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3D magnetic fields in stellarators

• Stellarators have inherent advantages
• No current in the plasma ⇒ no current drive, no current instabilities
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• Magnetic field B
must be 3D (that is, 
without direction of 
symmetry) if we 
want
• steady state
• nested flux surfaces 

(surfaces || to B)
• B (mostly) generated 

by external currents



Magnetized particle motion
• Assume steady state E and B: E = –∇𝜙 ~ T /eL
• Constant total energy

• Motion for 𝜌* = 𝜌/L << 1
• Magnetic moment (= adiabatic invariant) is constant

• Motion = fast parallel streaming + slow perpendicular drifts
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Parallel motion
• To lowest order, particles move along magnetic field lines
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Figure 1. Example of e↵ective potential U for four values of µ: µ1, µ2, µ3 and µ4. Note the
minimum and maximum values of U for µ3, Um(µ3) and UM (µ3). We show the bounce points
for a particle with magnetic moment µ3 and an energy E that satisfies Um(µ3) < E < UM (µ3).

d ⇣/dr. We assume that r has units of length, and that ↵ is an angle, that is, it does
not have units. The mapping x(r,↵, l) uniquely determines the position because the
determinant of its Jacobian is always di↵erent from zero,

@rx · (@↵x ⇥ @lx) =
1

rr · (r↵⇥ rl)
=

 0
⇣

2⇡B
, (2.5)

To obtain (2.5), we have used (rr ⇥ r↵) · rl = 2⇡( 0
⇣)

�1

B · rl and B = Bb̂ = B @lx.
Given E and µ, the particle motion along a magnetic field line is given by

dl
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= v||( ,↵, l, E , µ) = ±

p

2 (E � U( ,↵, l, µ)), (2.6)

where v||( ,↵, l, E , µ) is the velocity parallel to the magnetic field, and

U( ,↵, l, µ) = µB( ,↵, l) +
Ze�( ,↵, l)

m
(2.7)

is the e↵ective potential for the motion along the magnetic field. Trapped particles satisfy
Um( ,↵, µ) < E < UM ( ,↵, µ), where Um( ,↵, µ) and UM ( ,↵, µ) are the minimum
and maximum value of U(l) along the magnetic field line of interest (see figure 1).
Trapped particles move periodically between the two bounce points lL( ,↵, E , µ) and
lR( ,↵, E , µ), sketched in figure 1. Since the parallel velocity v|| vanishes at the two
bounce points, they are determined by the equation

E � U(lL) = 0 = E � U(lR). (2.8)

Note that here we only display the dependence of U on l to shorten the notation. We
will continue to do this for the rest of the article.

The adiabatic invariant of the quasi-periodic motion in (2.6), known as second adiabatic
invariant, is
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where the factor of 2 is due to the fact that we need to consider both signs of the
parallel velocity. The slow average drift across magnetic field lines is related to the second

• ℰ > UM (𝜇) ⇒ v|| does not 
change sign: passing 
particles

• ℰ < UM (𝜇) ⇒ v|| vanishes 
at bounce points: trapped 
particles



Perpendicular motion
• Ignore perpendicular motion for passing particles: 

perpendicular drifts give small correction to position
• We’ll have to come back to this

• Trapped particles do not leave initial region unless we 
keep perpendicular drifts

• Use flux coordinates to describe perpendicular motion of 
trapped particles 
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Flux coordinates
• Simple picture: coordinates on plane cutting through B

lines

• r and 𝛼 constant along B

• Magnetic flux across surface dr d𝛼 = 
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Motion of trapped particles
• Perpendicular motion in r-direction

• Since parallel motion is periodic with period 𝜏b = ∮dl /v|| ,
decompose r into quasiperiodic and secular pieces

• Averaging over parallel trapped orbit

• Integrating in l, 
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Final equations
• Since 𝛼 is equivalent to r

• We can simplify these equations
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Second adiabatic invariant
• Adiabatic invariant of periodic motion of trapped particles

• Equations based on second adiabatic invariant

• Particles move conserving their second adiabatic invariant

•
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Summary of particle motion
• Passing particles move mostly along B lines

• Trapped particles move along paths of constant J
• In addition, particles have “oscillations” (small in 𝜌*) around the 

paths of constant J

• To describe particle motion, we need maps of J
• J can be easily constructed for given 𝜙 and B
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Particle motion in stellarators
• Stellarator: confine to have nuclear fusion collisions

