
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 163.1.19.1

This content was downloaded on 08/05/2017 at 23:24

Please note that terms and conditions apply.

The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity

View the table of contents for this issue, or go to the journal homepage for more

2017 Plasma Phys. Control. Fusion 59 055014

(http://iopscience.iop.org/0741-3335/59/5/055014)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Optimizing stellarators for large flows

Iván Calvo, Felix I Parra, J Arturo Alonso et al.

Flow damping in stellarators close to quasisymmetry

Iván Calvo, Felix I Parra, José Luis Velasco et al.

Gyrokinetic treatment of a grazing angle magnetic presheath

A Geraldini, F I Parra and F Militello

Stellarators close to quasisymmetry

Iván Calvo, Felix I Parra, José Luis Velasco et al.

Semianalytical calculation of the zonal-flow oscillation frequency in stellarators

Pedro Monreal, Edilberto Sánchez, Iván Calvo et al.

Effects of the radial electric field in a quasisymmetric stellarator

Matt Landreman and Peter J Catto

Conservation of energy and magnetic moment in neoclassical calculations for optimized stellarators

Matt Landreman and Peter J Catto

Theory of plasma confinement in non-axisymmetric magnetic fields

Per Helander

Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths

Pedro Monreal, Iván Calvo, Edilberto Sánchez et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0741-3335/59/5
http://iopscience.iop.org/0741-3335
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/0741-3335/56/9/094003
http://iopscience.iop.org/article/10.1088/0741-3335/57/1/014014
http://iopscience.iop.org/article/10.1088/1361-6587/59/2/025015
http://iopscience.iop.org/article/10.1088/0741-3335/55/12/125014
http://iopscience.iop.org/article/10.1088/1361-6587/aa6990
http://iopscience.iop.org/article/10.1088/0741-3335/53/1/015004
http://iopscience.iop.org/article/10.1088/0741-3335/55/9/095017
http://iopscience.iop.org/article/10.1088/0034-4885/77/8/087001
http://iopscience.iop.org/article/10.1088/0741-3335/58/4/045018


The effect of tangential drifts on neoclassical
transport in stellarators close to omnigeneity

Iván Calvo1,4, Felix I Parra2,3, José Luis Velasco1 and J Arturo Alonso1

1 Laboratorio Nacional de Fusión, CIEMAT, E-28040 Madrid, Spain
2 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, United Kingdom
3Culham Centre for Fusion Energy, Abingdon, OX14 3DB, United Kingdom

E-mail: ivan.calvo@ciemat.es, felix.parradiaz@physics.ox.ac.uk, joseluis.velasco@ciemat.es and arturo.
alonso@ciemat.es

Received 30 November 2016, revised 8 February 2017
Accepted for publication 1 March 2017
Published 30 March 2017

Abstract
In general, the orbit-averaged radial magnetic drift of trapped particles in stellarators is non-zero
due to the three-dimensional nature of the magnetic field. Stellarators in which the orbit-averaged
radial magnetic drift vanishes are called omnigeneous, and they exhibit neoclassical transport
levels comparable to those of axisymmetric tokamaks. However, the effect of deviations from
omnigeneity cannot be neglected in practice, and it is more deleterious at small collisionalities.
For sufficiently low collision frequencies (below the values that define the 1 n regime), the
components of the drifts tangential to the flux surface become relevant. This article focuses on
the study of such collisionality regimes in stellarators close to omnigeneity when the gradient of
the non-omnigeneous perturbation is small. First, it is proven that closeness to omnigeneity is
required to actually preserve radial locality in the drift-kinetic equation for collisionalities below
the 1 n regime. Then, using the derived radially local equation, it is shown that neoclassical
transport is determined by two layers located at different regions of phase space. One of the
layers corresponds to the so-called n regime and the other to the so-called superbanana-plateau
regime. The importance of the superbanana-plateau layer for the calculation of the tangential
electric field is emphasized, as well as the relevance of the latter for neoclassical transport in the
collisionality regimes considered in this paper. In particular, the role of the tangential electric
field is essential for the emergence of a new subregime of superbanana-plateau transport when
the radial electric field is small. A formula for the ion energy flux that includes the n regime
and the superbanana-plateau regime is given. The energy flux scales with the square of the size
of the deviation from omnigeneity. Finally, it is explained why below a certain collisionality
value the formulation presented in this article ceases to be valid.

Keywords: stellarator, neoclassical transport, optimization, omnigeneity

1. Introduction

Stellarators [1] offer some intrinsic advantages compared to
tokamaks, such as the possibility of steady-state operation and
the absence of disruptions. However, the magnetic config-
uration of a stellarator has to be designed very carefully for it
to have confinement properties comparable to those of an
axisymmetric tokamak. In a generic stellarator, trapped par-
ticle orbits have non-zero secular radial drifts and they leave

the device in a short time. The stellarator configuration is
called omnigeneous [2–5] if the secular radial drifts vanish.

Omnigeneity guarantees a neoclassical transport level
similar to that in a tokamak (see equation (2) below). Define the
normalized ion gyroradius v Li ti i 0*

r W≔ ( ), where vti and iW
are the ion thermal speed and the ion gyrofrequency, and L0 is
the typical length of variation of the magnetic field, which is
assumed to be of the order of the system size. The gyrofre-
quency is Z eB m ci i iW = ( ), where Z ei is the charge of the
ions, e is the elementary charge, B is the magnitude of the
magnetic field B, mi is the ion mass, and c is the speed of light.
Since 1i*

r  in a strongly magnetized plasma, the drift-kinetic
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formalism [6] is appropriate. Denoting by f r v,i ( ) the phase-
space distribution, the radial ion energy flux Qi reads

Q S v
m v

Z e fv nd d
2

. 1i
i

i d i i
2 3

2

,ò ò j= +
⎛
⎝⎜

⎞
⎠⎟ · ˆ ( )

Here, j is the electrostatic potential, vd i, is the drift velocity, n̂ is
the unit vector normal to the flux surface, vv nd i i ti, *

r~· ˆ , and
the integrals are performed over velocity space and over the flux
surface. In a perfectly omnigeneous stellarator fi, to lowest order
in i*

r , is a Maxwellian fMi with density ni and temperature Ti
that are constant on flux surfaces. The phase-space distribution
is written as f f fi Mi i1= + , where the perturbation to the
Maxwellian is found to have a size f O fi i Mi1 *

r~ ( ). The first
non-vanishing contribution to the energy flux comes from a
piece of the distribution function that is O fi i Mi* *

n r( ), where
L vi ii ti0*n n≔ is the ion collisionality and iin is the ion–ion

collision frequency. Then, in an omnigeneous stellarator,

Q n T v S . 2i i i i i ti
2
* *

n r~ y ( )

The area of the flux surface is denoted by Sψ, with ψ the radial
coordinate.

