MAGNETIZED PARTICLE MOTION IN 3D FIELDS AND THE NATURE OF 3D EQUILIBRIA

Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK

3D magnetic fields in stellarators

- Magnetic field B must be 3D (that is, without direction of symmetry) if we want
 - steady state
 - nested flux surfaces (surfaces || to B)
 - **B** (mostly) generated by external currents

- Stellarators have inherent advantages
 - No current in the plasma \Rightarrow no current drive, no current instabilities

Magnetized particle motion

- Assume steady state **E** and **B**: **E** = $-\nabla \phi \sim T/eL$
- Constant total energy

$$\mathcal{E} = \frac{v^2}{2} + \frac{Ze\phi}{m}$$

- Motion for $\rho_* = \rho/L << 1$
 - Magnetic moment (= adiabatic invariant) is constant

$$\mu = \frac{v_{\perp}^2}{2B} + O\left(\rho_* \frac{v_t^2}{B}\right)$$

Motion = fast parallel streaming + slow perpendicular drifts

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \underbrace{v_{\parallel}\hat{\mathbf{b}}}_{\sim v_t} \underbrace{-\frac{c}{B}\nabla\phi \times \hat{\mathbf{b}} + \frac{mc\mu}{ZeB}\hat{\mathbf{b}} \times \nabla B + \frac{mcv_{\parallel}^2}{ZeB}\hat{\mathbf{b}} \times (\hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}})}_{=\mathbf{v}_d \sim \rho_* v_t}$$

Parallel motion

To lowest order, particles move along magnetic field lines

$$\frac{\mathrm{d}l}{\mathrm{d}t} = v_{\parallel} = \pm \sqrt{2\left(\mathcal{E} - \mu B(l) - \frac{Ze\phi(l)}{m}\right)} = \pm \sqrt{2\left(\mathcal{E} - U(l)\right)}$$

- $\mathscr{E} > U_M(\mu) \Rightarrow \upsilon_{\parallel}$ does not change sign: <u>passing</u> <u>particles</u>
- $U_{M}(\mu_{3})$ U_{m
- $\mathscr{E} < U_M(\mu) \Rightarrow v_{\parallel}$ vanishes at bounce points: <u>trapped</u> <u>particles</u>

Perpendicular motion

- Ignore perpendicular motion for passing particles: perpendicular drifts give small correction to position
 - We'll have to come back to this
- Trapped particles do not leave initial region unless we keep perpendicular drifts
- Use flux coordinates to describe perpendicular motion of trapped particles

Flux coordinates

Simple picture: coordinates on plane cutting through B lines

• r and α constant along **B**

$$\mathbf{B} \cdot \nabla r = 0 = \mathbf{B} \cdot \nabla \alpha \Rightarrow \mathbf{B} = \Psi(\mathbf{x}) \nabla r \times \nabla \alpha$$

• Magnetic flux across surface $dr d\alpha = \Psi dr d\alpha$

$$\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \Psi(r, \alpha) \nabla r \times \nabla \alpha$$

Motion of trapped particles

• Perpendicular motion in *r*-direction

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \cdot \nabla r = \mathbf{v}_d \cdot \nabla r$$

• Since parallel motion is periodic with period $\tau_b = \oint dl/v_{\parallel}$, decompose *r* into quasiperiodic and secular pieces $dr = d\overline{r}$ $\partial \widetilde{r}$

$$r(t) = \overline{r}(t) + \widetilde{r}(l(t)) \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}t} \simeq \frac{\mathrm{d}r}{\mathrm{d}t} + v_{\parallel} \frac{\partial r}{\partial l}$$

Averaging over parallel trapped orbit

$$\frac{\mathrm{d}\overline{r}}{\mathrm{d}t} = \frac{1}{\tau_b} \oint \mathbf{v}_d \cdot \nabla r \, \frac{\mathrm{d}l}{v_{\parallel}}$$

Integrating in *l*, $v_{\parallel} \frac{\partial \widetilde{r}}{\partial l} = \mathbf{v}_d \cdot \nabla r - \frac{\mathrm{d}\overline{r}}{\mathrm{d}t} \Rightarrow \widetilde{r} \sim \rho_* r \ll r \simeq \overline{r}$

