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Collisionless microinstabilities in stellarators.
IV. The ion-driven trapped-electron mode
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Optimised stellarators and other magnetic-confinement devices having the property that
the average magnetic curvature is favourable for all particle orbits are called maximum-
J devices, and have recently been shown to be immune to trapped-particle instabilities
driven by the density gradient. Gyrokinetic simulations reveal, however, that another
instability can arise, which is also associated with particle trapping but causes less
transport than typical trapped-electron modes. The nature of this instability is clarified
here. It is shown to be similar to the “ubiquitous mode” in tokamaks, and is driven by
ion free energy but requires trapped electrons to exist.

1. Introduction

Much of the transport observed in tokamaks, particularly in the plasma core, is believed
to be caused by turbulence excited by ion-temperature-gradient (ITG) and trapped-
electron-mode (TEM) instabilities. Less is known about transport and turbulence in
stellarators, but ITG modes appear to be important, perhaps playing a role similar to
that in tokamaks (Watanabe et al. 2008). However, there are interesting and impor-
tant differences between these modes in tokamaks and stellarators. For instance, the
unfavourable field-line curvature driving the “toroidal” branch of the instability is often
locally much larger in stellarators than in tokamaks (Helander et al. 2015), but it is
very unevenly distributed over the magnetic surfaces, which has a stabilising influence
(Xanthopoulos et al. 2016). On the whole, though, it appears that the net transport
caused by ITG modes can be comparable in tokamaks and stellarators.

The situation is very different for TEMs, which can be shown to be absent in large
parts of parameter space for certain types of stellarators. The collisionless TEM is driven
by trapped electrons residing in regions of bad magnetic curvature, but in so-called
“maximum-J” devices (Rosenbluth 1968) all trapped particles experience the stabilising
effect of “good” curvature on a time average over the orbit. For this reason, there are no
collisionless, density-gradient TEMs in such configurations (Proll et al. 2012; Helander
et al. 2013). High-beta, quasi-isodynamic stellarators (Helander & Nührenberg 2009;
Nührenberg 2010) are, to a good approximation, maximum-J devices, and gyrokinetic
simulations indeed fail to find TEMs there (Proll et al. 2013). Such modes are present
in other types of stellarators, such as the Large Helical Device (Nakata et al. 2016), but
appear to be practically absent in Wendelstein 7-X, at least in the simulations published
so far.

Instead, the simulations reveal the presence of another density-gradient-driven insta-
bility, which in the words of Proll et al. (2013) “evades standard classification”. The mode
amplitude peaks in magnetic wells, as expected for TEMs, but the instability propagates
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in the ion diamagentic direction and draws its energy from the ions rather than the
electrons. It is, however, not a traditional trapped-ion mode since the wavelength is
comparable to the ion gyroradius. It is the purpose of the present paper to identify and
understand the origin of this instability, which we refer to as the ion-driven trapped
electron mode (ITEM). Before proceeding with the main argument for why there must
be such an instability, we hasten to remark that it appears to be more benign than the
conventional TEM. Nonlinear simulations so far indicate that the transport is more than
an order of magnitude lower than that from TEMs in tokamaks (Helander et al. 2015),
probably because the wavelength perpendicular to the magnetic field is relatively short
and the growth rate fairly small. The latter feature, as we will show, can be traced to
favourable spatial averaging of the ion drive.

2. Orderings and eigenvalue problem

We adopt two orderings that are conventional in the theory of drift-waves (Helander
et al. 2013; Kadomtsev & Pogutse 1970). First, in order to avoid strong Landau damping
on either electrons (e) or ions (i), the phase velocity ω/k‖ along the magnetic field is
taken to satisfy

vTi �
ω

k‖
� vTe, (2.1)

where vTa = (2Ta/ma)1/2 denotes the thermal speed of species a. Second, the magnetic
drift frequency ωda = k⊥ · vda is assumed to be much smaller than the diamagnetic
frequency ω∗a = (Takα/ea)d lnna/dψ,

ωda
ω∗a
� 1, (2.2)

where the wave vector perpendicular to the magnetic field B = ∇ψ×∇α has been written
as k⊥ = kψ∇ψ + kα∇α, with ψ the toroidal magnetic flux. As we shall see shortly, the
effect of these two assumptions is effectively to decouple the ITG and TEM instabilities,
which can otherwise seamlessly metamorphose into one another (Kammerer et al. 2008).

