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In the single fluid, non-relativistic, ideal magnetohydrodynamic (MHD) plasma
description, magnetic field lines play a fundamental role by defining dynamically
preserved ‘magnetic connections’ between plasma elements. Here we show how the
concept of magnetic connection needs to be generalized in the case of a relativistic
MHD description where we require covariance under arbitrary Lorentz transformations.
This is performed by defining 2-D magnetic connection hypersurfaces in the 4-D
Minkowski space. This generalization accounts for the loss of simultaneity between
spatially separated events in different frames and is expected to provide a powerful
insight into the 4-D geometry of electromagnetic fields when E · B= 0.

1. Introduction
The dynamics of large-scale relativistic plasma configurations plays an important

role in our understanding of high energy astrophysical phenomena such as, to mention
a recently discovered one, the flaring of the Crab nebula (Tavani et al. 2011).
Even without including general relativistic effects, as would be the case, e.g. in the
neighbourhood of a black hole (see for example the system of equations investigated
by Koide (2010)), the phenomena we need to describe involve velocities close to the
speed of light and internal energies that can be larger than the electron rest mass
energy. Furthermore, relativistic plasmas with very large energy densities have been
produced in the laboratory in laser plasma experiments and it has been stressed that
such experiments can help us to understand high energy astrophysical phenomena
(see e.g. Bulanov et al. 2015).

With this in mind, several concepts that have been introduced for non-relativistic
plasmas need to be extended to relativistic regimes. In such a generalization, space
and time properties are necessarily combined since the basic invariance properties of
the matter equations are now given in terms of the Lorentz group of transformations
between different reference frames. This is particularly important since, in the
presence of very large velocity differences between different parts of the plasma
configuration, there may not be a clear way of defining a preferred reference frame
on physics grounds. In addition, the observer reference frame may move with a
relativistic velocity with respect to the plasma under observation and thus observe as
simultaneous events that are not simultaneous in the plasma frame.

For phenomena occurring on macroscopic scales, i.e. on space and time scales
large compared to the characteristic microscopic scales of the particle dynamics,
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2 F. Pegoraro

the single fluid non-relativistic MHD plasma description has been extended (see
Lichnerowicz 1967; Anile 1989) and used in numerical simulations (see e.g. Mignone
& Bodo 2006) so as to include relativistic fluid velocities and relativistic internal
energy densities. A Hamiltonian reformulation of ideal relativistic MHD dynamics in
terms of non-canonical variables has been recently derived in D’Avignon, Morrison
& Pegoraro (2015). In this process of generalization, a number of basic phenomena
of non-relativistic MHD, such as e.g. magnetic reconnection, have been reconsidered
in relativistic plasma regimes both in the laboratory (see Askaryan et al. 1995;
Nilson et al. 2006) and in astrophysics (see Hesse & Zenitani 2007; Zenitani et al.
2007). In particular, in the astrophysical context, relativistic magnetic reconnection
has been considered mostly as a mechanism of energy conversion, usually choosing
a preferred frame of reference, possibly thought of as an ‘average comoving frame’,
i.e. as a frame in which the plasma region under consideration is globally at rest.
As mentioned above, such an approach may not be fully unambiguous in situations
where very large velocity relativistic variations can be present between different
plasma regions. This is so in particular from the observational point of view when
describing magnetic reconnection structures since magnetic fields and electric fields
are transformed one into the other when seen in a Lorentz boosted reference frame.

Thus an important point in the relativistic extension of the MHD plasma description
is to provide a frame-independent definition of magnetic reconnection. However, such
a definition is neither obvious from a theoretical nor from an observational point of
view since, as already mentioned, the distinction between electric and magnetic fields
is frame dependent and the tracing of field lines, which are only defined in coordinate
space at fixed time, is also frame dependent due to the violation of simultaneity in
different reference frames of events at different spatial locations.

Although a clear cut definition of magnetic reconnection is not simple to formulate,
even for a non-relativistic plasma, its common definition is not simply limited to
the fact that magnetic energy is converted to kinetic and/or internal plasma energy
but refers to the local violation of the magnetic topology and, in particular, to local
breaking of the structure of magnetic connections.