The proof of Cary and Shasharina [2, 3] for the existence of
omnigeneous magnetic fields implies that exact omnigeneity
throughout the plasma requires, at least, non-analiticity. Let
us explain this in more detail. As shown in references [2]
and [3], there exist omnigeneous magnetic fields that are
analytic. These configurations coincide with the set of quasi-
symmetric magnetic fields [7, 8]. To the virtues of omnigeneity,
quasisymmetry adds the vanishing of neoclassical flow damping
in the quasisymmetric direction. Therefore, in quasisymmetric
stellarators larger flow velocities can be attained. In principle, a
quasisymmetric stellarator plasma may have large flow shear,
that in principle can reduce turbulent transport [9]. However, the
quasisymmetry condition is incompatible with the magneto-
hydrodynamic equilibrium equations [10], and the stellarator can
be made quasisymmetric only in a limited radial region.

This is why we said above that a necessary condition for
exact omnigeneity is non-analiticity; specifically, the dis-
continuity of some derivatives of second or higher order.
However, designing and aligning coils that create a magnetic
field with discontinuous derivatives at certain points in space
is probably technically impossible. Therefore, even in opti-
mized magnetic fields, the effect of deviations from the
desired omnigeneous configuration cannot be neglected. It is
thus necessary to study magnetic fields of the form
B B B0 1d= + , where B0 is omnigeneous and B1d is a per-
turbation, with 0 1 d  and B B1 0~ .

The effect of a deviation from omnigeneity is more
detrimental for confinement at small collisionalities. If

1i*n  and the stellarator is non-omnigeneous, the non-
omnigeneous piece of fi1 becomes large, so that f fi i Mi1 *

r
and the energy flux can be much larger than the estimation (2)
even if δ is small. The quantification of this effect for

1, 3i i* *r n  ( )

that defines the 1 n regime, has been treated in [11–13] for
stellarators close to quasisymmetry and is the subject of [14]
for stellarators close to omnigeneity. However, this regime

does not exhaust the low collisionality parameter space in
stellarators. When

, 4i i* *
n r ( )

the components of the drifts tangential to the flux surface
matter [1, 15–17]. In this paper we study stellarators close to
omnigeneity in the collisionality regime (4), relevant for a
stellarator reactor [18].

It is important to point out that the calculations in this
paper do not rely on large aspect ratio approximations. Of
course, if the stellarator close to omnigeneity under con-
sideration has large aspect ratio, one can perform a subsidiary
expansion in the inverse aspect ratio and refine the results
obtained here. This will be the subject of future work. The rest
of the paper is organized as follows.

In section 2 we introduce a set of flux coordinates that is
well-adapted to stellarator magnetic geometries. Then, we
give the formal definition of omnigeneity.

In section 3 we derive, starting from the complete drift-
kinetic equation, the equation for the dominant component of
the distribution function when δ=1 and i i* *

n r . In part-
icular, we explain why the standard expansion in i*

r breaks
down for a generic stellarator when i i* *

n r . In brief, the
reason is that fi1 becomes so large that f fi Mi1 ~ . For stel-
larators close to omnigeneity, however, we can expand in the
small parameter δ. In addition, in a generic stellarator the
drift-kinetic equation becomes radially non-local when

i i* *
n r , but we will see that with the condition 1d  we

can derive a radially local drift-kinetic equation in this colli-
sionality regime.

A precision must be made about the asymptotic expan-
sion in δ carried out in this paper. When 1i i* *r n  , it
has been understood (in [11–13] for stellarators close to
quasisymmetry and in [14] for stellarators close to omni-
geneity) that the effect of the deviations (from quasisymmetry
or omnigeneity) is very different depending on the size of the
gradients on the surface of the magnetic field perturbation.
For the regime (4), the case of deviations with small gradients
and the case of deviations with large gradients also require
different treatments, in principle. Here, we restrict ourselves
to deviations with small gradients. Let us be more precise. If
B B0 0≔ ∣ ∣ and B B1 1≔ ∣ ∣, by ‘deviations with small gradients’
we mean that B Bln ln0 1 d  ∣ ∣ ∣ ∣ . If this inequality is
well satisfied, then we can consider that the characteristic
lengths of both, B0 and B1, are O L0( ) as far as the asymptotic
expansion in δ is concerned.

