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Motivation and main result

The concept of magnetic reconnection has been transferred to
relativistic regimes in the astrophysical and in the laser plasma
contexts see e.g. M. Hoshino, ApJ., 773, 118 (2013), B. Cerutti, et al., ApJ., 770, (2013).

In the MHD description magnetic field lines play a fundamental
role by defining dynamically preserved “magnetic connections”
between plasma elements W.A. Newcomb, Ann. Phys., 3, 347 (1958).

The concept of magnetic connection needs to be generalized in
the case of a relativistic MHD description where we require
covariance under arbitrary Lorentz transformations.
This is performed by defining 2-D magnetic connection
hypersurfaces in the 4-D Minkowski space.
It accounts for the loss of simultaneity in different frames
between spatially separated events and for the transformation
between electric and magnetic fields under a Lorentz boost.



Motivation and main result

The concept of magnetic reconnection has been transferred to
relativistic regimes in the astrophysical and in the laser plasma
contexts see e.g. M. Hoshino, ApJ., 773, 118 (2013), B. Cerutti, et al., ApJ., 770, (2013).

In the MHD description magnetic field lines play a fundamental
role by defining dynamically preserved “magnetic connections”
between plasma elements W.A. Newcomb, Ann. Phys., 3, 347 (1958).

The concept of magnetic connection needs to be generalized in
the case of a relativistic MHD description where we require
covariance under arbitrary Lorentz transformations.
This is performed by defining 2-D magnetic connection
hypersurfaces in the 4-D Minkowski space.
It accounts for the loss of simultaneity in different frames
between spatially separated events and for the transformation
between electric and magnetic fields under a Lorentz boost.



Motivation and main result

The concept of magnetic reconnection has been transferred to
relativistic regimes in the astrophysical and in the laser plasma
contexts see e.g. M. Hoshino, ApJ., 773, 118 (2013), B. Cerutti, et al., ApJ., 770, (2013).

In the MHD description magnetic field lines play a fundamental
role by defining dynamically preserved “magnetic connections”
between plasma elements W.A. Newcomb, Ann. Phys., 3, 347 (1958).

The concept of magnetic connection needs to be generalized in
the case of a relativistic MHD description where we require
covariance under arbitrary Lorentz transformations.
This is performed by defining 2-D magnetic connection
hypersurfaces in the 4-D Minkowski space.
It accounts for the loss of simultaneity in different frames
between spatially separated events and for the transformation
between electric and magnetic fields under a Lorentz boost.



Motivation and main result

The concept of magnetic reconnection has been transferred to
relativistic regimes in the astrophysical and in the laser plasma
contexts see e.g. M. Hoshino, ApJ., 773, 118 (2013), B. Cerutti, et al., ApJ., 770, (2013).

In the MHD description magnetic field lines play a fundamental
role by defining dynamically preserved “magnetic connections”
between plasma elements W.A. Newcomb, Ann. Phys., 3, 347 (1958).

The concept of magnetic connection needs to be generalized in
the case of a relativistic MHD description where we require
covariance under arbitrary Lorentz transformations.
This is performed by defining 2-D magnetic connection
hypersurfaces in the 4-D Minkowski space.
It accounts for the loss of simultaneity in different frames
between spatially separated events and for the transformation
between electric and magnetic fields under a Lorentz boost.



Main result and open problems

Within this covariant relativistic framework , where the
geometrical concept of field-hypersurfaces has taken the role
played in three-dimensional space by field lines, the main open
problem from a topological point of view is how to describe the
breaking of magnetic connection hypersurfaces in the presence
of non ideal effects
In the presence of nonideal effects, as we will show, the
condition that is required for the existence of the covariant
magnetic hypersurfaces is in general violated
If this violation is local in space and time we should provide a
covariant description of magnetic reconnection by describing the
dynamics of the local merging of these field hypersurfaces
However the mathematics of the local merging of 2D
hypersurfaces in a 4D space is much more involved than that of
the local merging of 1D curves in a 3D space
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Ideal Ohm’s law, connections and simultaneity

Ideal 3-D Ohm’s law E+v×B/c = 0,⇒ E ·B = 0, with v the 3-D
plasma fluid velocity field and E and B the electric and the
magnetic fields, is in not restricted to a nonrelativistic plasma
regime or to a preferred reference frame. It can be written
(unmodified) in the fully covariant form Fµν uν = 0, where Fµν is
the e.m. field tensor, uµ is a timelike 4-vector which we interpret
as the relevant fluid velocity 4-vector field in the plasma.
Using Faraday’s equation we obtain in 3-D notation

d(dl×B)/dt =−(dl×B)(∇ ·v)− [(dl×B)×∇]v.