• Need flux surfaces
• A large number of Coulomb collisions will occur

• r labels flux surfaces and 𝛼 lines within flux surfaces
• Alternatively, poloidal and toroidal angles 𝜃 and 𝜁 within flux surface
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Passing particles
• Passing particles follow B lines ⇒ two types of surfaces
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• In most surfaces, pitch of B
⇒ one B line defines whole 
flux surface = ergodic

• In a few surfaces, pitch of B
⇒ B lines close on 
themselves =  rational



Passing particles on ergodic surfaces
• To lowest order, passing particles stay on flux surfaces
• Can passing particles move across surfaces (in r-

direction)? No on ergodic surfaces
• Passing particles sample ergodic surfaces entirely
• r-direction drift ∝ gradients & curvature parallel to flux surface

• Gradients & curvature “average” to zero due to periodicity in 𝜃 & 𝜁
⇒ average r-direction drift = 0

• r can be described by quasiperiodic piece 
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Passing particles on rational surfaces
• Particles do not sample rational surfaces entirely. Do they 

move across flux surfaces (in r-direction)? Not quite 
• Naively, equation for quasiperiodic piece is singular

• Passing particles are still confined because rational surface is 
surrounded by ergodic flux surfaces
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Collisions
• Distribution function must be Maxwellian

• Passing particles stay at constant r to lowest order in 𝜌*⇒
𝜂 and T must only depend on r

• Trapped particles follow paths of constant J, in general 
different from flux surfaces ⇒ 𝜂 and T must be constants 
to be compatible with passing particles

• To achieve confinement, 𝜂 and T must depend on r⇒ J
paths must coincide with flux surfaces
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Omnigeneous stellarators
• Maxwellian with 𝜂 and T only depending on r

⇒ Quasineutrality imposes that 𝜙 depend only on r
• Since 𝜙 does not depend on l, convenient to use 

variables v and 𝜆 = 2𝜇/v 2

• Bounce points B (lL) = 1/𝜆 = B (lR)
• Passing particles 𝜆 < 1/BM, trapped particles 𝜆 > 1/BM
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”Constructing” omnigeneous fields
• Trapped particles need paths that do not close

• Choose 𝜃 and 𝜁 such that B lines are parallel straight lines
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Figure 5. Contour plot of the omnigeneous magnetic field.

along a field line between two contours with the same value
of magnetic field strength on two opposite sides of a well is a
function only of the flux surface and of the well.

The extra assumption that all the local minima and all the
local maxima have the same value has been used for simplicity
in previous work, such as [11, 12]. The results of these papers
only need to be generalized slightly to account for local minima
and maxima with values different from the global minimum
and maximum on the flux surface, but the qualitative results
are probably unchanged.

In certain classes of stellarators, it may be beneficial
for the minima of the magnetic field strength on a flux
surface to have similar values [13], but we have shown that
in general this is not a necessary condition for optimized
stellarators. The more general conditions for omnigeneity
discussed in this article ensure that the neoclassical fluxes
do not scale inversely with collisionality. These conditions
have been derived for a flux surface without consideration
of the neighbouring flux surfaces because we have limited
our analysis to particles with small radial orbit widths. The
study of long term confinement of energetic particles [14, 15]
requires a more careful analysis than the one performed here,
but one would expect that optimizing neoclassical fluxes would
improve energetic particle confinement.

In practice, the design of an omnigeneous stellarator
experiment would be based upon the multiple-criteria
optimization procedures analogous to those used in [1–3]
to identify a 3D MHD equilibrium. As part of such a
design, collisionless charged particle losses would need to

be computed directly using the codes based on the guiding
centre drift equations, as in [14, 15]. However, due to the high
dimensionality of the optimization problem, simple but robust
optimization criteria are required to use the optimization codes
effectively, for selecting appropriate weighted cost functions,
initial configurations, and search algorithms. Our results here
give such criteria. An optimization that imposed that the local
minima and maxima must be the same on a given flux surface
could give a stellarator close to omnigeneity, but it would have
ignored a large part of the allowed parameter space, therefore
missing potentially better solutions.
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along a field line between two contours with the same value
of magnetic field strength on two opposite sides of a well is a
function only of the flux surface and of the well.

