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1 Introduction

“Zonal” E×B flows (ZFs) arise spontaneously in fusion devices where the magnetic guide
field traces out topologically toroidal surfaces. The flows are due to the component of the
electrostatic potential that is constant across these surfaces. They are linearly stable, being
driven nonlinearly by interaction with turbulence, and subsequently react back on the tur-
bulence, suppressing it by a shearing mechanism. Thus, it would seem that understanding
ZFs requires a full understanding the the turbulence. However, it is useful to divide this
large problem into smaller, more manageable problems.

First, one can focus on linear aspects. On timescales comparable to the ion bounce
frequency, ZFs are damped by geodesic-curvature-induced coupling to ion acoustic waves,
with the full mode, including its zonal and non-zonal parts, being labeled the geodesic
acoustic mode (GAM). This happens in both tokamaks [1, 2] and stellarators [3, 4]. On
timescales longer than the ion bounce time, ZFs can also decay, both exponentially and
algebraically, but only if there is non-zero radial magnetic drift, averaged over the trapped
particle orbit [5, 6]; this is generally true in stellarators . In the end, a zero-frequency resid-
ual flow is reached [7], which has received special attention as it is completely undamped,
and therefore presumably can enjoy unobstructed accumulation of energy.

Nonlinearly, there are both growth and decay mechanisms. Linearization of the non-
linear problem leads to instabilities. ZF growth can thereby be estimated via secondary
[8] and modulational instabilities [9]. These closely-related instabilities are fundamentally
local in Fourier space, in the sense that the interaction involves a very small number of
Fourier modes, so a Fourier-truncated description is accurate [10]. Zonal flow decay can
be estimated by the tertiary instability [8], which, in contrast to the growth mechanisms,
is localized in position-space, and also involve smaller scales than the secondary mode. We
argue, therefore, that it is sensible to study growth and decay separately because, although
the processes must coexist in a turbulent plasma, they may be possible to distinguish by
their characteristic signatures. The present paper is concerned with nonlinear decay; work
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on nonlinear growth by secondary instabilities, which can be viewed as complimentary to
the present work, has recently been published [11].

We note that, although it is straightforward to separate nonlinear and linear effects in
theoretical studies, both seem to be important in actual experimentally relevant scenarios,
depending on plasma parameters and magnetic field shaping [12, 13]. Nevertheless, the
separation can help with understanding. The goal of the present work is to conduct theo-
retical and numerical studies of nonlinear zonal flow decay, clarifying what occurs in simple
settings, and extending previous works to handle some of the complexities present in gen-
eral (stellarator) magnetic geometries. Our two main theoretical tools are analytical work
on the tertiary mode, and nonlinear energy transfer analysis of turbulence simulations.

This manuscript, intended for distribution to participants of “The 1st JPP Frontiers
in Plasma Physics Conference”, contains a detailed derivation of the tertiary mode, and
describe the current direction of numerical simulations.

2 Nature of the tertiary mode

As found originally by [8], the tertiary mode arises in the two-dimensional long-wavelength
gyrofluid limit in the presence of strong zonal flows, but only when there is also a sig-
nificant zonal temperature component. This condition translates in the more general
two-dimensional gyrokinetic setting to the condition that the ratio of the free energy to
electrostatic energy of the zonal mode must exceed a minimum amount [14].

This mode has been observed to be localized around extrema in the E×B flow, allowing
it to avoid the effect of E ×B shearing [8, 15]. However, in the present work, we find also
another branch that resides in regions of maximum E×B shear. In either case, it requires
FLR effects because perpendicular phase mixing provides the destabilizing resonance. The
drive (free energy source) is inhomogeneity of the zonal perpendicular temperature. The
mode can be studied either with or without background linear drive terms (due to gradient
of the bulk plasma, and inhomogeneity of the background magnetic field). Theoretical
treatment is simpler in the absence of these linear terms. However, importantly, the physi-
cal affect of coupling between stable and unstable linear modes by zonal shearing is absent,
which explains why the purely nonlinear tertiary mode is not stabilized by E×B shearing.