As shown by Helander et al. (2013), by using these assumptions it is possible to reduce
the electrostatic, collisionless gyrokinetic system of equations to an eigenvalue problem
involving an integral equation for the electrostatic potential φ(l) as a function of the arc
length l along the magnetic field,

f(ω, l)φ(l) = B(l)

∫ 1/B(l)

1/Bmax

g(ω, λ)φ(λ)
dλ√

1− λB
. (2.3)

Here, an overbar denotes the time average over trapped-particle orbits, Bmax is the
maximum magnetic field strength on the flux surface in question, and we have written

f(ω, l) = 1 +
Te
Ti

[1− h(ω, l)] ,

g(ω, λ) =
1

2

[
1− ω∗e

ω
+

3ω̃de
2ω

(
1− (1 + ηe)ω∗e

ω

)]
,

h(ω, l) = Γ0(b)

[
1− ω∗i

ω
+
ω̂di
ω
− (1 + ηi)ω∗iω̂di

ω2

+b

(
ηiω∗i
ω
− ω̂di

2ω
+

(
2ηi +

1

2

)
ω∗iω̂di
ω2

)
− b2 ηiω∗iω̂di

ω2

]
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+bΓ1(b)

[
−ηiω∗i

ω
+
ω̂di
2ω

(
1− ω∗i

ω

)
−
(

3

2
− b
)
ηiω∗iω̂di
ω2

]
,

where ηa = d lnTa/d lnn, Γn(b) = e−bIn(b), b = k2⊥miTi/(eB)2, the ion drift frequency is
expressed as ωdi = ω̂dix

2(1 +λB/2) and the orbit-average of the electron drift frequency
as ωde = ω̃de(λ)x2, with λ = v2⊥/(v

2B) and x = v/vTa.
Equation (2.3) admits two types of solutions, depending on whether φ vanishes at the

point lmax where B achieves its maximum value, B(lmax) = Bmax. At this point, there
are no trapped particles, the right-hand side of Eq. (2.3) vanishes, and so therefore must
either f or φ. In the former case, the dispersion relation is f(ω, lmax) = 0 and describes
an ITG mode. In the opposite case, φ peaks somewhere in the trapped-particle region
and the mode requires trapped electrons to exist. The ordering (2.1)-(2.2) thus allows us
to discriminate between ITG modes and trapped-particle modes in an unequivocal way.

3. Dispersion relation

A useful quadratic form can be obtained by multiplying Eq. (2.3) by φ/B and inte-
grating along the entire field line (in ballooning space),

S[φ, ω] ≡
∫ ∞
−∞

f(ω, l)|φ|2 dl
B
−
∫ 1/Bmin

1/Bmax

∑
j

τjg(ω, λ)|φj |2dλ = 0, (3.1)

where the sum is taken over all relevant magnetic wells (indexed by j) with magnetic
field strength B < 1/λ, and

φj(λ) =
1

τj(λ)

∫
φ(l) dl√
1− λB(l)

denotes the bounce average of φ over the jth such well, with

τj(λ) =

∫
dl√

1− λB(l)
.

Note that the integrals over l are taken between bounce points defined by λB = 1.
The form S[φ, ω] is variational in the sense that it is stationary to first order in small
variations in φ and ω satisfying the integral equation (2.3) (Helander et al. 2013).

Equation (3.1) is quadratic in ω,

Pω2 +Qω +R = 0, (3.2)

with coefficients

P =

∫ ∞
−∞

[
1 +

Te
Ti

(1− Γ0)

]
|φ|2 dl

B
− 1

2

∫ 1/Bmin

1/Bmax

∑
j

τj
∣∣φj∣∣2 dλ,

Q =
ω∗iTe
Ti

∫ ∞
−∞

[Γ0 − ηib(Γ0 − Γ1)]
dl

B
+
ω∗e
2

∫ 1/Bmin

1/Bmax

∑
j

τj
∣∣φj∣∣2 dλ,

R =
ω∗iTe
Ti

∫ ∞
−∞

ω̂di

[
Γ0 −

b(Γ0 − Γ1)

2
+ ηiΓ0(1− b)2 + ηib

(
3

2
− b
)
Γ1

]
|φ|2 dl

B

+
3(1 + ηe)ω∗e

4

∫ 1/Bmin

1/Bmax

∑
j

ωdejτj
∣∣φj∣∣2 dλ,

where we have neglected terms that are small in ω̂di/ω∗i � 1. The coefficient P is positive
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definite due to the Schwartz inequality (see Helander et al. (2013), where the quantity is
denoted by D[φ]), but Q and R can have either sign. Since