The extra assumption that all the local minima and all the
local maxima have the same value has been used for simplicity
in previous work, such as [11, 12]. The results of these papers
only need to be generalized slightly to account for local minima
and maxima with values different from the global minimum
and maximum on the flux surface, but the qualitative results
are probably unchanged.

In certain classes of stellarators, it may be beneficial
for the minima of the magnetic field strength on a flux
surface to have similar values [13], but we have shown that
in general this is not a necessary condition for optimized
stellarators. The more general conditions for omnigeneity
discussed in this article ensure that the neoclassical fluxes
do not scale inversely with collisionality. These conditions
have been derived for a flux surface without consideration
of the neighbouring flux surfaces because we have limited
our analysis to particles with small radial orbit widths. The
study of long term confinement of energetic particles [14, 15]
requires a more careful analysis than the one performed here,
but one would expect that optimizing neoclassical fluxes would
improve energetic particle confinement.
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experiment would be based upon the multiple-criteria
optimization procedures analogous to those used in [1–3]
to identify a 3D MHD equilibrium. As part of such a
design, collisionless charged particle losses would need to

be computed directly using the codes based on the guiding
centre drift equations, as in [14, 15]. However, due to the high
dimensionality of the optimization problem, simple but robust
optimization criteria are required to use the optimization codes
effectively, for selecting appropriate weighted cost functions,
initial configurations, and search algorithms. Our results here
give such criteria. An optimization that imposed that the local
minima and maxima must be the same on a given flux surface
could give a stellarator close to omnigeneity, but it would have
ignored a large part of the allowed parameter space, therefore
missing potentially better solutions.
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along a field line between two contours with the same value
of magnetic field strength on two opposite sides of a well is a
function only of the flux surface and of the well.

The extra assumption that all the local minima and all the
local maxima have the same value has been used for simplicity
in previous work, such as [11, 12]. The results of these papers
only need to be generalized slightly to account for local minima
and maxima with values different from the global minimum
and maximum on the flux surface, but the qualitative results
are probably unchanged.

In certain classes of stellarators, it may be beneficial
for the minima of the magnetic field strength on a flux
surface to have similar values [13], but we have shown that
in general this is not a necessary condition for optimized
stellarators. The more general conditions for omnigeneity
discussed in this article ensure that the neoclassical fluxes
do not scale inversely with collisionality. These conditions
have been derived for a flux surface without consideration
of the neighbouring flux surfaces because we have limited
our analysis to particles with small radial orbit widths. The
study of long term confinement of energetic particles [14, 15]
requires a more careful analysis than the one performed here,
but one would expect that optimizing neoclassical fluxes would
improve energetic particle confinement.

In practice, the design of an omnigeneous stellarator
experiment would be based upon the multiple-criteria
optimization procedures analogous to those used in [1–3]
to identify a 3D MHD equilibrium. As part of such a
design, collisionless charged particle losses would need to

be computed directly using the codes based on the guiding
centre drift equations, as in [14, 15]. However, due to the high
dimensionality of the optimization problem, simple but robust
optimization criteria are required to use the optimization codes
effectively, for selecting appropriate weighted cost functions,
initial configurations, and search algorithms. Our results here
give such criteria. An optimization that imposed that the local
minima and maxima must be the same on a given flux surface
could give a stellarator close to omnigeneity, but it would have
ignored a large part of the allowed parameter space, therefore
missing potentially better solutions.
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along a field line between two contours with the same value
of magnetic field strength on two opposite sides of a well is a
function only of the flux surface and of the well.

The extra assumption that all the local minima and all the
local maxima have the same value has been used for simplicity
in previous work, such as [11, 12]. The results of these papers
only need to be generalized slightly to account for local minima
and maxima with values different from the global minimum
and maximum on the flux surface, but the qualitative results
are probably unchanged.

In certain classes of stellarators, it may be beneficial
for the minima of the magnetic field strength on a flux
surface to have similar values [13], but we have shown that
in general this is not a necessary condition for optimized
stellarators. The more general conditions for omnigeneity
discussed in this article ensure that the neoclassical fluxes
do not scale inversely with collisionality. These conditions
have been derived for a flux surface without consideration
of the neighbouring flux surfaces because we have limited
our analysis to particles with small radial orbit widths. The
study of long term confinement of energetic particles [14, 15]
requires a more careful analysis than the one performed here,
but one would expect that optimizing neoclassical fluxes would
improve energetic particle confinement.