In section 4 the equation derived in section 3 for the non-
omnigeneous piece of the distribution function is solved when

i i* *
n r . We find that Qi is dominated by two collisional
layers in phase space. One of the layers lies at the boundary
between trapped and passing trajectories and produces an
energy flux

Q n T v L Sln , 5i
ii

ii i i i ti
2

1 2

3 2
2 2

0
1

*
d

n
w

w n r~
a

a y
-( ) ( )

where v Li ti 0*
w r~a , defined in section 4, is the precession

frequency due to the tangential drifts. On the right side of (5)

2
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wa actually stands for the value of the precession frequency
evaluated at the boundary between trapped and passing par-
ticles and at v vti= . Note the logarithmic correction to the
scaling with ii

1 2n wa( ) in (5), that we calculate in section 4.1.
The other layer lies at the points of phase space where wa

vanishes and yields Qi independent of i*n . Namely,

Q n T v S . 6i i i i ti
2
*

d r~ y ( )

The first layer (see section 4.1) gives the so-called n regime,
found in certain models of stellarator geometry [19, 20] where
the inverse aspect ratio and the helical ripple are employed as
expansion parameters. The second layer (see section 4.2)
gives the superbanana-plateau regime, derived in [21] for
finite aspect ratio tokamaks with broken symmetry. Here, the
n and superbanana-plateau regimes are derived and ana-

lyzed in a much broader setting and in deeper detail than
previously available in the literature. In particular, we will
show that the treatment of the superbanana-plateau regime
requires special care for small values of the radial electric
field (see (150) for a precise definition of what ‘small’ means
in this context), and in those cases logarithmic corrections
appear in (6) as well. Of course, neither the n regime nor the
superbanana-plateau regime (nor the 1 n regime) exist in
perfectly omnigeneous stellarators; i.e. when 0d = .

From the start, it will be evident that the role of the electric
field tangent to the flux surface is relevant when the colli-
sionality is as low as in (4) (not to mention its importance for
impurity transport, as pointed out, for example, in [22–24]).
Furthermore, we will show that writing the contributions to the
quasineutrality equation that gives the electric field tangent
to the flux surface is a subtle issue. In particular, we will prove
that the superbanana-plateau layer has to be resolved to
find the tangent electric field. For this reason, we discuss the
quasineutrality equation in section 4.2.1.

The contributions to Qi from the two layers mentioned
above are additive, as long as the layers are distinct and do
not overlap, and a general expression embracing the n and
superbanana-plateau regimes is provided in section 4.3. The
treatment of cases in which both layers overlap is left for the
future. As (5) and (6) already indicate, we will show that
the neoclassical fluxes scale with the square of the size of the
deviation from omnigeneity, δ.

In section 5 we use the results of previous sections to
write the equation that gives the radial electric field.

Finally, in section 6, we explain that the results of
section 4 are not expected to be correct for arbitrarily small

i*n . For each δ there exists a value of the collisionality *nd
such that if i* *n n< d our solution is not valid. We explain
and estimate the limit value *nd .

In section 7 we summarize the conclusions of the paper.

2. Omnigeneous stellarators

Throughout the paper, we deal with stellarators whose
magnetic field configurations possess nested flux surfaces. In
the first place, we define a set of spatial coordinates l, ,y a{ }
adapted to the magnetic field. The coordinate ψ determines

the flux surface, whereas α is an angular coordinate that labels
a magnetic field line once ψ has been fixed. Finally l, the arc
length over the magnetic field line, specifies the position
along the line for fixed ψ and α. Denote by ry ( ), ra ( ) and
l r( ) the functions giving the value of these coordinates for
each point r in the stellarator. The magnetic field can be
written as

B . 7t y y a= Y¢  ´ ( ) ( )

Here, tY is the toroidal magnetic flux over 2p and primes
stand for differentiation with respect to ψ. In order to have
unique pairs l,a( ) associated to each point on a flux surface,
we choose a curve  that closes poloidally5. This curve can be
parameterized by α. All points on the curve are assigned, by
definition, the value l=0. For each pair ψ and α we take
l L0, ,y aÎ [ ( )), where L ,y a( ) is found by integrating from
 along the line until the curve  is encountered again.

Let v be the magnitude of the velocity and v v B2 2l = ^ ( )
the pitch angle. Given a flux surface determined by ψ, par-
ticles are passing or trapped depending on the value of λ.
Passing trajectories have B1 maxl y< ( ), where Bmax y( ) is
the maximum value of B on the flux surface. Passing particles
explore the entire flux surface and always have vanishing
average radial magnetic drift. Particles with B1 maxl y> ( )
are trapped. For trapped particles, the radial magnetic drift
averaged over the orbit is non-zero in a generic stellarator. A
stellarator is called omnigeneous if the orbit-averaged radial
magnetic drift is zero for all particles [2–5]. That is, if and
only if the second adiabatic invariant J v l2 d

l

l

b

b

1

2ò= ∣ ∣∣∣ is a flux

function, which means that

B l1 d 0 8
l

l

b

b

1

2

ò l¶ - =a ( )

must hold for every trapped trajectory. Here lb1
and lb2

are the
bounce points; i.e. the solutions for l of the equation

B l1 , , 0l y a- =( ) for a particular trapped trajectory. Since
(8) has to be satisfied for every λ, that equation is equivalent
to requiring6

v B l l, , , , , d 0 9
l

l

b

b

1

2

ò y l y a¶ L =a ( ( )) ( )

for any function Λ that depends on α and l only through B.
We will make use of this definition of omnigeneity several
times along the article.

3. Low-collisionality drift-kinetic equation in
stellarators close to omnigeneity

As we said in the Introduction, due to the smallness of i*
r we

can employ the drift-kinetic approach [6, 11, 25, 26]. It

5 To fix ideas, we are thinking of α as a poloidal angle, but things work
analogously if α, and therefore the curve  , have a different helicity.
6 In [3], it is proven that (8) implies that l Bd då∣ ∣ (the sum runs over the two
points of each well where the magnitude of the magnetic field reaches a
certain value B) depends only on ψ and on the value of B. Property (9)
follows by employing this result after changing the integration variable on the
left-side of (9) from l to B.