Magnetic connections are defined by the fundamental property of an ideal MHD
(see Newcomb 1958) that if two plasma elements moving with the plasma in a smooth
flow are connected at time t by a magnetic field line, then at any following time there
exists a magnetic field line that connects them. This property is the conceptual basis
from which the expressions that the magnetic field is frozen in the plasma and that
field lines move with the plasma are derived.

Thus in order to define magnetic reconnection in a covariant way we must first
obtain a covariant definition of magnetic connections. Again, such a definition is not
a priori obvious because of two already mentioned related reasons: the distinction
between electric and magnetic fields and that the very concept of field lines are
frame dependent. This point was explicitly addressed in Pegoraro (2012), where it
was shown that the covariant formulation of magnetic connections can be restored
by means of a time resetting projection along the trajectories of the plasma elements.
This projection is consistent with the ideal Ohm’s law and compensates for the loss
of simultaneity in different reference frames between spatially separated events.

In the present paper we address this same issue again and show that the time
resetting along the trajectories of the fluid elements introduced in Pegoraro (2012)
is essentially equivalent to a redefinition of the geometrical object that we use in
order to define magnetic connections. We argue that, while in 3-D (coordinate) space
magnetic connections are defined by 1-D curves (field lines), in the 4-D Minkowski
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Connection hypersurfaces 3

space they are defined by 2-D hypersurfaces that are generated by a suitably defined
magnetic (space-like) 4-vector field and by the velocity (time-like) 4-vector field of
the plasma.

In fact, following a somewhat different line of approach from the one adopted
in Pegoraro (2012), we show that, if the electromagnetic (e.m.) field tensor satisfies
an ideal Ohm’s law, it exhibits special geometrical properties that are simply the
consequence of the homogeneous Maxwell equations and that make it possible to
define such 2-D hypersurfaces so that, if in a given frame two plasma elements in
4-D Minkowski space lie on the same 2-D hypersurface, they do so in any other
reference frame.

We call these 2-D hypersurfaces (with one space-like and one time-like tangent
vector field) covariant magnetic connection hypersurfaces, or connection hypersurfaces
for short. The standard magnetic connections in 3-D space can then be recovered
in any chosen reference frame by taking sections of these surfaces at a fixed (in
that frame) time. We stress that these 2-D hypersurfaces bear no relation to the 3-D
magnetic surfaces of non-relativistic MHD that, if generalized to 4-D Minkowski
space, would involve 3-D ‘volumes’.

The present paper stops at this result, just after noting that the violation of the
ideal Ohm’s law leads to a violation of the geometrical properties of the e.m. field
tensor that make it possible to define the connection hypersurfaces. Thus in this 4-D
framework, magnetic reconnection, caused by a local violation of the ideal Ohm’s law,
can be interpreted in a frame-independent way as a local ‘piercing and merging’ of
connection hypersurfaces. These lose their identity only locally, in exactly the same
way as magnetic field lines do in the standard 3-D space setting. The physical and
observational consequences of this definition will be investigated in detail in a later
paper.

However, even remaining within the validity of the ideal Ohm’s law, i.e. without
allowing for magnetic reconnection to occur, important open questions remain to be
investigated: in particular, how to generalize the study of the topological properties
such as, e.g. field line braiding (see e.g. Berger 1993), that have been investigated
within a fixed frame 3-D description to the study of the properties of connection
hypersurfaces in 4-D Minkowski space. In the present paper only some very general
properties of the magnetic helicity 4-vector field are discussed and are shown to allow
us to define a Lorentz-scalar Lagrangian invariant that is advected by the plasma
motion.