Final equations

• Since α is equivalent to r

$$\frac{\mathrm{d}r}{\mathrm{d}t} \simeq \frac{1}{\tau_b} \oint \mathbf{v}_d \cdot \nabla r \, \frac{\mathrm{d}l}{v_{\parallel}} \sim \rho_* \frac{v_t}{L} r$$
$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} \simeq \frac{1}{\tau_b} \oint \mathbf{v}_d \cdot \nabla \alpha \, \frac{\mathrm{d}l}{v_{\parallel}} \sim \rho_* \frac{v_t}{L} \alpha$$

• We can simplify these equations

Second adiabatic invariant

Adiabatic invariant of periodic motion of trapped particles

$$J(r, \alpha, \mathcal{E}, \mu) = \oint v_{\parallel} \, \mathrm{d}l = 2 \int_{l_L}^{l_R} \sqrt{2\left(\mathcal{E} - \mu B(l) - \frac{Ze\phi(l)}{m}\right)} \, \mathrm{d}l$$

Equations based on second adiabatic invariant

$$\frac{\mathrm{d}r}{\mathrm{d}t} \simeq \frac{mc}{Ze\Psi\tau_b} \frac{\partial J}{\partial \alpha}$$
$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} \simeq -\frac{mc}{Ze\Psi\tau_b} \frac{\partial J}{\partial r}$$

Particles move conserving their second adiabatic invariant

$$\frac{\mathrm{d}J}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}t}\frac{\partial J}{\partial r} + \frac{\mathrm{d}\alpha}{\mathrm{d}t}\frac{\partial J}{\partial \alpha} = 0$$

Summary of particle motion

- Passing particles move mostly along B lines
- Trapped particles move along paths of constant J
 - In addition, particles have "oscillations" (small in ρ_{\star}) around the paths of constant J
- To describe particle motion, we need maps of J
 - J can be easily constructed for given ϕ and **B**

Particle motion in stellarators

- Stellarator: confine to have nuclear fusion collisions
 - Need flux surfaces
 - A large number of Coulomb collisions will occur
- r labels flux surfaces and α lines within flux surfaces
 - Alternatively, poloidal and toroidal angles θ and ζ within flux surface

Passing particles

- Passing particles follow **B** lines \Rightarrow two types of surfaces

In most surfaces, pitch of B
 ⇒ one B line defines whole
 flux surface = ergodic

In a few surfaces, pitch of B
 ⇒ B lines close on
 themselves = <u>rational</u>

Passing particles on ergodic surfaces

- To lowest order, passing particles stay on flux surfaces
- Can passing particles move across surfaces (in rdirection)? No on ergodic surfaces
 - Passing particles sample ergodic surfaces entirely
 - *r*-direction drift \propto gradients & curvature parallel to flux surface

$$\mathbf{v}_d \cdot \nabla r = -\frac{mc}{ZeB} \left(\frac{Ze}{m} \nabla \phi + \mu \nabla B + v_{\parallel}^2 \hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}} \right) \cdot (\hat{\mathbf{b}} \times \nabla r)$$

- Gradients & curvature "average" to zero due to periodicity in $\theta \& \zeta \Rightarrow$ average *r*-direction drift = 0
- *r* can be described by quasiperiodic piece

$$v_{\parallel} \frac{\partial \widetilde{r}}{\partial l} = \mathbf{v}_d \cdot \nabla r \Rightarrow \widetilde{r} \sim \rho_* r \ll r$$

Passing particles on rational surfaces

- Particles do not sample rational surfaces entirely. Do they move across flux surfaces (in *r*-direction)? Not quite
 - Naively, equation for quasiperiodic piece is singular

$$v_{\parallel} \frac{\partial \widetilde{r}}{\partial l} = v_{\parallel} \hat{\mathbf{b}} \cdot \nabla \widetilde{r} = \mathbf{v}_{d} \cdot \nabla r \Rightarrow \int_{\mathbf{B} \text{ lines}} \mathbf{v}_{d} \cdot \nabla r \frac{\mathrm{d}l}{v_{\parallel}} = 0$$