Its interpretation, conservation of 3-D magnetic connections,
cannot be directly transferred to a different reference frame, as a
Lorentz boost will in general add a time component to the
transformed vector field dl′ so that it cannot be interpreted as the
vector field tangent to a curve in 3-D (coordinate) space.
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Lichnerowicz-Anile representation in ideal MHD

Fµν = εµνλσ bλ uσ + [uµ eν −uν eµ ] : bµ and eµ are the 4-vector
magnetic and electric fields, uµ eµ = uµ bµ = 0, uµ uµ =−1.
eµ and bµ are related to E and B by bµ = γ(B+E×v , B ·v ), eµ = γ(E+v×B ,−E ·v), with eµ bµ = E ·B.

The orthogonality conditions uµ eµ = uµ bµ = 0 make this representation unique.

Dual Gµν ≡ εµναβ Fαβ/2 : Gµν = εµνλσ uλ eσ + [uµ bν −uν bµ ],

eµ = Fµν uν and bµ = Gµν uν .

If Fµν uν = 0 holds, eµ vanishes, Fµν and Gµν have rank two,

Fµν = εµνλσ bλ uσ , Gµν = [uµ bν −uν bµ ] ,

with Fµν bν = Fµν uν = 0, Fµν Gνµ = 0 → E ·B = 0, and bµ = γ(B/γ2 +v(v ·B) , B ·v).
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Frobenius condition and Covariant hypersurfaces

From Maxwell’s equations we have ∂µ Gµν = 0, and thus1

uµ ∂µ bν −bµ ∂µ uν +bν ∂µ uµ −uν ∂µ bµ = 0,
It gives a Frobenius involution condition for the 4-vector
fields bµ and uµ and it allows us2 to construct in the 4-D
space-time 2-D hypersurfaces generated by the vector
fields uµ and bµ .

These hypersurfaces, which we call connection hypersurfaces
because they will allow us to recast the connection theorem in a
covariant form, are the 4-D counterpart of magnetic field lines in
3-D space when the ideal Ohm’s law holds.
They are not related to the magnetic surfaces defined in 3-D by the equation B ·∇ψ = 0.

1 that can be rewritten as ∂τ bν = uν bα (∂τ uα ) −bν ∂µ uµ +bµ ∂µ uν .
2Provided bµ 6= 0
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Magnetic gauge

A gauge freedom is allowed in the definition of bµ in the LA
representation if we relax the orthogonality condition bµ uµ = 0:
bµ → hµ ≡ bµ +guµ , where g is a free scalar field.

Gµν is unchanged if we insert hµ for bµ and the Frobenius
condition holds independently of the gauge.
The connection-hypersurfaces generated by uµ and bµ can also be seen as generated by uµ and hµ .

Taking in a given frame3 the magnetic gauge g =−v ·B, we
make the time component of hµ vanish and h ||B in that frame.

3The quantity −v ·B is a Lorentz scalar. Its expression in a frame moving with respect to the chosen frame with
velocity 4-vector Vµ is −(Vµ bµ )/(Vν uν ).
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Covariant connections and time resetting gauge

We consider in a given frame a magnetic field line ` at a fixed
time in 4-D space with tangent (spacelike) 4-vector field dlµ .
In this frame its time component dlo = 0 and the condition
Fµν dlν = 0 implies4 dl×B = dl×h = 0.

The interpretation of the condition Fµν dlν = 0 remains valid even
if dlo 6= 0 because of the “time gauge” freedom dlµ → d l̂µ =

= dlµ + uµ dλ , with λ a scalar function, i.e. d l̂µ remains in the
hypersurface generated by bµ and uµ (or by hµ and uµ ).
In a boosted frame the transformed vector field dl′µ will acquire a
time component but will still lie on the boosted 2-D hypersurface
generated by the boosted vector fields b′µ and u′µ .
Using the time gauge in reverse it is possible to set dl′o = 0
without violating the condition in the boosted frame F′µν dl′ν = 0
because of the ideal Ohm’s law.

4 It includes dl ·E = 0 which is satisfied if the ideal Ohm law holds
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Combining the magnetic and the time gauges

After performing the time gauge, using the magnetic gauge we
bring the boosted 4-vector field b′µ to the form h′µ|| = (0,B′/γ).
In the boosted frame F′µν dl′ν = 0 implies dl′×B′ = dl′ ×h′ = 0 .

This proves that it is possible to define magnetic connections in
a covariant way, provided we refer to connection hypersurfaces
instead of connection field lines and provided we properly
“gauge” the 4-vector magnetic field bµ and the tangent
(spacelike) 4-vector field dlµ within the connection hypersurface
in order to compensate for the mixing between 3-D magnetic
and electric fields under a Lorentz boost and for the loss of
simultaneity in different frames.

Magnetic connections in 3-D space can then be recovered
in any chosen reference frame by taking sections of these
surfaces at a fixed (in that frame) time.
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