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3D magnetic fields in stellarators

- Magnetic field B
must be 3D (that is,
without direction of
symmetry) if we
want

- steady state

- nested flux surfaces
(surfaces || to B)

- B (mostly) generated
by external currents

- Stellarators have inherent advantages
- No current in the plasma = no current drive, no current instabilities




Magnetized particle motion

- Assume steady state Eand B:E=-V ¢~ T/eL

- Constant total energy
2 m

- Motion for p. = p/L << 1

- Magnetic moment (= adiabatic invariant) is constant
2

2
_ v Y
“_2B+O(p"‘3>

- Motion = fast parallel streaming + slow perpendicular drifts
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Parallel motion

- To lowest order, particles move along magnetic field lines
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Perpendicular motion

- Ignore perpendicular motion for passing particles:
perpendicular drifts give small correction to position
- We'll have to come back to this

- Trapped particles do not leave initial region unless we
keep perpendicular drifts

- Use flux coordinates to describe perpendicular motion of
trapped particles




Flux coordinates

- Simple picture: coordinates on plane cutting through B
lines

- rand a constant along B
B-Vr=0=B-Va=B=VY(x)Vr xVa
- Magnetic flux across surface drda = ¥ dr da
V-B=0=B=Y(r,a)Vr x Va




Motion of trapped particles

- Perpendicular motion in r-direction
dr dx

E:E-Vfrzvd'Vfr

- Since parallel motion is periodic with period 7, = ¢ dl/yy,
decompose rinto quasiperiodic and secular pieces

B N dr dr or
r(t) =7(t) +7r((t)) = FTiadm + V5
- Averaging over parallel trapped orbit
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Final equations

- Since «a is equivalent to r

dr 1 dl V¢
ETE AR
do 1 dl V¢
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- We can simplify these equations




Second adiabatic invariant

- Adiabatic invariant of periodic motion of trapped particles

J(r o, &, 1) = 7{@” dl = Q/ZZR \/2 <€—uB(l) _ Zeg”) di

- Equations based on second adiabatic invariant
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- Particles move conserving their second adiabatic invariant
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Summary of particle motion

- Passing particles move mostly along B lines

- Trapped particles move along paths of constant J

- In addition, particles have “oscillations” (small in p.) around the
paths of constant J

- To describe particle motion, we need maps of J
- J can be easily constructed for given ¢ and B




Particle motion In stellarators

- Stellarator: confine to have nuclear fusion collisions
- Need flux surfaces
- Alarge number of Coulomb collisions will occur

- r labels flux surfaces and «a lines within flux surfaces
- Alternatively, poloidal and toroidal angles 8 and ¢ within flux surface
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Passing particles

- Passing particles follow B lines = two types of surfaces

- In most surfaces, pitch of B
— one B line defines whole

flux surface = ergodic

- In a few surfaces, pitch of B
— B lines close on
themselves = rational




Passing particles on ergodic surfaces

- To lowest order, passing particles stay on flux surfaces

- Can passing particles move across surfaces (in r-
direction)? No on ergodic surfaces
- Passing particles sample ergodic surfaces entirely

- r-direction drift o gradients & curvature parallel to flux surface
me (Ze

Va VT ="7 B

- Gradients & curvature “average” to zero due to periodicity in 8 & {
= average r-direction drift =0

- r can be described by quasiperiodic piece
or
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Passing particles on rational surfaces

- Particles do not sample rational surfaces entirely. Do they
move across flux surfaces (in r-direction)? Not quite
- Naively, equation for quasiperiodic piece is singular

or dl
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B lines I

Singular Not satisfied in general

- Passing particles are still confined because rational surface is
surrounded by ergodic flux surfaces

[’UHB + ?g (’UHB)] -Vr=vyg-Vr

=>fN\/p*T<<T




Collisions

- Distribution function must be Maxwellian

f = far =n(x) <2£<x>)3/2 - <_%>

- Passing particles stay at constant r to lowest order in p. =
n and T must only depend on r

- Trapped particles follow paths of constant J, in general
different from flux surfaces = n and T must be constants
to be compatible with passing particles

- To achieve confinement, n and T must depend on r= J

paths must coincide with flux surfaces

J=J(rE u) = % = 0| Omnigeneity




Omnigeneous stellarators

- Maxwellian with n and T only depending on r

n(x) = 5(r) exp (— Zeg’;("))