In practice, the design of an omnigeneous stellarator
experiment would be based upon the multiple-criteria
optimization procedures analogous to those used in [1–3]
to identify a 3D MHD equilibrium. As part of such a
design, collisionless charged particle losses would need to

be computed directly using the codes based on the guiding
centre drift equations, as in [14, 15]. However, due to the high
dimensionality of the optimization problem, simple but robust
optimization criteria are required to use the optimization codes
effectively, for selecting appropriate weighted cost functions,
initial configurations, and search algorithms. Our results here
give such criteria. An optimization that imposed that the local
minima and maxima must be the same on a given flux surface
could give a stellarator close to omnigeneity, but it would have
ignored a large part of the allowed parameter space, therefore
missing potentially better solutions.
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• Rewrite integral as integral over B

⇒ ∂l /∂B independent of 𝛼
⇒ length along B line between two points with same B

Keeping ∂J /∂𝛼 = 0 for all 𝜆
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Keeping ∂J /∂𝛼 = 0 for all 𝜆
• Rewrite integral as integral over B

⇒ ∂l /∂B independent of 𝛼
⇒ length along B line between two points with same B
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Figure 5. Contour plot of the omnigeneous magnetic field.

along a field line between two contours with the same value
of magnetic field strength on two opposite sides of a well is a
function only of the flux surface and of the well.

The extra assumption that all the local minima and all the
local maxima have the same value has been used for simplicity
in previous work, such as [11, 12]. The results of these papers
only need to be generalized slightly to account for local minima
and maxima with values different from the global minimum
and maximum on the flux surface, but the qualitative results
are probably unchanged.

In certain classes of stellarators, it may be beneficial
for the minima of the magnetic field strength on a flux
surface to have similar values [13], but we have shown that
in general this is not a necessary condition for optimized
stellarators. The more general conditions for omnigeneity
discussed in this article ensure that the neoclassical fluxes
do not scale inversely with collisionality. These conditions
have been derived for a flux surface without consideration
of the neighbouring flux surfaces because we have limited
our analysis to particles with small radial orbit widths. The
study of long term confinement of energetic particles [14, 15]
requires a more careful analysis than the one performed here,
but one would expect that optimizing neoclassical fluxes would
improve energetic particle confinement.

In practice, the design of an omnigeneous stellarator
experiment would be based upon the multiple-criteria
optimization procedures analogous to those used in [1–3]
to identify a 3D MHD equilibrium. As part of such a
design, collisionless charged particle losses would need to

be computed directly using the codes based on the guiding
centre drift equations, as in [14, 15]. However, due to the high
dimensionality of the optimization problem, simple but robust
optimization criteria are required to use the optimization codes
effectively, for selecting appropriate weighted cost functions,
initial configurations, and search algorithms. Our results here
give such criteria. An optimization that imposed that the local
minima and maxima must be the same on a given flux surface
could give a stellarator close to omnigeneity, but it would have
ignored a large part of the allowed parameter space, therefore
missing potentially better solutions.
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Figure 5. Contour plot of the omnigeneous magnetic field.

along a field line between two contours with the same value
of magnetic field strength on two opposite sides of a well is a
function only of the flux surface and of the well.

The extra assumption that all the local minima and all the
local maxima have the same value has been used for simplicity
in previous work, such as [11, 12]. The results of these papers
only need to be generalized slightly to account for local minima
and maxima with values different from the global minimum
and maximum on the flux surface, but the qualitative results
are probably unchanged.

In certain classes of stellarators, it may be beneficial
for the minima of the magnetic field strength on a flux
surface to have similar values [13], but we have shown that
in general this is not a necessary condition for optimized
stellarators. The more general conditions for omnigeneity
discussed in this article ensure that the neoclassical fluxes
do not scale inversely with collisionality. These conditions
have been derived for a flux surface without consideration
of the neighbouring flux surfaces because we have limited
our analysis to particles with small radial orbit widths. The
study of long term confinement of energetic particles [14, 15]
requires a more careful analysis than the one performed here,
but one would expect that optimizing neoclassical fluxes would
improve energetic particle confinement.