ω = − 1

2P

(
Q±

√
Q2 − 4PR

)
, (3.3)

it is clear that positive R has a destabilising effect. We note that the first term in R is
proportional to the product ω∗iω̂di, which represents the instability drive from ions due
to magnetic curvature, and since the function

Γ0 −
b(Γ0 − Γ1)

2
+ ηiΓ0(1− b)2 + ηib

(
3

2
− b
)
Γ1

is positive for all b if ηi > 0, it follows that the ions are destabilising if ω∗iω̂di > 0, which
is the usual criterion of unfavourable magnetic curvature. The second term in R involves
the product ω∗eωdej , which represents the corresponding drive from electrons, bounce-
averaged over the jth trapping well. In a maximum-J device, this product is negative for
all orbits, so that the bounce-averaged curvature is favourable for all trapped particles
(Rosenbluth 1968; Proll et al. 2012; Helander et al. 2013). There is then no instability
drive from the electrons, and conventional TEMs are absent. This was shown to be the
case if 0 < ηe < 2/3 independently of the orderings (2.1)-(2.2) by Proll et al. (2012);
Helander et al. (2013), and we now see it to be true for any ηe > 0 if these orderings hold,
since the electron contribution to R is stabilising if ω∗eωdej is negative. Furthermore, one
can argue that positive ηe is desirable in this case, since it amplifies a term that is already
stabilising, making its effect even stronger.

Any instability must then be driven by the ions, but only arises if the stabilising
influence of the term Q2 in Eq. (3.3) is small enough. According to the ordering (2.2),
Q2 is larger than PR, but as noticed by Coppi & Pegoraro (1977), Q must go through
zero as the perpendicular wave number is varied, due to the behaviour the function

F (b, ηi) = Γ0 − ηib(Γ0 − Γ1), (3.4)

contained in the first term. To demonstrate this, let us fix our sign conventions so that
ω∗e is negative. We observe F tends to 1 at small b, and the first term of Q is thus
positive and larger than the second term (again using the Schwartz inequality), making
Q positive when b → 0. However, if ηi > 1.64, F must become negative for b greater
than some value, a constant that we denote bc (Helander et al. 2013). Therefore, the
integral quantity Q can be made negative by choosing wavenumbers kψ and kα such
that b(l) > bc for all l, and so there must be a choice of wavenumbers where Q = 0;
note that the latter choice of wavenumbers will generally be different than the former.
Alternatively, if ηi < 1.64, we note that for b→∞,

Γ0(b) ∼ 1√
2πb

(
1 +

1

8b

)
,

Γ1(b) ∼ 1√
2πb

(
1− 3

8b

)
,

and the first term in Q, although positive, becomes small. Unless
∣∣φj∣∣ → 0, Q will

therefore again pass through zero, this time at some value of b of order the inverse of
the trapped-particle fraction squared, which is formally a number of order unity in our
treatment. For any ηi > 0 we thus expect there to be a range of wave numbers with b =
O(1) in which Q2 < 4PR and instability thus prevails. In a maximum-J configuration,
this instability is entirely driven by ions residing in regions of bad curvature, but it
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requires the existence of trapped electrons. The real frequency of the mode is given
by ωr = −Q/(2P ), but is limited in size by the condition on Q2. The mode will thus
propagate with a frequency of order (ω∗ωd)

1/2 in either the ion or electron direction,
with the direction changing sign at the value of kα where Q becomes zero.

4. Iterative solution of the eigenvalue problem

In the previous section, we have demonstrated why the ITEM can exist even when the
magnetic drift of trapped electrons is stabilising. However, several important questions
remain. Under what conditions (e.g. in what magnetic geometries) will this mode be
found? How large will its growth rate be? We have seen that the classical TEM is stable
in special (maximum-J) configurations – is it possible to devise configurations that are
also immune to the ion-driven mode?