Before entering the detailed derivation of the covariant connection hypersurfaces,
we stress that their definition only requires that an ideal Ohm’s law be valid,
supplemented by the homogeneous Maxwell equations. The inhomogeneous Maxwell
equations, that relate the e.m. field tensor to the charge and current densities and
that thus determine the field dynamics from the plasma dynamics, are not directly
involved in the definition of the connection hypersurfaces which, in this sense, are
more general than relativistic MHD and thus apply under more general conditions.
Depending on the plasma description adopted, the connection hypersurfaces can either
relate to the single fluid description or to a selected species in the plasma, generally
the lighter one. Physically, the main assumption that is made is that kinetic effects can
be neglected in the chosen regime for this lighter species and that a fluid velocity can
be defined, independently of whether it is a single fluid velocity, as in MHD, or e.g.
the electron velocity. We also note (see e.g. Pegoraro 2015) that electron inertia effects
and electron thermal effects (for an isotropic and isentropic thermodynamic closure)
can be included by a suitable redefinition of the electromagnetic field tensor. In fact,
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4 F. Pegoraro

this redefined field tensor obeys an ideal Ohm’s law and a set of equations analogous
in form to the homogeneous Maxwell equations. On the other hand dissipative effects,
either resistive or arising from the ‘friction term’ due to incoherent high-frequency
radiation in fully relativistic regimes, can lead to violation of the ideal Ohm’s law, in
particular in the presence of a nonlinear plasma dynamics that leads to the formation
of smaller and smaller space and time scales. If these effects are local, they provide
the local breaking and merging of the connection hypersurfaces involved in magnetic
reconnection. Finally the case of an electron–positron plasma where there are two
light species, and that is quite important for astrophysics, would require within the
present framework the additional assumption that both species satisfy an ideal Ohm’s
law (not necessarily the same).

2. Ideal Ohm’s law

An important feature of the ideal 3-D Ohm’s law

E+ v× B/c= 0, ⇒ E · B= 0, (2.1a,b)

with v the 3-D plasma fluid velocity field and E and B the electric and the magnetic
fields, is that it is in no sense restricted to a non-relativistic plasma regime or to a
preferred reference frame. In fact it can be written (unmodified) in the fully covariant
form (see e.g. Gedalin 1996)

Fµνuν = 0, (2.2)

where Fµν is the e.m. field tensor, uµ is a time-like 4-vector which we interpret as
the fluid velocity 4-vector field of the plasma (or of the plasma species with respect
to which the magnetic field is frozen, see e.g. the generalized formulation given in
Asenio & Comisso (2015), Asenio, Comisso & Mahajan (2015) and Pegoraro (2015)).

From (2.1) and Faraday’s equation ∇ × E + (1/c)∂B/∂t = 0, the 3-D magnetic
equation

∂B/∂t−∇× (v× B)= 0 (2.3)

follows, together with the 3-D connection theorem (Newcomb 1958) mentioned in the
Introduction: if at t = 0 we have dl × B = 0, where dl is the vector field tangent to
a curve connecting two plasma elements, i.e. if the two elements are connected by a
magnetic field line, then dl × B= 0 for all t since

d
dt
(dl × B)=−(dl × B)(∇ · v)− [(dl × B)×∇]v. (2.4)

Here d/dt is the Lagrangian time derivative along the plasma element motion.
While the ideal Ohm’s law (2.1) can be set in an explicitly covariant form (2.2), the

interpretation of (2.4) in terms of the conservation of magnetic connections cannot be
directly transferred to a different reference frame, as can be seen from the fact that
a Lorentz boost will in general add a time component to the transformed vector field
dl ′ so that it will no longer be possible to interpret it as the vector field tangent to a
curve in 3-D (coordinate) space.

However, the simple fact that Ohm’s law is fully covariant suggests that it must be
possible to reformulate the connection theorem in a frame-independent way.