In practice, the design of an omnigeneous stellarator
experiment would be based upon the multiple-criteria
optimization procedures analogous to those used in [1–3]
to identify a 3D MHD equilibrium. As part of such a
design, collisionless charged particle losses would need to

be computed directly using the codes based on the guiding
centre drift equations, as in [14, 15]. However, due to the high
dimensionality of the optimization problem, simple but robust
optimization criteria are required to use the optimization codes
effectively, for selecting appropriate weighted cost functions,
initial configurations, and search algorithms. Our results here
give such criteria. An optimization that imposed that the local
minima and maxima must be the same on a given flux surface
could give a stellarator close to omnigeneity, but it would have
ignored a large part of the allowed parameter space, therefore
missing potentially better solutions.
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Omnigeneous stellarator equilibria
• Omnigeneous stellarators can reach Maxwellian

equilibrium ⇒ satisfy MHD force balance

• Assume known a flux surface r and B (𝜃, 𝜁) on it
• MHD equilibrium parallel to flux surface ⇒
• ∇∙ B = 0 ⇒ determines surface shape of surface r - ∆r
• MHD equilibrium perpendicular to flux surface ⇒ B (r - ∆r, 𝜃, 𝜁) 

• Integrate radially inwards to find equilibrium
• Regularity at the magnetic axis ⇒ only the shape of flux 

surface r (and not B (𝜃, 𝜁) on it) can be specified
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Omnigeneous equilibria
• Can choose one surface to 

be omnigeneous: choose 
2D function z (x, y) to 
obtain B (𝜃, 𝜁)

• In general, omnigeneity
lost in other surfaces

• Is there an omnigeneous
surface that propagates 
radially? For B with all 
derivatives continuous, 
only perfect axisymmetry: 
TOKAMAK
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Any other omnigeneous equilibria?
• Stellarators can be optimized to be near-omnigenous
• Some examples

• Boozer 𝜃 and 𝜁: B lines are straight lines, and Δl∝ Δ𝜃, Δ𝜁
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Figure 5. Contours of constant magnetic field strength for one field
period of HSX (with N = 4) are shown for the ρ = 0.5 flux surface
of the standard vacuum configuration which has !ι = 1.0537.
Contours have been plotted following the same scheme employed in
figure 1. In the lower frame, the magnitude of B/B0 along the field
line passing through φ = 0 and θ = 0 is plotted over two poloidal
circuits of the torus.

(QIPC) [69] is depicted in figure 8. The stronger variation of B

with poloidal angle in the case of QPS is largely due to its small
aspect ratio R0/a = 2.65 in comparison with R0/a = 11.5 for
QIPC. Both configurations have a fraction of trapped particles
well in excess of 50% but nevertheless fulfil the requirement
of small radial transport coefficients in the lmfp regime as can
be seen in the next section.

The final configuration investigated within the ICNTS
is the Wendelstein 7-X (W7-X) device [70, 71], which is
currently under construction at IPP in Greifswald, Germany.
This helias (helical-axis advanced stellarator) [72] emerged
from an integrated design process which had the goal of
finding magnetic fields which simultaneously fulfil a number
of optimization criteria relevant to good plasma performance.
Additionally, the dimensions of W7-X (R0 = 5.5 m,
a > 0.5 m) along with its heating and support systems
were chosen to enable the high-performance, steady-state
discharges necessary to assess the potential of such a device
for attractive reactor operation. For experimental flexibility
the W7-X coil system is capable of numerous magnetic
configurations, among which are examples of the various
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Figure 6. Contours of constant magnetic field strength for one field
period of NCSX (with N = 3) are shown for the ρ = 0.5 flux
surface of the reference S3 plasma configuration with Ip = 174 kA
and ⟨β⟩ = 4.1% [65] which has !ι = 0.4942. Contours have been
plotted following the same scheme employed in figure 1. In the
lower frame, the magnitude of B/B0 along the field line passing
through φ = 0 and θ = 0 is plotted over two poloidal circuits of the
torus.