3
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consists of a systematic way to average, order by order in i*
r ,

over the fast gyration of particles around magnetic field lines.
This is achieved by finding a coordinate transformation on
phase space that decouples the gyromotion from the com-
paratively slow motion of the guiding center. The new
coordinates are called drift-kinetic coordinates. In what fol-
lows, we restrict ourselves to electrostatic drift-kinetics and
assume that m v ei ti

2j ~ .
The form of the drift-kinetic equation is determined by

the transformation from coordinates r v,{ } to drift-kinetic
coordinates (or, perhaps more precisely, to the drift-kinetic
limit of gyrokinetic coordinates [27]). Even though we will
end up employing the coordinates v and λ defined in
section 2, it is convenient to start using as independent
coordinates the total energy per mass unit  and the magnetic
moment μ because they are constants of the particle motion.
Then, in drift-kinetic coordinates R, , , , m s g{ }, where R is
the position of the guiding center, σ is the sign of the parallel
velocity and γ is the gyrophase, we have

O L

v Z e

m

B
v O v B

O

R r b v

v b

v e
v e

1
,

2
,

1

2
,

arctan , 10

i
i

i

i

i ti

i

2
0

2

2 2 2

2

1

*

*

*



r

j

m r

g r

= -
W

´ +

= +

= - +

= +
⎛
⎝⎜

⎞
⎠⎟

ˆ ( )

( ( · ˆ ) ) ( )

· ˆ
· ˆ

( ) ( )

where Bb B1= -ˆ and the right sides of the previous expres-
sions are evaluated at r. The orthogonal unit vector fields e1ˆ
and e2ˆ satisfy at each point e e b1 2´ =ˆ ˆ ˆ . The higher-order
corrections in the definition of μ are determined by the fact
that μ is the adiabatic invariant corresponding to the ignorable
coordinate γ. Finally, v vs = ∣ ∣∣∣ ∣∣ gives the sign of the parallel
velocity, where the latter is viewed as a function of the other
coordinates through the expression

v B
Z e

m
2 . 11i

i
s m

j
= - -

⎛
⎝⎜

⎞
⎠⎟ ( )∣∣

Denote by F lR R R, , , , ,i y a m s( ( ) ( ) ( ) ) the distribu-
tion function in drift-kinetic coordinates. We assume from the
beginning that our distribution function does not depend on
the gyrophase γ, which is true for all the calculations in this
paper (see [25] for the proof that only pieces of the dis-
tribution function O fi i Mi* *

n r( ) or smaller are gyrophase
dependent). In these coordinates the drift-kinetic equation
reads

F C F FR , . 12i ii i i
 =˙ · [ ] ( )

Here,

v O vR bb b 13i ti*
r= +˙ · ˆ ˆ ˆ ( ) ( )∣∣

and

O vR R bb v v , 14M i E i ti,
2*r- = + +˙ ˙ · ˆ ˆ ( ) ( )

with

v Bv b
1

15M i
i

,
2 k m=

W
´ + ˆ ( ) ( )∣∣

being the magnetic drift,
c

B
v b 16E j= ´ ˆ ( )

being the E×B drift and b bk = ˆ · ˆ being the curvature of
the magnetic field lines. Note that vM i,∣ ∣ and vE∣ ∣ are O vi ti*

r( ).
In (13) and (14) we have shown only the terms that will

be needed later on. All the terms of Ṙ up to O vi ti
2*r( ) have

been computed in [26]. In (12), an expansion in the mass ratio
m m 1e i  has been taken so that ion–electron collisions

are neglected, andCii
 is the ion–ion Landau collision operator

written in coordinates  and μ. Its explicit expression (see
[28], for example) is not necessary for our purposes. From
here on, we concentrate on ion transport.

Low collisionality regimes are defined by 1i*n  . It is
well-known (see, for example, section 7.1 in [11] and also
[14]) that if the collisionality is small but still larger than the
normalized gyroradius, i.e. if 1i i* *r n  , then the dis-
tribution function and electrostatic potential can be expanded
as

F F F ... 17i i i0 1
= + + ( )

and

..., 180 1j j j= + + ( )

where

F n
m

T

m Z e

T

,
2

exp 19

i i
i

i

i i

i

0

3 2

0





 y y
p y

j y
y

=

´ -
-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( )

( )
( )

( )

is a Maxwellian distribution with density and temperature
constant on the flux surface, the non-adiabatic perturbation to
Fi0
 has a size

F F , 20i
i

i
i1 0*

*

r
n

~ ( )

T Z ei i0j y ~( ) is a flux function and 1j is found from the
quasineutrality equation

Z F v Nd . 21i i e
3ò = ( )

Here, Ne is the electron density and vd3ò º(·)
B v d d d1 ò m gås

-(·) ∣ ∣∣∣ . To lowest order in m me i 1, only
the adiabatic response of the electrons counts. Then,

N n
e

T

e

T
exp exp , 22e e

e e

1

y
j
y

j
y

=
y

-⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )
( )

where Te is the electron temperature, ne is the flux-surface
averaged electron density and á ñy· denotes the flux-surface
average operation, defined for a function f l, ,y a( ) as

f V l B fd d , 23
L

t
1

0

2

0

,
1ò òy aá ñ = ¢ Y¢y

p y a
- -( ) ( )

( )
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where V y¢( ) is the radial derivative of the volume enclosed
by the flux surface labeled by ψ,

V l Bd d . 24
L

t
0

2

0

,
1ò òy a¢ = Y¢

p y a
-( ) ( )

( )

In the quasineutrality equation defined by (21) and (22)
the expansions (17) and (18) have not been employed yet.
Using them, we obtain

Z

T T en
F v

1 1
d , 25i

i e i
i1 1

3òj+ =
⎛
⎝⎜

⎞
⎠⎟ ( )

where we have assumed that 1j and the right side of (25) have
vanishing flux-surface average. The proof that this choice in
the definition of 1j and Fi1 is possible is provided in [11].

From (25) and the fact that F Fi i i i1
1

0* *
n r~ - , one obtains

. 26i

i
1 0*

*
j

r
n

j~ ( )

This is the so-called 1 n regime [29], that exists for any
stellarator (strictly speaking, for any stellarator that is not
exactly omnigeneous).

The point that needs to be emphasized here is that the
expansions (17) and (18) do not work when i i* *

n r because
Fi1 becomes as large as Fi0

 and 1j becomes as large as 0j (see
(20) and (26)). The regime i i* *

n r is the subject of this
paper, and we start to analyze it in the next subsection.