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377816000325
Downloaded from https:/www.cambridge.org/core. Balfour Library (Pitt Rivers Museum), on 02 May 2017 at 20:59:54, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377816000325
https:/www.cambridge.org/core


Connection hypersurfaces 5

2.1. Lichnerowicz–Anile representation
In contrast to Pegoraro (2012), here we adopt the two 4-vector fields representation
(Lichnerowicz 1967; Anile 1989; D’Avignon et al. 2015) of the e.m. field tensor Fµν

Fµν = εµνλσbλuσ + [uµeν − uνeµ], (2.5)

where bµ is the 4-vector magnetic field and eµ is the 4-vector electric field, with
uµeµ = 0 and uµbµ = 0. The 4-vectors eµ and bµ are related to the standard electric
and magnetic fields E and B in 3-D space by

bµ = γ (B+ E× v, B · v), (2.6)

and
eµ = γ (E+ v× B,−E · v), (2.7)

with eµbµ = E · B. We have adopted the Minkowski metric tensor ηµν defined
by (+, +, +, −) and normalized 3-D velocities v to the speed of light: γ is the
relativistic Lorentz factor and uµ = γ (v, 1) and uµuµ = −1. The orthogonality
conditions uµeµ = uµbµ = 0 make this representation unique. In the following we
will call this representation the Lichnerowicz–Anile (LA) representation. The LA
representation is physically convenient as it allows us to separate covariantly the
magnetic and the electric parts of the e.m. field tensor on dynamical grounds, i.e.
relative to the plasma velocity 4-vector field uµ. In the local rest frame of a plasma
element, the time components of eµ and of bµ vanish, while their space components
reduce to the standard 3-D electric and magnetic fields.

A corresponding representation holds for the dual tensor Gµν
≡ εµναβFαβ/2 with eµ

and bµ interchanged. Thus:

Gµν
= εµνλσuλeσ + [uµbν − uνbµ], with eµ = Fµνuν and bµ =Gµνuν . (2.8)

If the ideal Ohm’s law Fµνuν=0 holds, the electric 4-vector eµ vanishes, the tensors
Fµν and Gµν have rank two and can be written as

Fµν = εµνλσbλuσ , Gµν
= [uµbν − uνbµ], (2.9a,b)

with
Fµνbν = Fµνuν = 0, (2.10)

FµνGνµ
= 0→ E · B= 0, and bµbµ = GµνGνµ/2= FµνFνµ/2. (2.11a,b)

In this case we can use eµ= 0 in order to express bµ in terms of B and v only as

bµ = γ (B/γ 2
+ v(v · B), B · v). (2.12)

Note that in general ∂µbµ 6= 0 while from Maxwell’s equations we have

∂µGµν
= 0, (2.13)

and thus
∂µbµ =Gµν(∂µuν)= bν(∂τuν), (2.14)

where ∂τ = uµ∂µ with τ the proper time and ∂τuν the 4-acceleration of the plasma
element.

Unless explicitly stated, in the rest of this article we will assume eµ ≡ 0.
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6 F. Pegoraro

3. Covariant magnetic 4-vector field equation
From (2.9) and (2.13) we obtain the ‘magnetic vector field equation’

uµ∂µbν − bµ∂µuν + bν∂µuµ − uν∂µbµ = 0, (3.1)

i.e.
∂τbν = uν∂µbµ − bν∂µuµ + bµ∂µuν, (3.2)

which differs ‘in form’ from the standard 3-D magnetic field equation, as obtained
e.g. from (2.3) by expanding the ∇× (v× B) term, because bµ is not divergence free.
Inserting (2.14) into (3.2) we obtain the magnetic equation in relativistic Lagrangian
variables

∂τbν = uνbα(∂τuα)− bν∂µuµ + bµ∂µuν, (3.3)

where only three components are independent. Equation (3.3) can also be written in
projection form as

(δνα + uνuα)∂τbα = bµ∂µuν − bν∂µuµ. (3.4)

3.1. Frobenius condition and 2-D hypersurfaces
Equation (3.1) can be viewed as a Frobenius involution condition for the 4-vector
fields bµ and uµ. This condition, which is a consequence of the homogeneous
Maxwell equations ∂µGµν

= 0, i.e. of Faraday’s equation and of B being divergence
free, and of the ideal Ohm’s law, allows us∗ to construct in the 4-D space–time 2-D
hypersurfaces generated by the vector fields uµ and bµ.

These hypersurfaces, which we call connection hypersurfaces because they will
allow us to recast the connection theorem (2.4) in a covariant form, see § 5, are
the 4-D counterpart of magnetic field lines in 3-D space and are not related to the
magnetic surfaces defined in 3-D by the equation B · ∇ψ = 0.