neoclassical optimization strategies discussed here, with the
exception of quasi-symmetry (as small bootstrap current
was an optimization criterion for W7-X). At its simplest,
this strategy involves nothing more than the large average
elongation of the W7-X flux surfaces, which lies in the range
4.5 < κ < 7.0 depending on the configuration. The magnetic
field for such a case is exemplified by the W7-X low-mirror
vacuum configuration plotted in figure 9(a), which is obtained
by choosing the coil currents so as to zero the toroidal-mirror
term (the b0,1 component of B in Boozer coordinates) on
the magnetic axis. Unlike W7-AS, deeply trapped particles
‘see’ only a rather small variation of B in this field and
thus experience the full benefit of the large reduction in
average toroidal curvature, leading to a significant decrease
in neoclassical radial transport. Further improvements are
possible, however, by introducing a modest toroidal mirror
into B to simultaneously profit from large elongation and
strong drift optimization, as is done for the W7-X standard
configuration shown in figure 9(b) (which has equal currents
in all non-planar coils, resulting in b0,1 = 0.046 on axis).
By further increasing the toroidal mirror, W7-X has access
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Figure 9. (a) Contours of constant magnetic field strength for one field period of W7-X (with N = 5) are shown for the ρ = 0.5 flux surface
of the low-mirror vacuum configuration which has !ι = 0.8623. Contours have been plotted following the same scheme employed in figure 1.
In the lower frame, the magnitude of B/B0 along the field line passing through φ = 0 and θ = 0 is plotted over two poloidal circuits of the
torus. (b) Contours of constant magnetic field strength for one field period of W7-X are shown for the ρ = 0.5 flux surface of the standard
vacuum configuration which has !ι = 0.8700. Contours have been plotted following the same scheme employed in figure 1. In the lower
frame, the magnitude of B/B0 along the field line passing through φ = 0 and θ = 0 is plotted over two poloidal circuits of the torus.
(c) (overleaf) Contours of constant magnetic field strength for one field period of W7-X are shown for the ρ = 0.5 flux surface of the
high-mirror vacuum configuration which has !ι = 0.8823. Contours have been plotted following the same scheme employed in figure 1. In
the lower frame, the magnitude of B/B0 along the field line passing through φ = 0 and θ = 0 is plotted over two poloidal circuits of the
torus.

presented in this section, normalizations to the results for an
axisymmetric tokamak with B/B0 = 1−ϵt cos θ in the plateau
(p), banana (b) and Pfirsch–Schlüter (PS) regimes have been
chosen:
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In these equations, fc is the fraction of circulating
(non-reflected) particles which for the large-aspect-ratio
approximation used here is given by fc = 1−1.46

√
ϵt . For the

axisymmetric tokamak with B · ∇B = −!ιϵt(B × ∇B) · ∇r ,
one can show that a single mono-energetic transport coefficient
is sufficient to describe all neoclassical effects [19] as the other

two may be determined from
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Using these expressions, it is straightforward to determine the
collisional and collisionless asymptotes of the three normalized
mono-energetic transport coefficients for the large-aspect-
ratio, axisymmetric tokamak

D⋆
11(ν

⋆ → ∞) = 32
3π

ν⋆, D⋆
11(ν

⋆ → 0) ≈ 2.5
ν⋆

ϵ
3/2
t

,

D⋆
31(ν

⋆ → ∞) = 0, D⋆
31(ν

⋆ → 0) = 1,

D⋆
33(ν

⋆ → ∞) = 1, D⋆
33(ν

⋆ → 0) = fc.

Also commonly used as a figure of merit to indicate the
level of 1/ν transport in stellarators is the so-called effective

13

W7X, IPP-MPI, Germany HSX, U. Wisconsin, USA

[Beidler et al, NF 11]



Some caveats
• Description of particle motion based on particles moving 

sufficiently far in between collisions

• For “high” 𝜈 ≳ 𝜌*vt /L, radial motion controlled by collisions

• MHD equilibrium equations are not solvable in rational
flux surfaces for non-omnigeneous stellarators
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What else is there to do?
• If we relax continuity of derivatives, are there 

omnigeneous solutions other than the tokamak
• This is independent of optimization programme: maybe the other 

omnigeneous solutions require unbuildable magnets!
• If perfect omnigeneity can ever be reached, how do we 

model low collisionality regions?
• Inherently global problem with complicated particle orbits?
• Some attempts of understanding the problem by expanding in 

either aspect ratio or “closeness” to omnigeneity
• How do we solve the problem of MHD equilibrium?

• More of this in Stellarator sessions!
• Is this theory of interest elsewhere?
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