We return to the analysis of Eq. (2.3) which can be simplified by further exploiting
our ordering assumptions. We have already noted that a near cancellation of the integral
quantityQ is necessary for instability. Likewise, it is necessary that the terms proportional
to ω∗, being formally large, must independently balance in the integral equation (2.3).
Thus we can solve the integral equation iteratively. At dominant order, we have

κ(l)φ(l) = B(l)

∫ 1/B(l)

1/Bmax

φ(λ)
dλ√

1− λB
, (4.1)

where the ratio of the zeroth-order parts of f and g is denoted by κ(l). At next order we
can obtain a dispersion relation for the mode frequency∫ ∞

−∞
f1(ω, l)|φ|2 dl

B
=

∫ 1/Bmin

1/Bmax

∑
j

g1(ω, λ)τj
∣∣φj∣∣2 dλ (4.2)

where we have expressed the next-order parts of f and g as f1 and g1. These quantities
include the drive terms (proportional to ωdω∗) and also contributions proportional
to ω∗/ω, which are necessary for a non-zero real part of ω. The latter contributions
arise mathematically by expanding kα = kα0 + kα1, and kψ = kψ0 + kψ1. Thus,
κ(l) is equal to the quantity 2F (b0(l), ηi), where F is defined in Eqn. 3.4, and b0 =
|kψ0∇ψ+kα0∇α|2miTi/(eB)2. The quantities f1 and g1 include those terms proportional
to kα1 or kψ1 arising from the factors of ω∗/ω contained in f and g. Explicit expressions
for f1 and g1 are given in Appx. A.

Equation (4.1) simplifies the problem, because the eigenfunction can now be deter-
mined independently of the mode frequency, and, more importantly, we observe that it
cannot depend on how the ion drift ω̂di varies with l. Therefore the mode structure will
not necessarily peak preferentially at locations of bad curvature (as it does e.g. for the
ITG mode). As is apparent from Eq. (4.2) (and also from the full expression for R) the ion
drive contribution depends on an average of the ion magnetic drift, weighted by the mode
amplitude |φ|2, and an additional factor depending on b(l). We surmise, therefore, that
when there are areas of both good and bad curvature within a well (which is generally
the case) there will be some cancellation due to this average, helping to stabilise the
mode. Furthermore, it is apparent that the ion drive can be eliminated if regions of good
curvature outweigh the regions of bad curvature, under this average. It is therefore of
primary importance to understand this equation and its solutions.

Let us discuss the general properties of Eq. (4.1). The integral operator on the right
hand side is Hermitian. As mentioned before, the function produced by this operator
must have nodes at well endpoints where B = Bmax. We also notice that the derivative
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of this function must be zero there too, since B(l) has its maximum there. We can make a
further general observation about the symmetry of solutions to Eq. (4.1). Let us assume
that the magnetic well is symmetric about its centre. Then, all odd functions are in the
null space of the integral operator on the right hand side, and so the right hand side must
be an even function, which we may divide by κ(l) to obtain φ(l). We can conclude that
the asymmetry of the mode in this case is induced purely by the function κ(l), which
could be controlled, to some extent, by choice of magnetic geometry.

Lastly, we note that Eq. (4.1) suggests an interesting fundamental difference between
tokamaks and stellarators. This difference originates from the fact that ions are assumed
stationary along the field line, and only the trapped part of the electron population
contributes. It is therefore only through these electrons that different points along the
communicate, so there is no mechanism to causally connect distinct wells of height equal
to the maximum Bmax. In tokamaks, the well structure exactly repeats along the field line,
whereas in a realistic stellarator there will be a unique value of Bmax along the field line.
Thus the entire surface of the stellarator is causally connected by a finite population of
trapped electrons. Practically speaking, the numerical solution of the mode structure
in a stellarator (which must be performed over a finite domain) can have a unique
primary magnetic well, across which the global mode forms, coupled by trapped electrons.
However, in a tokamak, there will be a number of equivalent wells (corresponding to the
number of poloidal turns spanned by the simulation domain) that are decoupled, making
the notion of a single “global mode” somewhat artificial in this context. This suggests
that it would be sensible to limit the domain in a tokamak to a single poloidal turn for
the purposes of linear TEM simulations, whereas the domain length should be longer in
stellarator simulations.

4.1. Square magnetic well

Despite its simplicity, Eq. (4.1) does not seem to generally admit analytical solutions.
However, there is a particularly simple limit in which a solution is readily found. This is
the case of a square magnetic well, i.e. a well of width L in which the magnetic field has
a constant value B0, and rises abruptly to the maximum value Bmax at the edges. All
trapped electrons in this well have the same bounce points (at l = ±L/2), and the bounce
average is just an l-average over the well. We will assume ηi = ηe = 0 for simplicity (this
has the added benefit of ensuring that κ has no zeros).

From Eq. (4.1) we have

κφ(l) =
2ft
L

∫
dlφ, (4.3)

where here κ = 2Γ0(b0) and we introduce the trapped-particle fraction (a constant in
this case),

ft =

√
1− B0

Bmax
.