4. Gauge freedom in the LA representation
We can assume, without loss of generality, that the velocity 4-vector uµ satisfies a

continuity equation of the form

∂µ(nuµ)= 0, (4.1)

where n can be taken to play the role of the proper density of the plasma element
and nuµ of the density 4-vector.

As shown in detail in D’Avignon et al. (2015) a gauge freedom is allowed in the
definition of the magnetic 4-vector field bµ in the LA representation, provided we
relax the orthogonality condition bµuµ = 0:

bµ→ hµ ≡ bµ + guµ, (4.2)

where g is a free scalar field. Different choices of the gauge field g allow us to impose
specific conditions on hµ. If, as in D’Avignon et al. (2015), we choose the divergence
gauge

∂τ (g/n)=−(1/n)∂µbµ, (4.3)

∗Provided bµ 6= 0, see § 7.
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Connection hypersurfaces 7

we have ∂µhµ = 0, while, if we take in a given frame† the magnetic gauge

g=−v · B, (4.4)

we can make the time component of hµ vanish and h ‖ B in that frame.
Note that, since the expression for Gµν is unchanged, if we insert hµ for bµ in (2.9),

the Frobenius condition (3.1) holds independently of the gauge. Thus the connection
hypersurfaces generated by the 4-vector fields uµ and bµ can also be seen as generated
by the 4-vector fields uµ and hµ. For the sake of notational clarity in the following
we will denote by hµ‖ the 4-vector field corresponding to the magnetic gauge (4.4) and
specifically by hµ without any additional mark the 4-vector field corresponding to the
divergence gauge (4.3).

5. Covariant connection theorem
Extending the procedure developed in § 2 to 4-D Minkowski space, we consider in

a given frame a magnetic field line ` at a fixed time in 4-D Minkowski space with
tangent (space-like) 4-vector field dlµ. In this frame its time component dlo

= 0 and
the condition Fµν dlν = 0 imply dl × B= 0 corresponding‡ to the field line condition
used in § 2.

Recalling that the rank of Fµν must be even, the condition Fµν dlν = 0 also implies
that dlµ must be a linear combination of bµ and uµ (aside for the null points of Fµν ,
see § 7) i.e. that it lies on a connection hypersurface defined in § 3.1.

5.1. Time resetting gauge
The condition Fµν dlν = 0 remains valid even without imposing dlo

= 0 because of
the ‘time gauge’ freedom dlµ→ dl̂

µ

= dlµ + uµ dλ, with λ a scalar function, i.e. dl̂
µ

remains in the hypersurface generated by bµ and uµ.
Conversely, in a boosted frame (where quantities are denoted by a ‘prime’) the

transformed vector field dl ′µ will acquire a time component but will still lie on the
boosted 2-D hypersurface generated by the boosted vector fields b′µ and u′µ. Then,
using the time gauge in reverse as done in Pegoraro (2012), it will be possible to set
dl′o = 0 without violating the condition in the boosted frame F′µν dl ′ν = 0 because of
the ideal Ohm’s law.

5.2. Magnetic gauge
After performing the time resetting gauge, using the magnetic gauge given by (4.4)
we can bring the boosted 4-vector field b′µ to the form h′µ‖ = (0, B′/γ ). Then in the
boosted frame F′µν dl ′ν = 0 implies dl ′ × B′ = 0.

This proves that it is possible to define magnetic connections in a covariant
way, provided we refer to connection hypersurfaces instead of connection
field lines and provided we properly ‘gauge’ the 4-vector magnetic field
bµ and the tangent (space-like) 4-vector field dlµ within the connection
hypersurface in order to compensate for the mixing between 3-D magnetic
and electric fields under a Lorentz boost and for the loss of simultaneity
in different frames.

Magnetic connections in 3-D space can then be recovered in any chosen reference
frame by taking sections of these surfaces at a fixed (in that frame) time.