It is fair to ask why the parallel ion resonance could not also drive an instability, com-
peting with the resonance mentioned above. The answer may be that such a mode requires
either a zonal parallel ion flow or zonal parallel temperature to destabilize it. The vorticity
equation for the zonal flow, however, shows instead nonlinear coupling to the perpendicular
temperature, and consequently the secondary mode involves the perpendicular tempera-
ture, and thus there is a physical basis for driving the perpendicular zonal temperature.
However, it is unclear how the other zonal components would be driven. It seems therefore
that the parallel ion resonance should be stabilizing. In any case, it depends on the relative
size of the zonal components; a slab instability is also theoretically possible.
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Note that neglecting parallel ion motion with the conventional adiabatic electron re-
sponse (neglecting trapped electrons), leads to a “local” dispersion relation. That is, the
mode dependence along the field line is left undetermined, and the question of whether
the local solution corresponds to some “global” normal mode, is left open. However, with
electron trapping, we obtain an integral equation, which can in principle be solved for the
mode structure. Additionally, the mode dependence in the radial direction could also be
determined from the differential equation that we find. We do not attempt here to solve
for the “global” mode explicitly, but instead focus on the simpler local mode. (Indeed, it
is not always true that the global mode is relevant nonlinearly [16].)

3 Derivation of tertiary mode in general magnetic geometry,
including electron trapping

We treat the tertiary mode problem following [8]. We use magnetic coordinates ψ, α, such
that B = ∇ψ×∇α, and the field line following coordinate l, measuring the arc length along
the field line. We also include electron trapping, which has not been previously considered.
This makes the theory applicable to the trapped electron mode (TEM) turbulence problem,
and also shows the influence of electron trapping on electrostatic ion temperature gradient
(ITG) turbulence (not taken into account by the normal “adiabatic” electron model). We
apply the quasi-2D (k‖vthi � 1) limit to the gyrokinetic system, and neglect linear drive
terms. The nonlinear ion gyrokinetic equation for the tertiary mode is thus

γg + 〈vE〉R ·∇g = 0. (1)

where γ is the tertiary mode growth rate, vE = b̂×∇φ/B, and g = h− (q 〈φ〉R /Ti)F0i is
the gyro-averaged δf1. For velocity variables, we use v, and pitch angle λ = v2⊥/(v

2B). We
assume k2⊥ρ

2 � 1, with ρ ≡ vth/Ωc, vth =
√
T/m, and retain terms of order k2⊥ρ

2 (where
species labels are absent, ions are to be assumed). In this limit, nonlinear phase mixing
causes coupling between different v⊥-moments of the ion distribution function, but the
moment hierarchy naturally closes due to the ordering we take. We need not distinguish
between trapped and passing ions since we assume that the ion transit frequency is low
compared to the frequency of the tertiary mode. We use the approximation (and a similar
one for the angle average in quasi-neutrality)

〈φ〉R ≈
(

1 +
v2⊥

4vth2
ρ2∇2

⊥

)
φ (2)

The electron transit frequency is assumed to be large, k‖vthe � ω. The passing electrons
therefore satisfy the usual response

hpe = −eφ
Te
F0e, (3)
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where we note that the orbit average ...

φ =

∮
dlφ/
√

1− λB∮
dl/
√

1− λB
(4)

covers the entire surface for passing electrons, so the l integral can be written as a double
integral over field line label α and finite arc lengths in l, i.e.

∮
dl =

∫
dl
∫
dα. For a mode

that has a finite binormal wavenumber (kα), the α-average is zero and therefore hpe = 0 for
the tertiary mode. For a zonal mode, φ depends on ψ but not on α or l, so φ = φ.