3.1. Drift-kinetic equation when νi� ≲ ρi� in stellarators close to
omnigeneity

As explained above, the expansion of the distribution function
and electrostatic potential employed in the 1 n regime (recall
equations (17)–(20) and (26)), 1i i* *r n  , is not valid
when i i* *

n r . In order to understand what happens at
collisionality values i i* *

n r we go back to (12), assume
i i* *
n r~ and expand in i*

r .
We take

F F F ... 27i i i0 1
= + + ( )

with F Fi i i1 0*
r~ . To lowest order in i*

r equation (12) gives

v F 0. 28l i0
¶ = ( )∣∣

To solve (28) and the next order equations, we employ a
procedure similar to the one developed in [14] for the 1 n
regime. Equation (28) implies that on an ergodic flux surface7

Fi0
 can be written as

F h g, , , , , , , 29i i i0   y m s y a m= +( ) ( ) ( )

where gi can be chosen such that it vanishes in the passing
particle region of phase space and hi cannot depend on σ in
the trapped particle region. In order to understand (29)
observe, first, that the distribution function Fi0

 cannot depend
on α in the passing region of phase space because passing
particles trace out a flux surface. Second, that in the trapped
region of phase space Fi0

 cannot depend on σ because it has to

be continuous at the bounce points. The split between hi and
gi is defined up to a function independent of α that vanishes
for passing particles. To completely determine gi, we impose
the condition

l
g

v
d d 0. 30

l

l
i

0

2

b

b

1

2

ò òa =
p

∣ ∣
( )
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There are other conditions that could be used to fix gi.
The equation satisfied by Fi0

 is found from averages of
equation (12) to next order in i*

r . For passing particles one
has to multiply the O v L Fi ti i0

1
0*
r -( ) terms of (12) by v1 ∣ ∣∣∣ and

integrate over the flux surface, obtaining

v
C F F ld

1
, d 0. 31

L

ii i i
0

2

0

,

0 0
  ò òa =

p y a

∣ ∣
[ ] ( )

( )

∣∣

In order to get (31) we have employed F 0l i0
¶ = , the fact that

in the passing region F 0i0
¶ =a , and finally the property

v
lv vd

1
d 0 32

L

M i E
0

2

0

,

,ò òa y+  =
p y a

∣ ∣
( ) · ( )

( )

∣∣

for passing trajectories.
For trapped particles we multiply the O v L Fi ti i0

1
0*
r -( )

terms of (12) by v1 ∣∣ and integrate over the orbit, arriving at

J F J F

Z e

m c v
C F F l

1
, d . 33

i i

i t

i l

l

ii i i

0 0

0 0
b
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 
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- ¶ ¶ + ¶ ¶

=
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s ∣ ∣
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∣∣

Equation (33) has conveniently been expressed in terms of the
second adiabatic invariant

J v l, , , 2 d 34
l

l

b

b

1

2
 òy a m( ) ≔ ∣ ∣ ( )∣∣

by employing the relations

v
l

m c

Z e
Jv v2

1
d 35

l

l

M i E
i

i t
,

b

b

1

2

ò y+  =
Y¢

¶a∣ ∣
( ) · ( )
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and

v
l

m c

Z e
Jv v2

1
d , 36

l

l

M i E
i

i t
,

b

b

1

2

ò a+  = -
Y¢

¶y∣ ∣
( ) · ( )

∣∣

that are derived in appendix A.
Given the profiles for ion density, ion temperature and

radial electric field, the piece of the electrostatic potential that
determines the tangential electric field is found from (recall
(21) and (22))

Z F v n
e

T

e

T
d exp exp . 37i i e

e e
0

3

1
ò y

j
y

j
y

=
y

-⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )
( )

In a generic stellarator one cannot go beyond (31), (33) and
(37), that are a set of nonlinear equations for the distribution
function and the electrostatic potential. In particular, this
means that without further assumptions, when i i* *

n r , one
cannot deduce that Fi0

 be Maxwellian, and the drift-kinetic
equation is clearly not radially local (note the term in (33)
containing Fi0

¶y ). However, we proceed to show that the
situation is different if the stellarator is close to omnigeneity.

7 On a rational surface, passing particles follow periodic orbits and must be
treated like standard trapped particles. Hence, there would be no splitting
between hi and gi on a rational surface.
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We take

B B B , 380 1d= + ( )

where B0 is omnigeneous, B B0 1~ and 0 1 d  , and
assume that the expansion in δ is subsidiary with respect to
the expansion in i*

r . As advanced in the introduction, we
only consider the case in which B1 has small spatial deriva-
tives tangent to the flux surface,

B L B

B B

,

. 39
l 1 0

1
0

1 0

d d
d d
¶ ~
¶ ~a

-

( )

The distribution function and the electrostatic potential
are expanded as

F F F ... 40i i i0 0
0

0
1  d= + + ( )( ) ( )

and

..., 410
1j j y dj= + +( ) ( )( )

where F Fi i0
1

0
0 ~( ) ( ) is the non-adiabatic correction of the

distribution function and 1
0j j~( ) . We also expand J as

J J J ..., 420 1d= + + ( )( ) ( )

with

J v l

J
v

B l
Z e

m
l l

2 d ,

2
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, , d .

43
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1
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Here lb10
and lb20

are the points that make

v l B l
Z e

m
, , , , 2 , ,

44

i

i

0
0 0 y a m s m y a j y= - -

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( )

∣∣
( )

vanish and J 0( ) is independent of α, which is the defining
property of omnigeneity, as explained in section 2. The rig-
orous proof that the perturbation to J 0( ) is actually linear in δ

when (39) is satisfied is contained in [30]. Finally, observe
that we have assumed that 0j is a flux function. It can be
proven that this follows from quasineutrality for an exactly
omnigeneous magnetic field.

To lowest order in δ equation (31) gives

v
C F F ld

1
, d 0, 45

L

ii i i
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0
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0
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  ò òa =
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( ) ( ) ( )
( )

where the superindex 0( ) in Cii
0( ) indicates that only B0 has

been kept in the kernel that defines the collision operator.
Analogously, L 0 y( )( ) is the length of the magnetic field line
for the omnigeneous configuration, and it has been stressed
that it does not depend on α.