†The quantity −v · B is a Lorentz scalar. Its expression in a frame moving with respect to the chosen
frame with velocity 4-vector Vµ is −(Vµbµ)/(Vνuν ).

‡It includes dl · E= 0 which is satisfied if the ideal Ohm’s law holds.
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8 F. Pegoraro

6. Coordinates on connection hypersurfaces
Choosing instead the divergence gauge (4.3), the Frobenius condition (3.1) can be

reformulated in a way that allows us to define the following two commuting operators

∂τ = (nµ/n)∂µ and ∂h = (hµ/n)∂µ, (6.1a,b)

where

∂τ∂h − ∂h∂τ = [(nµ/n)∂µ(hν/n)− (hµ/n)∂µ(nν/n)]∂ν
= (1/n)[∂µ(nµhν/n− hµnν/n)]∂ν = (1/n)[∂µGµν

]∂ν = 0. (6.2)

Then the set of curves on a connection hypersurface with tangent fields nµ/n= uµ
and hµ/n define a (non-orthogonal, and in general only local) coordinate system on
the connection hypersurface. From the Minkowski line element ds2

= dxµηµνdxν we
obtain the following expression for line element on a connection hypersurface

ds2
=−dτ 2

+ (hµhµ/n2) dh2
− (2g/n) dh dτ , (6.3)

where hµhµ = bµbµ − g2 and the gauge function g is defined by (4.3).

7. Advected magnetic 4-D nulls
When using the LA representation to construct the connection hypersurfaces we

have not considered the null points of the e.m. tensor Fµν explicitly. Note that at
these 4-D null points, both the magnetic and the electric field vanish, which is a
frame-independent condition.

Since the velocity 4-vector uµ has no nulls (uµuµ =−1), in the LA representation
with eµ = 0 a 4-D null of Fµν implies a 4-D null of bµ and vice versa a null of bµ
implies§ a null of B.

A generic local expansion around a null 4-point (placed at the origin of the
coordinate system) truncated at the first term reads

bµ = Nµ
ν xν, where uµbµ = 0 ⇒ uµNµ

ν = 0. (7.1)

Here Nµ
ν is a numerical tensor that in general need not be symmetric¶. Then

Gµν
= (Nν

αuµ −Nµ
α uν)xα and ∂µGµν

= 0 ⇒ Nν
µuµ −Nµ

µuν = 0 (7.2a,b)

at the null. Contracting the latter identity with uν and using uνNν
µ= 0 from the right-

hand side of (7.1), we find at the 4-D null Nµ
µ = 0, i.e. ∂µbµ = 0 at the null and

Nν
µuµ = 0. Thus in the instantaneous local rest frame of the 4-D null Nµ

ν reduces to
a 3-D tensor (only its space–space components do not vanish).

Finally we note that, since ∂µbµ = 0 at the null point, from (3.2) we find that at
the null point ∂τbµ= 0, which can be used to trace along the fluid element trajectory
the singularities of the connection hypersurfaces that arise at the nulls of bµ.

Furthermore, because of the two above conditions at the null point, we can take
the gauge function g in (4.3) equal to zero at the null point so that a null of bµ
corresponds to a null of hµ. Conversely, since bµ cannot be equal to guµ with g 6= 0
because of the orthogonality condition uµbµ = 0, a null point of hµ must correspond
to a null point of bµ and of g.

§Such a one to one relationship is not generally true in the case where eµ 6= 0 where, e.g. a null of B
at the X-point of a reconnecting magnetic field does not imply a null of bµ.

¶Its antisymmetric part is related to the current density 4-vector at the null point.
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Connection hypersurfaces 9

8. Covariant magnetic helicity
As is well known, the homogeneous Maxwell equation ∂µGµν

= 0 implies that
we can introduce a 4-vector potential field Aµ such that Fµν = ∂µAν − ∂ν Aµ. The
introduction of the vector potential allows us for a general e.m. field to give a
covariant definition of the 4-vector magnetic helicity in the form

Kµ
≡Gµν Aν, (8.1)

such that
∂µKµ

=−FµνGνµ/2. (8.2)

The magnetic helicity 4-vector is defined up to a 4-divergence ∂ν(χGµν), with χ a
scalar field, because of the usual gauge freedom in the definition of the 4-vector
potential Aν→ Aν + ∂νχ .