= Quasineutrality imposes that ¢ depend only on r

- Since ¢ does not depend on [, convenient to use
variables vand A = 2u/v?
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- Bounce points B(l;) = 1/A1 = B(ly)
- Passing particles A < 1/B,,, trapped particles 1 > 1/B,,
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"Constructing” omnigeneous fields
[Cary & Shasharina, PRL 97, PoP 97]
- Trapped particles need paths that do not close
- Choose 6 and ¢ such that B lines are parallel straight lines
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"Constructing” omnigeneous fields
[Cary & Shasharina, PRL 97, PoP 97]
- Trapped particles need paths that do not close
- Choose 6 and ¢ such that B lines are parallel straight lines
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B-contours imply J cannot Maxima B,;and minima B, ,
be constant on flux surface along B lines are the same




I
Keeping dJ/oa = 0 for all A

[Cary & Shasharina, PRL 97, PoP 97]
- Rewrite integral as integral over B

IR 1/ ol
J:2v/ \/1—>\B(l)dl:2v/ VI B2 4B
I, B, 0B

= dl/oB independent of «
= length along B line between two points with same B
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Keeping dJ/oa = 0 for all A

[Cary & Shasharina, PRL 97, PoP 97]

- Rewrite integral as integral over B

IR 1/ ol
J = 2v V1—=AB(l)dl = 2v V1 —-\B—dB
B, OB

lr

= dl/oB independent of «

= length along B line between two points with same B
BA o+ Ao Al(B,a) = Al(B,a + Aa)
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Construct omnigeneous B maps

BA [Cary & Shasharina, PRL 97, PoP 97]
- Choose arough 1D B
profile
- Number of B,,;and B,,

- Choose “half” of your
contours
- From B,,to B,

- Choose Al (B)

- Boozer 6 and ¢: B lines
are straight lines, and Al
oc AG, Al

- Infinite B (0, {) that are
omnigeneous!

A 4
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Omnigeneous stellarator equilibria

- Omnigeneous stellarators can reach Maxwellian
equilibrium = satisfy MHD force balance

B? . B? Op
4—b Vb—-V. ( 87T> Vro
- Assume known a flux surface rand B (6, {) on it

- MHD equilibrium parallel to flux surface = b(6,¢)
- V- B =0 = determines surface shape of surface r- Ar
- MHD equilibrium perpendicular to flux surface = B (r- Ar, 6, {)

- Integrate radially inwards to find equilibrium

- Regularity at the magnetic axis = only the shape of flux
surface r (and not B (6, {) on it) can be specified




Omnigeneous equilibria
[Garren & Boozer, PoP 91]
- Can choose one surface to
be omnigeneous: choose
2D function z (x, y) to
obtain B (6, {)

- In general, omnigeneity

ost in other surfaces 7 / /
- Is there an omnigeneous
surface that propagates
radially? For B with all
derivatives continuous,
only perfect axisymmetry: C

TOKAMAK
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Any other omnigeneous equilibria®?

[Beidler et al, NF 11]

- Stellarators can be optimized to be near-omnigenous

- Some examples
- Boozer 6 and {: B lines are straight lines, and Al < A8, A¢
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Some caveats

- Description of particle motion based on particles moving

sufficiently far in between collisions

Ut
V< p,—
~ P T
- For "high” v 2 p.v,/L, radial motion controlled by collisions
leg,\, me 8J<p*vt<1
r vdt ZevnpyVoa ™ vL ™

- MHD equilibrium equations are not solvable in rational
flux surfaces for non-omnigeneous stellarators

V. (Jb)+ V-, :(@(%) = -V (b x Vp)

Singular




What else is there to do?

- If we relax continuity of derivatives, are there
omnigeneous solutions other than the tokamak

- This is independent of optimization programme: maybe the other
omnigeneous solutions require unbuildable magnets!

- If perfect omnigeneity can ever be reached, how do we
model low collisionality regions?
- Inherently global problem with complicated particle orbits?

- Some attempts of understanding the problem by expanding in
either aspect ratio or “closeness” to omnigeneity

- How do we solve the problem of MHD equilibrium?
- More of this in Stellarator sessions!

- Is this theory of interest elsewhere?