The trapped electrons satisfy

γhtre = −vE ·∇he − γ
eφ

Te
F0e, (5)

where ... denotes the orbit average of trapped electrons, taken between consecutive bounce
points l1 and l2 such that B(l1) = B(l2) = 1/λ. Based on these solutions, we write the
quasi-neutrality equation for the zonal and non-zonal (tertiary mode) parts

1

n0

∫
dv

(
1 +

v2⊥
4vth2

ρ2∇2
⊥

)
gz =

(
τftr − ρ2∇2

⊥
) qφz
Ti

+
1

n0

∫
tr
dvhtrez, (6)

1

n0

∫
dv

(
1 +

v2⊥
4vth2

ρ2∇2
⊥

)
g =

(
τ − ρ2∇2

⊥
) qφ
Ti

+
1

n0

∫
tr
dvhtre , (7)

where we use the subscript z for the zonal component, and omit the subscript for the
tertiary component. Note that ’tr’ in the subscript of the velocity integrals emphasizes
that the integral is performed over only the trapped portion of velocity space. Note also
the appearance of a term proportional to the trapped particle fraction ftr (here ftr(l) =
(1 − B(l)/Bmax)1/2, where Bmax is the maximum value of the guide field), which reflects
the imperfect shielding of flux-surface-average density in the presence of electron trapping.
Later we will need to consider the ordering for the trapped fraction ftr, so that its effect
does not overwhelm the usual FLR terms that drive the tertiary.

For the tertiary mode, we assume φ ∝ exp(ikαα + γt). For the zonal mode we define
an informal radial wavenumber kψ via ∇⊥φz ∼ kψ|∇ψ|φz. Benefitting from previous work
on the tertiary, we can state the ordering for the calculation at the outset, in terms of the
ordering parameter δ:

δ ∼ kψ|∇ψ|ρ ∼ (kα|∇α|ρ)2 � 1. (8)

We now integrate the ion gyrokinetic equation (for the tertiary mode) over velocity,
using Eqn. 7, retaining all O(k2⊥ρ

2) terms initially (we will next examine and discard some
terms based on the above ordering), yielding
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γ̄

[(
τ + ρ2∇2

⊥
) qφ
T
− ρ2∇2

⊥
qχ

T
+

1

n0

∫
tr
dvhtre

]
=

(iρ2∇2
⊥ωE)

qχ

T
+ ikαn

′
zφ− ikα

qχ′z
T
∇2
⊥φ, (9)

where nz(ψ, l) =
∫
dvgz, and we have defined γ̄ = γ + iωE , and ωE = kα∂φz/∂ψ = kαφ

′
z

(we will find γ̄ ∼ O(δωE) in the end). We have also introduced a potential χ related to
the perpendicular pressure:

χ =
1

qn0

∫
dv
mv2⊥

4
g. (10)

We obtain from the v2⊥ moment of the gyrokinetic equation an additional equation for χ

γ̄χ = ikαχ
′
zφ. (11)

From Eqn. 5 we obtain also an expression for the trapped electron density

γ̄

∫
tr
dvhtre = ikαφ

∫
tr
dv
∂htrez
∂ψ

+ (iωE − γ̄)

∫
tr
dv
eφ

Te
F0e, (12)

We will substitute the above expressions into Eqn. 9 to obtain a dispersion relation.
But first let’s discuss which terms need to be retained according to our ordering. First
we note that since γ̄ ∼ O(δωE), and χz ∼ φz, Eqn. 11 implies that χ ∼ δ−1φ. This will
promote the order of terms proportional to χ in Eqn. 9. Next, we can neglect the two
FLR terms in Eqn. 6 since they are small, i.e. k2ψ|∇ψ|2ρ2 ∼ O(δ2). To evaluate one of the
non-negligible FLR terms on the left-hand-side of Eqn. 9 we derive the following equation
from Eqn. 11 (noting that γ̄ = γ + iωE(ψ)):