The function φ(l) is obtained by simply dividing Eq. (4.3) by κ(l). We thus observe that
the mode structure simply goes as κ−1, and so it is purely determined by the spatial
variation of k⊥. A further condition is then obtained by averaging φ(l),

1

L

∫
dl

κ(l)
=

1

2ft
. (4.4)

This condition determines allowable values of kα0 and kψ0. For simplicity, we take kα1 =
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0, and from Eq. (4.2) we obtain a dispersion relation for a purely growing (or decaying)
mode

4f2t
L

∫
dl

κ2

[
1 +

Te
Ti

(1− h1)

]
= B0

∫ 1/B0

1/Bmax

g1dλ√
1− λB0

(4.5)

where

g1(ω, λ) =
1

2

[
1− 3ω∗eω̃de

2ω2

]
,

and

h1(ω, l) = Γ0(b) +

(
ω∗iω̂di
ω2

)[
Γ0(b)

(
b

2
− 1

)
− b

2
Γ1(b)

]
.

Note that Eq. (4.5) is quadratic in ω, with no linear term, and thus it follows that,
assuming electrons are stabilising (ω∗eω̃de < 0), instability requires that the condition

1

L

∫
dl ω∗iω̂di

κ2

[
Γ0(b)

(
1− b

2

)
+
b

2
Γ1(b)

]
> 0,

be satisfied. Note that the quantity within the brackets is positive definite, and so
instability requires a kind of “average-bad” curvature, where the weight of the average
depends on l only via b(l). As a further simplification, we can consider a system with
linear magnetic shear, and expand for b� 1, where, changing coordinates from ψ and α
to x and y, we obtain

1

κ2

[
Γ0(b)

(
1− b

2

)
+
b

2
Γ1(b)

]
≈ 3

8

√
π

2
ky0ρ|l − l0|s, (4.6)

where s is the inverse magnetic shear length (defined e.g. via a local expansion ∇α ≈ (ŷ+
x̂sl)|∇α|l=0). Note that the location corresponding to the parameter l0, which absorbs
the freedom provided by kx, is taken to be outside the magnetic well (the expansion is
therefore valid for points within the well). Equation (4.4) yields ky0

ky0ρ =
1√

2π|l0|sft
(4.7)

As a second simplification, we can take ω̃de to be independent of pitch angle λ, which
is a good approximation in some geometries (Kesner & Hastie 2002). Then the integral
on the right hand side of Eq. (4.5) simply yields another factor of 2ft. Assuming now
that electrons are stabilising, ω∗eω̃de < 0, it is easy to devise a function ωdi(l) (involving
areas of both good and bad curvature) that yields a stable mode. The strategy, which is
simply to choose the values of good curvature to reside in regions that are more strongly
weighted by the function |l − l0|, may not work for all values of l0, so it still seems
challenging to obtain absolute stability of the ITEM mode, given that some areas of bad
curvature must be present for a magnetic field line that traces out a topological torus.
Still, the possibility cannot be ruled out entirely.

4.2. Numerical solutions

Let us next consider numerical solutions of Eq. (4.1). A uniform grid is used in l-space,
and the integrals in l and λ are evaluated numerically. We can approach Eq. (4.1) as
an eigenvalue equation, considering kψ as a fixed parameter. We take the locations of
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maximum magnetic field to be ±L/2, normalize l̂ = l/L, and decompose κ(l) = νiκ̂(l̂)
where we choose κ̂(0) = 1, and νi denotes the eigenvalue, with index i. Two choices, κ̂ =

1/|l̂− 1|, and κ = 1 are considered, corresponding, respectively, to linear magnetic shear
with b � 1, and zero magnetic shear. Thus, the allowable values of kα0 are determined
by the eigenvalues νi. The mode frequency ω can then immediately be determined by
Eq. (4.2) (which is merely a quadratic dispersion relation) where kα1 is a free parameter
whose sign will determine the direction of mode propagation. Note that the choice kα1 = 0
causes the quadratic form Q to be precisely zero, and the corresponding mode must then
have zero real frequency.

In Fig. (1b), the eigenmode solutions are plotted corresponding to a sinusoidal magnetic

well, with κ̂ = 1/|l̂−1|. The resulting eigenmode asymmetry is consistent with the general

arguments made above, namely that its amplitude is enhanced at negative l̂, where κ̂(l̂)
is smaller.