Singular Not satisfied in general

 Passing particles are still confined because rational surface is surrounded by ergodic flux surfaces

$$\begin{bmatrix} v_{\parallel} \hat{\mathbf{b}} + \tilde{r} \frac{\partial}{\partial r} \left(v_{\parallel} \hat{\mathbf{b}} \right) \end{bmatrix} \cdot \nabla \tilde{r} = \mathbf{v}_{d} \cdot \nabla r$$
$$\Rightarrow \tilde{r} \sim \sqrt{\rho_{*}} r \ll r$$

Collisions

Distribution function must be Maxwellian

$$f = f_M = \eta(\mathbf{x}) \left(\frac{m}{2\pi T(\mathbf{x})}\right)^{3/2} \exp\left(-\frac{m\mathcal{E}}{T(\mathbf{x})}\right)$$

- Passing particles stay at constant r to lowest order in $\rho_* \Rightarrow \eta$ and T must only depend on r
- Trapped particles follow paths of constant *J*, in general different from flux surfaces $\Rightarrow \eta$ and *T* must be constants to be compatible with passing particles
- To achieve confinement, η and T must depend on $r \Rightarrow J$ paths must coincide with flux surfaces

$$J = J(r, \mathcal{E}, \mu) \Rightarrow \frac{\partial J}{\partial \alpha} = 0$$
 Omnigeneity

Omnigeneous stellarators

• Maxwellian with η and T only depending on r

$$n(\mathbf{x}) = \eta(r) \exp\left(-\frac{Ze\phi(\mathbf{x})}{T}\right)$$

- \Rightarrow Quasineutrality imposes that ϕ depend only on r
- Since ϕ does not depend on *l*, convenient to use variables v and $\lambda = 2\mu/v^2$

$$J = 2 \int_{l_L}^{l_R} \sqrt{2\left(\mathcal{E} - \mu B(l) - \frac{Ze\phi}{m}\right)} \, \mathrm{d}l = 2v \int_{l_L}^{l_R} \sqrt{1 - \lambda B(l)} \, \mathrm{d}l$$

- Bounce points $B(l_L) = 1/\lambda = B(l_R)$
- Passing particles $\lambda < 1/B_M$, trapped particles $\lambda > 1/B_M$

- Trapped particles need paths that do not close
 - Choose θ and ζ such that **B** lines are parallel straight lines

- Trapped particles need paths that do not close
 - Choose θ and ζ such that **B** lines are parallel straight lines

- Trapped particles need paths that do not close
 - Choose θ and ζ such that **B** lines are parallel straight lines

- Trapped particles need paths that do not close
 - Choose θ and ζ such that **B** lines are parallel straight lines

Keeping $\partial J/\partial \alpha = 0$ for all λ

[Cary & Shasharina, PRL 97, PoP 97]

• Rewrite integral as integral over B

$$J = 2v \int_{l_L}^{l_R} \sqrt{1 - \lambda B(l)} \, \mathrm{d}l = 2v \int_{B_m}^{1/\lambda} \sqrt{1 - \lambda B} \frac{\partial l}{\partial B} \, \mathrm{d}B$$

 $\Rightarrow \partial l / \partial B$ independent of α

 \Rightarrow length along **B** line between two points with same B

Keeping $\partial J/\partial \alpha = 0$ for all λ

[Cary & Shasharina, PRL 97, PoP 97] • Rewrite integral as integral over *B*

$$J = 2v \int_{l_L}^{l_R} \sqrt{1 - \lambda B(l)} \, \mathrm{d}l = 2v \int_{B_m}^{1/\lambda} \sqrt{1 - \lambda B} \frac{\partial l}{\partial B} \, \mathrm{d}B$$

 $\Rightarrow \partial l / \partial B$ independent of α

 \Rightarrow length along **B** line between two points with same B

Construct omnigeneous *B* maps

 θ

- Choose a rough 1D B
 profile
 - Number of B_M and B_m
- Choose "half" of your contours
 - From B_M to B_m
- Choose $\Delta l(B)$
 - Boozer θ and ζ : **B** lines are straight lines, and Δl $\propto \Delta \theta, \Delta \zeta$
- Infinite $B(\theta, \zeta)$ that are omnigeneous!

