where y = 4y/[3n(n — 2y)] & K,, are modified Bessel functions of the second kind. For y >
n/2, F(n,x) = 0. In the classical limit # — 0 the quantum synchrotron spectrum reduces to
the classical synchrotron spectrum F(n,x) — Fuo(y.) = Ye f) OO duKs;3(u); yo = 4y /3. The
probability that a photon is emitted with a given y (by an electron with a given 1) is p, (1, x)dy =
[1/h(ILE (p, x) [ x 1dx -
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Appendix B. Derivation of the moment equations

We obtain an equation for the evolution of the expectation value of the electron momentum by
multiplying equation (2.2) by p and integrating over momentum.

dE[p] b © ) .ot
(—dt )Sl =- f &ppA,()f + f d3pp2mec f,, dp’' ,()p(' . x) ps ().

In spherical polars d*p = p?dpd*Q. We also write p = pp. Therefore,

dE bb 00 o0
( d[tp] )St = —fd3pply(n)f+ fdzgzmpecﬁ dppr; dp’/ly(fl’)]?/y(n/,X)P’zf(p’).

We may flip the order of integration over p and p’ in the second term on the right-hand side

’

dE bp 0 P
(E2) =~ [eooronr+ [eas [ arausen® [ dporaro.

Here the p dependence of p, is in y = [(p" — p)b]/(2m.c) (Where we have assumed the electrons
are ultra-relativistic). To simplify the identification of gP.; we define pj, as the probability that
an electron with energy parameterised by 1 emits a photon with energy hv. p, = pu,(dhv/dy) =
Pin(2mc?)/b. We may therefore write

dE * e h
( d[tpl) - f & ppd, () f + f 0P fo dp' 4, f ()P fo dhv(p’—;y)pm(n',hv)-

Now we use

p'c p'c
[ awvontraim =1 [ dipntr v = G,
0 0

to get

dE[p] .
(Tt") =- f dppdy(m)f + f &'ppa,m)f () (p -
st
Cancelling the appropriate terms and identifying gP.; = A, (hv),, yields equation (3.1),

(hv)ay
c ) '

dt c

The equation for the evolution of V[y] (3.3) is obtained by using the same procedure to obtain
an equation for (d(yz) /dt)s, i.e. we multiply equation (2.2) by y2 and integrate over momentum,
2

—d< 2> b * ’ ’ ’ ’
( ;t )Stz—fd3py2/17(n)f+fd3py22mecfp dp’' ,(1)py(n ,X)%f(p ).

(dE[p]) __(&Pab)

Which can be written as

diy? ” & LAY
( o >) . f Py A, f+ f P20 fo dp' 4, f ) fo dhv(y'— ’ ) Piv(r' ).

mec?

where we have assumed y’ = p’/m,c. Defining
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p'c
f dhvp (' s ) () = [(hv)*]a
0

gives

d(y?) (W)ay | (W) ey
( ; )Sl = - f Epy’,a)f + f d’pA,(m)f(p) (72—27#+ mvgc4 :

We again cancel the appropriate terms and this time identify S = /l,/[(hv)z]m, as well as gP; =
Ay (hv)ay to get

(d<72>) _ (gl ()

dt mec®  mct

To get an equation for (dV[y]/dt), we identify V[y] = (y*) — E[y]*. Therefore,

dviyl\ _ (do? a d{ElYPY\ _ (do) 2] dE[y]
dt st - dt st dt st - dt st 7 dt S[.

Substituting the results for (d{y?)/dt)y and (dE[y]/dt)y = (gP.)/(m.c?) (the latter is obtained
by taking the dot product of equation (3.1) with p and assuming p = ym,c) gives the result in
equation (3.3):

+2E .
dt m2c* Ely ] mec? m2c*
Here we have used 4y = y — E[y].
The moments of the classical and modified classical emission operators are straightforwardly

obtained by integration by parts. To obtain equation (3.2) for (dE[p]/dt)mea  We multiply the
emission operator (3f/d1)"%¢ <! in equation (2.1) by p and integrate over momentum

dE[p] _f3p5(2Pc1)
(dt )modcl_ dea pgcf

Substituting &°p = p?>dpd*>Q and p = pp and integrating by parts yields

dE[p] =fdzgf, [psgﬂf] _f dpp* g— fszpf dpp’g—> Pay
dt mod cl ¢ 0 0

We have used the fact that f — 0 as p — oo (faster that p° diverges) to get the last result. We
have now derived equation (3.2)

E P.p
(dd[P]) fds Pay e (8Pad)
t mod cl ¢ c

To derive equation (3.5) for (dV[yl/dt)moa « we first multiply the emission operator
(0f 0r)mod < in equation (2.1) by ¥* and integrate over momentum

d(y*) —f3726(2P“’)
( dt )model_ dpp26p pgcf

Substituting &°p = p?dpd*Q, y = p/(m.c) and integrating by parts yields

mec?

(dV[Y]) _ _pv8Pa)  (S) <chz) _ydygba)  (S)
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(7). ool [ ass) - [ oon [

Again, we have used the fact that f — 0 as p — oo (this time faster that p® diverges) to get the
final result. We may write this more compactly as

(d<72>) fd*pyg P pf = <7ch1>
T2
mod cl

2

dt meC

We get equation (3.5) by identifying V[y] = (y?) — E[y*] and 4y = y — E[y],

dvlyl _ 8Py +2Ely ]<chl> 5 {4y8Pa)
dt ) oda m,c? m,c? myc?
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