γ̄ρ2∇2
⊥
qχ

T
≈ ikαχ′zρ2∇2

⊥
qφ

T
− i(ρ2∇2

⊥ωE)
qχ

T
− 2iρ2(∇⊥ωE) ·

(
∇⊥

qχ

T

)
, (13)

where we have neglected terms small in our ordering. In the case that the mode is localized
radially to where the E × B shear is zero, we may neglect terms proportional to φ′′z ≈ 0.
This implies that we should neglect the final term in Eqn. 13. However, motivated by
numerical findings, we also consider the case where the mode is localized to extrema in χz
and φz (we assume that they are in phase or π out of phase). In that case, the first two
terms can be neglected and the final term retained. In summary, all these terms must be
retained to capture a more general tertiary mode.

Substituting Eqns. 6, 7, 11, 12, and 13 into Eqn. 9 we find
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(1− ftr)τ γ̄2
qφ

T
= γ̄

[
ikα
n0

∫
tr
dv(φ− φ)

∂htrez
∂ψ

+
iτωE
n0

∫
tr
dv
q(φ− φ)

T
F0e

]
+ γ̄2ikαχ

′
zρ

2∇2
⊥
qφ

T
+ 2kαχ

′
z(ρ

2|∇ψ|2ω′′E)
qφ

T
+ 2γ̄k2αρ

2ω′E∇ψ ·∇
(
qφ

T

χ′z
γ̄

)
. (14)

The terms within the bracket on the first line are new terms that are due to electron
trapping. The final term is required when the mode resides where shear is non-zero. As
we have mentioned above, we may need to consider the trapped particle fraction as small.
This now becomes clear since the bracketed quantity would be otherwise be large and
dominate over the other (drive terms), stabilizing the mode. However, we also note that
if the tertiary mode is independent of the field-line-following coordinate, then φ = φ, and
the bracketed terms vanish. In this case, the effect of electron trapping appears only on
the first term – but it is negligible if the trapped particle fraction is small ftr � 1. We
therefore find it convenient to allow the trapped particle fraction to be finite, to include
the case that the bracketed term exhibits significant cancelation.

We can simplify Eqn. 14 a bit more by assuming that the radial derivative of the tertiary
mode is small (we argue that the mode envelope should be on the scale of the zonal mode)
and so ∇2

⊥φ ≈ −k2α|∇α|2φ. Let us further assume that φ′′z = 0 in line with previous
observations in tokamak geometries [8, 15]. We can also denote the bracketed quantity on
the first line of Eqn. 14 as −∆qφ/T , to obtain a more compact dispersion relation:

(1− ftr)τ γ̄2 + γ̄
[
2ik3αρ

2|∇α|2χ′z + ∆
]
− 2k2αρ

2|∇ψ|2χ′zφ′′′z = 0. (15)

Examining this equation, magnetic geometry affects several quantities. First, |∇α| and
|∇ψ|, which include the effect of flux tube compression and magnetic shear, control the
amplitude of the stabilizing and destabilizing terms, respectively. We note that these
terms vary in l, in a way that is generally distinct from geometric factors that control
linear mode stability (e.g. normal curvature), and therefore establish a distinct parallel
connection length for the tertiary mode. (This fact was noted by [13], and used to explain
the unexpected strength of nonlinear damping of zonal flows in the HSX stellarator.)