The lowest order terms of (33) in the δ expansion are

J F

Z e

m c v
C F F l

1
, d , 46

i

i t

i l
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ii i i
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where we have used J 00¶ =a
( ) due to omnigeneity.

We solve equations (45) and (46) by using the entropy
production property of the collision operator. The lowest-
order piece of (29) in the δ expansion implies that Fi0

0( ) does
not depend on α in the passing region. Hence, we multiply
(45) by Fln i0

0- ( ) and find

v
F C F F ld

1
ln , d 0

47

L

i ii i i
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2

0 0 0
0 0

0
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∣ ∣
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( )

∣∣
( )

( ) ( ) ( ) ( )
( )

in the passing region.
Similarly, we multiply (46) by Fln i0

0- ( ), integrate the
resulting expression over α and recall that omnigeneity
implies that J 0¶y ( ) does not depend on α. We end up with

v
F C F F ld

1
ln , d 0

48
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i ii i i
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b
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s

p

∣ ∣
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( ) ( ) ( ) ( )

in the trapped region. Integrating (47) and (48) in velocity
space and following an entropy-production argument, we
deduce that Fi0

0( ) is a Maxwellian distribution. Furthermore, it
must have zero flow because Fi0

0( ) cannot depend either on l
or on the gyrophase. Inserting the Maxwellian into (46), we
find that it is also independent of α, leading to

F n
m

T

m Z e

T

,
2

exp . 49

i i
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3 2
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⎞
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( )
( )

( )

( )

We turn to the equations provided by terms that are linear
in δ in (31) and (33). Using the decomposition (29), we can
write

F h g, , , , , , , 50i i i0
1 1 1  y m s y a m= +( ) ( ) ( )( ) ( ) ( )

where hi
1( ) cannot depend on σ in the trapped particle region

of phase space, and gi
1( ) may be chosen such that it vanishes

in the passing particle region and such that

g d 0. 51i
0

2
1ò a =

p
( )( )

Equation (51) is simply condition (30) written to O d( ) by
using (9).

To O d( ) equation (31) gives

v
C h ld

1
d 0, 52

L
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, 0 1
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ò òa =
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∣ ∣
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where

C h C F h C h F, , 53ii
ℓ

i ii i i ii i i
, 0 1 0

0
0 1 0 1

0
0    = +[ ] [ ] [ ] ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

is the linearization of the collision operator around Fi0
0( ). In

order to get (52) we have employed that for passing trajectories

v
C g ld

1
d 0. 54

L
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ℓ

i
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This is obtained by noting condition (51) and by using that, due

to (9), v C ld
L

ii
ℓ

0
0 1 , 0

0
òås

y -∣ ∣ [ · ]
( )
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( ) ( )

( )

is an operator whose
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coefficients are independent of α when acting on functions
independent of l.

The O d( ) terms of (33) yield

J F J F

Z e

m c
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where
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Next, we show that hi
1( ) can be set equal to zero. We

integrate (55) over α, which gives
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In order to obtain (57) we have used that in the trapped region
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This can be deduced by recalling (51) and by noting that, due

to (9), v C ld
l

l
ii

ℓ0 1 , 0

b

b

10

20 òås
-∣ ∣ [ · ]∣∣

( ) ( ) is an operator with coef-

ficients independent of α when acting on functions indepen-
dent of l. Multiplying (52) and (57) by h Fi i

1
0

0- ( ) ( ),
integrating over velocity space and applying again an
entropy-production argument, we find that hi

1( ) has to be a
Maxwellian distribution with zero flow, and independent of α
and l. Thus, it can be absorbed in the definition of Fi0

0( ) and,
from here on, we can assume

h 0 59i
1 º ( )( )

without loss of generality.
Then, we only need to determine gi

1( ), which is found

from (55) by setting hi
1( ) equal to zero. Namely,
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It is obvious, but still worth pointing out, that when
1i i* *r n  the first term in (60) can be neglected and one

recovers the equation for the dominant piece of the distribu-
tion function in the 1 n regime of a stellarator close to
omnigeneity with a non-omnigeneous perturbation that has
small gradients [14].

Note that the orbit integrations in (43) and (60) only
involve B0 and 0j . We use this fact to employ, in what fol-
lows, the coordinates
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in which the equations become simpler. We will not change
the names of the functions v 0

∣∣
( ), J 0¶y ( ), J 1( ) and gi

1( ) but
assume that they are expressed in coordinates v and λ. Let us
be explicit to avoid any confusion. From here on, by J 0¶y ( )

and J 1( ) we understand

J
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In these coordinates the equation for gi
1( ) reads, to the

relevant order in δ,
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and Cii
ℓ 0( ) is the linearized collision operator corresponding to

B0 written in coordinates v and λ, given in [14].
Noting that S B ld d d2 1ò ò y aº -( · ) ∣ ∣( · ) and recal-

ling (35), the energy flux (1) can be written as

Q
m c

Z e
vv

v Z e

m

J g

d
2

d d , 67

i
i

i

i

i

B

B

i

2 2

0

3
2

0

1

1

0

2
1 1

0,max

0,min

ò

ò ò

p d j

l a

= +

´ ¶
p

a

¥ ⎛
⎝⎜

⎞
⎠⎟

( )( ) ( )

where B0,min and B0,max are the minimum and maximum
values of B0 on the flux surface, respectively. The adiabatic
response is absent from (67) because its contribution vanishes
(the same can be said about its contribution to the particle
flux), as shown in appendix B.

In particular, we have shown that Qi is proportional to 2d ,
the square of the size of the deviation from omnigeneity. In
section 4 we expand (64) for i i* *

n r and give the
expressions for (67) in such collisionality regimes.

4. Solution of the drift-kinetic equation (64)
when νi�{ρi�

Let us define the precession frequency due to the tangential
drift

v
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Z e
J, , , 68i

i t b
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where
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is the time that a particle trapped in B0 takes to complete its
orbit. Note that b

0t( ) does not depend on α due to property (9),
and therefore wa is also independent of α.