A double well structure for B(l) results in the mode structures shown in Fig. (1d).
Here κ̂ = 1. We can see the demonstration of other qualitative features that seem
characteristic, namely the appearance of only even eigenmodes (corresponding to the
non-zero eigenvalues), and eigenfunction nodes at the endpoints, where the eigenfunctions
also have zero derivative.

In Fig. (1f), a smooth approximation to a square well has been used, demonstrating
how the single mode found in the perfect square well splits into a spectrum of modes that
have structure near the well endpoints, where B(l) is non-constant (here also κ̂ = 1).

5. Conclusion

In this paper, we have demonstrated the existence of an ion-driven trapped electron
mode, which can exist in maximum-J devices despite a stabilising electron magnetic
drift. Although not providing free energy to the mode, trapped electrons are nevertheless
required, because they reduce the phase velocity sufficiently to allow for resonance with
the ion magnetic drift.

The key results are given by Eqs. (3.2), (4.1) and (4.2). Several important conclusions
arise from inspecting these equations. They demonstrate that the electron magnetic drift
will be stabilising when the electrons are subjected to “good” bounce-averaged curvature,
and even more strongly stabilising with an electron temperature gradient, ηe > 0. The
necessary balance between the ion and trapped-electron diamagnetic drifts is a feature
shared with the “ubiquitous mode” of Coppi & Pegoraro (1977); the balance must occur
at some value of k⊥, and thus this existence condition is guaranteed to be satisfied.
Furthermore, we note that the case where the balance is exact will be the zero-crossing
point of the real part of the mode frequency in k-space, as is observed in numerical
simulations (Proll et al. 2013), where the transition occurs between ion and electron
directed mode propagation.

We find that a simple integral equation, Eq. (4.1), independent of mode frequency
(and also independent of diamagnetic and magnetic drift frequencies) determines the
mode structure (in the limit ω∗ � ωd). This leads to the important conclusion that the
mode structure will not necessarily peak in regions of bad curvature, and so some degree
of favourable averaging should be expected to limit the overall instability of the ITEM.
This could explain the relatively small growth rates that have been previously observed
in numerical simulations (Proll et al. 2013).

Solving Eq. (4.1) in a simple analytically tractable limit illustrates that, for certain
mode wavenumbers, the ITEM may be stabilized completely by favourable averaging of
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(a) B̂ = 2− cos(2πl̂).
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(d) Eigenvalues: 1.49, 0.67, 0.46.
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Figure 1: Examples of numerical solutions of Eq. (4.1). Magnetic well plotted (B̂(l̂) =

B(l)/Bmin for l̂ ∈ [−1/2, 1/2]) next to first three eigenmodes (corresponding to the largest
eigenvalues νi).

the ion magnetic drift, but it is not apparent how all wavenumbers might be stabilised
for realistic magnetic configurations. It is however noted that the mode may, for all
wavenumbers, be particularly weak when the magnetic drift varies in an oscillatory
manner on a scale smaller than that of the variation of k⊥. Numerical solutions of
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Eq. (4.1) confirm qualitative properties of the solution, and demonstrate the possibility
of further linear optimisation studies by numerical means.

Appendix A

Here we provide explicit expressions for the functions f1 and g1:

f1(ω, l) = 1 +
Te
Ti

[1− h1(ω, l)] (A 1)

where

h1(ω, l) =Γ0

[
1− ω∗i1

ω
− (1 + ηi)ω∗iω̂di

ω2

+ b0

(
ηiω∗i1
ω

+

(
2ηi +

1

2

)
ω∗iω̂di
ω2

)
− b20

ηiω∗iω̂di
ω2

]
− b0Γ1

[
ηiω∗i1
ω

+
ω∗iω̂di

2ω2
+

(
3

2
− b0

)
ηiω∗iω̂di
ω2

]
+ b1

ω∗i
ω

[
(1 + ηi)(Γ0 − Γ1)− b0ηi

2
(3Γ0 − 4Γ1 + Γ2)

]
, (A 2)

and

g1(ω, λ) =
1

2

[
1− ω∗e1

ω
− 3(1 + ηe)ω∗eω̃de

2ω2

]
, (A 3)

where ω∗a1 = (Takα1/ea)d lnna/dψ, b1 = 2(k⊥0 ·k⊥1)miTi/(eB)2, and all other functions
of k⊥ are understood to be evaluated at kα0 and kψ0. Note that we have used Γ ′0 = Γ1−Γ0

and Γ ′1 = −Γ1 + (Γ0 + Γ2)/2.
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