The effect of trapped electrons on the tertiary mode can be considered in different limits:
First, consider the limit where φ = φ, e.g. the mode is constant across magnetic wells, so
that ∆ = 0. In that case, the dispersion relation is written as (1 − ftr)γ̄2 + ibγ̄ − c = 0
with b and c > 0 real constants. If 4c ≤ b2 the mode is always stable. Assuming 4c > b2,
and 0 ≤ f ≤ 1, the growth rate is minimized by the choice f = 0, i.e. electron trapping is
destabilizing. Now let us consider ∆ 6= 0. if the trapped fraction f is finite, f ∼ O(1), then
the term proportional to ∆ ∼ f dominates the equation and the mode is stable. However,
if we take ∆ 6= 0 but further assume ftr � 1, the situation is less clear. We may neglect
ftr may from the quadratic term, and the remaining contribution from trapped electrons is
due to ∆, which is purely imaginary and enters the linear term in this quadratic dispersion
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relation, whose remaining part is also purely imaginary. Overall, the linear term can only
be stabilizing. In regions of maximal shear, the trapped electron contribution is the only
contribution, so in that case electron trapping is stabilizing. Otherwise, the contribution
of the electron trapping term depends on the solution φ. In summary, although the effect
of electron trapping is not completely clear at low trapped particle fraction, it must be
stabilizing when the fraction is sufficiently large. We conclude, that destabilization of the
tertiary by kinetic electrons in electrostatic ITG turbulence at low trapped particle fraction
could be responsible for the destabilization of turbulence in simulations of both tokamak
and stellarator geometries [17], but further investigation is necessary.

3.1 Slab limit

To help make the instability more transparent, we consider the case of uniform magnetic
geometry. We change from flux coordinates ψ and α to cartesian coordinates x and y, and
apply the usual normalizations (qχ/T )L/ρ→ χ, (qφ/T )L/ρ, (x, y)/ρ→ (x, y), tvth/L→ t.
The electron trapping terms drop out of Eqn. 14, yielding

τ γ̄2φ+ 2γ̄ikyχ
′
z(k

2
y − ∂2x)φ− 2k2y

[
φ′′′z χ

′
zφ+ γ̄φ′′z

∂

∂x

(
φχ′z
γ̄

)]
= 0. (16)

We can consider two simple limits. If the mode is localized about the minimum of E ×B
shear we take φ′′z = 0 and the final term within the bracket is zero. If we can further take
the local limit ∂x � ky, we obtain the solution

γ̄ = −ik3yχ′z/τ ±
√
−k6y(χ′z)2/τ2 + 2k2yφ

′′′
z χ
′
z/τ . (17)

If, however, we instead take φ′z = χ′z = 0, as suggested by our simulations, then we obtain

γ̄ = ±
√

2k2yφ
′′
zχ
′′
z/τ . (18)

This growth rate has a similar scaling as that of the first limit (∼ k2xky
√
φzχz), but it is

stronger, since it avoids the stabilizing influence of the real frequency.

4 Numerical investigation

Several questions motivate us to conduct a numerical study of the tertiary mode, and of
the nonlinear decay mechanism in general, starting with a simple magnetic geometry: It
has been shown that the onset of the tertiary is responsible for transition to turbulence at
the nonlinear critical gradient in ITG turbulence simulations [8]. However, what is the role
of this mode in the saturated state of the turbulence? One would also like to understand
the saturation phase of the zonal flows themselves, beyond the regime of applicability of
linearized calculations. How are the flows modified, initially, by the back-reaction of the
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nonlinear tertiary mode? In the fully developed state, is it possible to observe the signature
of the tertiary mode, just as linear eigenmodes are detectable by their characteristic phases,
etc., in nonlinear simulations [18, 19]?

A gyrokinetic simulation, in 2D slab geometry, with an initial condition dominated by
a zonal mode, demonstrates the evolution through three phases, as shown in Fig. 1: (1)
growth of tertiary modes, (2) saturation phase exhibiting finite energy transfer, between
and (3) steady state with an energetic balance. The corresponding growth rate spectrum
for the growth phase is plotted in Fig. 2. Investigation of all three of these phases will
continue.
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Figure 1: Free energy evolution for simple 2D gyorkinetic system.

Finally, we demonstrate the localization to maxima of φ by plotting the potential in
the x-y plane during the growth phase of the tertiary. In Fig. 3, the initial condition and
final condition are shown, including a version of φ with the zonal part removed, revealing
localized mode structure of the tertiary, around positive peaks of φ. The fact that only one
sign of φ is allowed is reflected in the growth rate formula for this branch of the tertiary,
Eqn. 18.
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