Typically, v Li ti 0*
w r~a , and equation (64) is solved by

expanding in 1ii i i* *
n w n r~a  . We use the notation

g g g O F , 70i ii i
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0 1
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where g g O ii1 0 n w~ a( ) and g Fi0 0~ .
To lowest order in the iin wa expansion, equation (64)

gives
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The solution of (71), choosing g d 0
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one proves that (72) does not contribute to (67). The next
order terms of (64) in the iin wa expansion yield
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where we have introduced a convenient notation for the orbit
average,
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where the lower limit of the integral is selected so

that g d 0
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p
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When plugged into (67), this piece of the distribution
function gives a scaling

Q n T v S 77i
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i i i ti
2

*
d
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r~
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y ( )

for the energy flux. However, this is not the dominant
contribution to Qi. It turns out that the energy flux is domi-
nated by two small collisional layers that appear where (72) is
not a good approximation to gi

1( ). This happens near the
boundary between trapped and passing particles, and also
near points where J 00¶ =y

( ) . We study these layers in
sections 4.1 and 4.2.

Finally, we advance a more subtle point. The necessity of
solving the layers is not only tied to the calculation of
transport fluxes. It is clear that one cannot say that the drift-
kinetic equation has been completely solved unless 1j( ) is
known, because the latter enters the source term of the former
via J 1¶a ( ). However, so far, 1j( ) has not been found. It has to
be determined from the quasineutrality equation (37).
Expanding (37) in δ and choosing 1j( ) such that it has van-
ishing flux-surface average, we obtain the equation that
determines the tangential electric field
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Here, we have used that in v, , ,l s g{ } coordinates
v v B v vd 2 d d d3 3ò ò l gº ås(·) (·) ( ∣ ∣)∣∣ and that gi

1( ) vanishes
in the passing region, so that the integral on the right side of
(78) is taken only over trapped trajectories. Note that (78) is
consistent with the vanishing of the flux-surface average of

1j( ) and with condition (51).
We will prove later on (see section 4.2.1) that the layer

analyzed in section 4.2 contributes to the quasineutrality
equation as much as g0, in general. Hence, to treat this layer,
we need to calculate 1j( ) self-consistently.

4.1. Layer around the boundary between trapped and passing
particles: the

ffiffiffi

ν
p

regime

Recall that g 0i
1 º( ) in the passing region. The value of gi

1( )

at the boundary of the trapped region is given by
g g 0c0 l ¹+ ≔ ( ) , with B1c 0,maxl = and g0 given by (72)8.
Then, the distribution function is not continuous. This dis-
continuity comes from an incorrect treatment of the region
around the interface between passing and trapped particles.
More specifically, it is the consequence of dropping the col-
lision term in that region. Usually, this indicates [31] that
there is a small layer in a neighborhood of cl where the
distribution function develops large variations in λ, and
neglecting the collision term is not correct. In the standard
language of boundary-layer theory g0 is the outer solution,
and the inner solution of the boundary layer, that we will
denote by gbl, remains to be found.

We have to replace (70) by

g g g ..., 79i
1

0 bl= + + ( )( )

where gbl satisfies the equation

g C g C g . 80ii
ℓ

ii
ℓ

bl
0

bl
0

0w ¶ + = -a a [ ] [ ] ( )( ) ( )

The collision operator acting on g0 has been included on the
right-hand side of the previous equation because very close to

cl the function g0 varies fast with λ, and the right side of (80)
actually diverges at cl , as we will see below.

8 Sometimes, in order to ease the notation, we will omit some of the
arguments of the functions. For example, in this section it will be common to
display only the dependences on l.
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Equation (80) must be solved between cl l= and a
value of 0cl l- > sufficiently large that gbl becomes small.
Denote the width of the layer in the coordinate λ by

B0
1Dl

n - (its typical size is deduced below; see
equation (112)) and let K be a constant that satisfies K 1
and K B0

1Dl
n - . Then, equation (80) is viewed as an

equation in the interval ,c Kl l lÎ [ ], with KK cl l- ~ Dl
n .

The boundary conditions are g gcbl l = - +( ) and
g 0Kbl l =( ) . At the end of this subsection we will conclude
that the solution is asymptotically independent of K, as it
should be.

Due to the boundary condition g gcbl l = - +( ) , we know
that g gbl 0~ . In addition, if the two terms on the left side of
(80) are to be comparable in size, then the support of gbl (that
is, the size of the boundary layer Dl

n ) has to be sufficiently
small for the pitch angle scattering piece of the collision
operator on the left side of (80),

C g
v

v B
v g ..., 81ii

ℓ 0
bl

0

2
0

0
bl

n
l= ¶ ¶ +

l
l l[ ] ( ) ( )( ) ∣∣

( )

∣∣
( )

to dominate. Here,

v
n Z e

m v
m v T

m v T

8 ln
erf 2

2 82

i i

i
i i

i i

4 4

2 3
2

2

n
p

c

=
L

-

l ( ) [ ( ( ) )

( ( ) )] ( )

is the pitch angle scattering frequency, ln L is the Coulomb
logarithm, x x x x xerf 2 exp 22 2c p= - -( ) [ ( ) ( ) ( )] ( ) and

x t terf 2 exp d
x

0
2òp= -( ) ( ) ( ) is the error function.

In the boundary layer the pitch-angle scattering operator
on the right side of (81) is dominated by the piece that
involves g ;2

bl¶l i.e. the term that contains v g0
bll¶ ¶l l( )∣∣

( ) is
small. The same happens for the right side of (80) close to cl ,
as will be justified below. Therefore, (80) can be approxi-
mated by

g B B g

B B g

1

1 , 83

bl 0
1

0
2

bl

0
1

0
2

0

w n l l

n l l

¶ + - ¶

= - - ¶

a a l l

l l

-

-

( )

( ) ( )

where again the coefficient multiplying g2
bl¶l and g2

0¶l does
not depend on α due to (9).