The right-hand side of (8.2) vanishes if the ideal Ohm’s law holds. In this case from
(2.9) we find

Kµ
= uµ(bν Aν)− bµ(uν Aν), (8.3)

i.e. Kµ lies on connection hypersurfaces. From the conditions Fµνuν=0 and Fµνbν=0,
we obtain

uµ∂µAν = uµ∂ν Aµ, bµ∂µAν = bµ∂ν Aµ, (8.4a,b)

and, using ∂µGµν
= 0 and (8.4), we verify that

∂µKµ
=Gµν∂µAν = (uµbν − bµuν)(∂µAν)= bµuν∂µAν − bνuµ∂ν Aµ ≡ 0. (8.5)

If we choose the gauge scalar function χ such that Aµuµ = 0, i.e. if we make the
time component of the 4-vector potential vanish in the local rest frame, from (8.3),
(8.5) and (4.1) we obtain

∂µ[nµ(bν Aν)/n] = nµ∂µ(bν Aν/n)= 0→ ∂τ (bν Aν/n)= 0, (8.6)

which provides us with a Lagrangian invariant scalar field advected by the plasma
flow.

9. Conclusions
In this article we have addressed the problem of defining covariant magnetic

connections for a relativistic plasma that obeys the ideal Ohm’s law and have
obtained the following main results.

(1) We have reformulated the covariant connection theorem discussed in Pegoraro
(2012) in terms of 2-D hypersurfaces in 4-D Minkowski space making use of

(i) the representation of the electromagnetic field tensor in terms of two
4-vector fields (which we called the LA representation) in the case where
the ideal Ohm’s law holds,

(ii) the gauge freedom in the definition of the magnetic 4-vector field,
(iii) a time gauge transformation (time resetting) of the 4-vector field tangent to

the curve connecting two plasma elements in 4-D space.
We call these hypersurfaces connection hypersurfaces.

(2) We have indicated that these connection hypersurfaces take the role, for the full
electromagnetic field tensor in 4-D, of the magnetic field lines in 3-D.

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377816000325
Downloaded from https:/www.cambridge.org/core. Balfour Library (Pitt Rivers Museum), on 02 May 2017 at 20:59:54, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377816000325
https:/www.cambridge.org/core


10 F. Pegoraro

We thus argue that a covariant definition of magnetic reconnection may be given in
a 4-D framework as a local ‘piercing and merging’ of connection hypersurfaces that
lose their identity only locally (where eµ 6= 0 and the Frobenius condition does not
hold), just as magnetic field lines do in the standard 3-D space setting.

Regarding point (1), we stress that different forms of gauge freedom play a very
important role in our formulation, a common feature of electrodynamic theory. In
fact the use of gauge transformations is a convenient tool for implementing useful
but non-explicitly covariant conditions in a covariant theory. A well-known example
is provided by the transverse potential gauge condition (φ = 0, with φ the time
component of the vector potential) for a plane electromagnetic wave. This condition
is not explicitly covariant, i.e. it is not in general preserved by a Lorentz boost, but
can be restored by a gauge transformation of the boosted vector potential.

Point (2) suggests that the investigation of topological properties of the magnetic
field in 3-D space, which play a fundamental role in ideal MHD, should be extended
to the investigation of the topological properties of the full electromagnetic field tensor
in 4-D space. This future line of enquiry may well open a novel and rich way of
reinterpreting the topological properties of ideal MHD.

Finally we note again that the treatment developed in the present paper does not
involve the full set of MHD plasma equations and only requires that an ideal Ohm’s
law in terms of a fluid velocity be satisfied. Thus this treatment can be applied to
different plasma theories where the velocity 4-vector field uµ is not the plasma fluid
velocity but, for example, the electron fluid velocity as is the case, e.g. in EMHD (see
Bulanov, Pegoraro & Sakharov 1992).
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