B↑ [Cary & Shasharina, PRL 97, PoP 97]

23

Construct omnigeneous *B* maps

 θ

- Choose a rough 1D B
 profile
 - Number of B_M and B_m
- Choose "half" of your contours
 - From B_M to B_m
- Choose $\Delta l(B)$
 - Boozer θ and ζ : **B** lines are straight lines, and Δl $\propto \Delta \theta, \Delta \zeta$
- Infinite $B(\theta, \zeta)$ that are omnigeneous!

B↑ [Cary & Shasharina, PRL 97, PoP 97]

24

Omnigeneous stellarator equilibria

 Omnigeneous stellarators can reach Maxwellian equilibrium ⇒ satisfy MHD force balance

$$\frac{B^2}{4\pi}\hat{\mathbf{b}}\cdot\nabla\hat{\mathbf{b}}-\nabla_{\perp}\left(\frac{B^2}{8\pi}\right)=\nabla r\frac{\partial p}{\partial r}$$

- Assume known a flux surface r and $B(\theta, \zeta)$ on it
 - MHD equilibrium parallel to flux surface $\Rightarrow \hat{\mathbf{b}}(heta, \zeta)$
 - $\nabla \cdot \mathbf{B} = \mathbf{0} \Rightarrow$ determines surface shape of surface *r* Δr
 - MHD equilibrium perpendicular to flux surface $\Rightarrow B(r \Delta r, \theta, \zeta)$
- Integrate radially inwards to find equilibrium
- Regularity at the magnetic axis ⇒ only the shape of flux surface r (and not B (θ, ζ) on it) can be specified

Omnigeneous equilibria

- Can choose one surface to be omnigeneous: choose
 2D function z (x, y) to obtain B (θ, ζ)
- In general, omnigeneity lost in other surfaces
- Is there an omnigeneous surface that propagates radially? For *B* with all derivatives continuous, only perfect axisymmetry: <u>TOKAMAK</u>

[Garren & Boozer, PoP 91]

Any other omnigeneous equilibria?

[Beidler et al, NF 11]

- Stellarators can be optimized to be near-omnigenous
- Some examples
 - Boozer θ and ζ : **B** lines are straight lines, and $\Delta l \propto \Delta \theta$, $\Delta \zeta$

Some caveats

 Description of particle motion based on particles moving sufficiently far in between collisions

$$\nu \lesssim \rho_* \frac{v_t}{L}$$

• For "high" $\nu \ge \rho_* v_t / L$, radial motion controlled by collisions

$$\frac{\Delta r}{r} \sim \frac{1}{\nu} \frac{\mathrm{d}r}{\mathrm{d}t} \sim \frac{mc}{Ze\nu\tau_b\Psi} \frac{\partial J}{\partial\alpha} \lesssim \frac{\rho_* v_t}{\nu L} \lesssim 1$$

 MHD equilibrium equations are not solvable in <u>rational</u> flux surfaces for <u>non-omnigeneous</u> stellarators

$$\nabla \cdot (J_{\parallel} \hat{\mathbf{b}}) + \nabla \cdot \mathbf{J}_{\perp} = 0 \Rightarrow \mathbf{B} \cdot \nabla \left(\frac{J_{\parallel}}{B}\right) = -\nabla \cdot \left(\frac{c}{B} \hat{\mathbf{b}} \times \nabla p\right)$$

Singular

What else is there to do?

- If we relax continuity of derivatives, are there omnigeneous solutions other than the tokamak
 - This is independent of optimization programme: maybe the other omnigeneous solutions require unbuildable magnets!
- If perfect omnigeneity can ever be reached, how do we model low collisionality regions?
 - Inherently global problem with complicated particle orbits?
 - Some attempts of understanding the problem by expanding in either aspect ratio or "closeness" to omnigeneity
- How do we solve the problem of MHD equilibrium?
 - More of this in Stellarator sessions!
- Is this theory of interest elsewhere?