Due to the smallness of the boundary layer we can
approximate this equation further by taking cl l= in most
terms; that is, equation (83) becomes

J g g g , 840
bl

2
bl

2
0n x n x¶ ¶ + ¶ = - ¶y a l l l l ( )( )

where

v
Z e

m c v
B B l l,

2
1 , , d .

85

i t

i

c

l

l

c0
1

0
b

b

10

20

òx y
l

l y a
Y ¢

--( ) ≔ ( )

( )

The dependence of J 0¶y ( ) on λ cannot be neglected because
J v, ,0 y l¶y ( )( ) diverges when cl l . The point cl l= is a

singular point of the differential equation (84) and requires a
careful analysis. The right-hand side of (84) also diverges at

cl , as pointed out above. We proceed to explain how these
divergences emerge.

In appendix C we show that the asymptotic expansion of
J 0¶y ( ) for small cl l- (with cl l> ) is of the form9

J a B a

O v L B

ln

, 86
c

ti c

0
1 0,max 2

0 0

l l
l l y

¶ = - +
+ -

y ( ( ))
( ( ) ) ( )

( )

where

a
v B l Z e m v

B l

1

2

2
87

c k

c M k i i

l M k

1
1

2
0 , 0

2
0 ,

ål
l j

=
¶ + ¶

¶

y y

=

( ) ( )

∣ ( )∣
( )

and the values lM k, , for k=1, 2, locate two consecutive
absolute maxima of B0 when moving along the field line.

The coefficient a2 can be computed from the relation

a J a Blim ln . 88c2
0

1 0,max
c

l l= ¶ - -
l l

y


( ( ( ))) ( )( )

Defining a2˜ by the relation

a a B aln , 892 1 0,max
1

2= -( ˜ ) ( )

one can recast (86) in the more convenient way

J a a O v L Bln .

90
c ti c

0
1 2 0 0l l l l y¶ = - + -y ( ˜ ( )) ( ( ) )

( )

( )

Analogously, the asymptotic expansion of J 1( ) yields

J c B c O v L Bln ,
91

c ti c
1

1 0,max 2 0 0l l l l= - + + -( ( )) ( ( ))
( )

( )

where

c
vB l Z e m v l

B l

1

2

2
92

c k

c M k i i M k

l M k

1
1

2
1 , 1 ,

2
0 ,

ål
l j

=
+

¶=

( ) ( ) ( )

∣ ( )∣
( )

and

c J c Blim ln . 93c2
1

1 0,max
c

l l= - -
l l

( ( ( ))) ( )( )

We rewrite (91) as

J c a c O v L Bln ,
94

c ti c
1

1 2 2 0 0l l l l= - + + -( ˜ ( )) ˜ ( ( ))
( )

( )

with

c c c B aln . 952 2 1 0,max
1

2= - -˜ ( ˜ ) ( )

Using (90) and (94), equation (84) becomes

J g g g , 960
bl

2
bl

2
0n x n x¶ ¶ + ¶ = - ¶y a l l l l ( )( )

where

J a aln , 97c
0

1 2 l l¶ = -y
 ( ˜ ( )) ( )( )

g
J

J J F
1 1

2
d 98i i0

0

1

0

2
1

0òp
a=

¶
- ¡

y

p  
⎛
⎝⎜

⎞
⎠⎟ ( )

( )
( ) ( )

9 An identical calculation to the one carried out in appendix C for J 0¶y ( )

shows that b
0t( ) also diverges logarithmically when cl l . This is not a

problem in order to define the orbit-averaged drift-kinetic equation in the
boundary layer because the number of particles for which 1ii b

0n t ( ) is
exponentially small, O exp 1 i*n-( ( )), and therefore negligible in an
asymptotic expansion in small i*n .
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and

J c a cln . 99c
1

1 2 2l l= - + ( ˜ ( )) ˜ ( )( )

That is, (96) is obtained from (84) by keeping only the
dominant terms in the asymptotic expansions of J 0¶y ( ) and
J 1( ) near cl . It is clear from (97) to (99) that the right side of
(96) diverges for cl l . It is also obvious that, whereas
both J 0¶y ( ) and J 1( ) diverge at cl , g g c0 l+ ≔ ( ) is finite, as it
should be.

The solution of equation (96) is more easily found by
first expanding gbl in Fourier modes with respect to the
coordinate α. Define g nbl, , g n0, and g n,+ by the relations

g g

g g

g g

, e ,

, e ,

e . 100

n
n

n

n
n

n

n
n

n

bl bl,
i

0 0,
i

,
i

å

å

å

a l l

a l l

a

=

=

=

a

a

a

=-¥

¥

=-¥

¥

+
=-¥

¥

+



( ) ( )

( ) ( )

( ) ( )

The Fourier coefficients gbl,0, g0,0 and g ,0+ are equal to zero
because of condition (51). Here, we have stressed the α and λ

dependence although gbl, g0 and g+ also depend on ψ and v.
Then, (96) transforms into the set of ordinary differential
equations

n J g g gi , 101n n n
0

bl,
2

bl,
2

0,n x n x¶ + ¶ = - ¶y l l l l
 ( )( )

that must be solved with the boundary conditions

g g 102n c nbl, ,l = - +( ) ( )

and

g 0. 103n Kbl, l =( ) ( )

At this point, we can explain why equation (101) has not
been extended up to l = ¥ from the beginning. The reason
is that there always exists a sufficiently large value of λ such

that the truncation J 0¶y( ) vanishes even though J 0¶y ( ) may
never vanish. We will see in section 4.2 that points where

J 00¶ =y
( ) correspond to another layer that, typically, gives

non-negligible transport. To avoid points where J 00¶ =y
( ) ,

we have imposed the boundary condition of (101) at a finite
value of Kl , with KK cl l- ~ Dl

n . We must choose K such

that J 0¶y( ) does not vanish for , ;c Kl l lÎ [ ] i.e. such that
a aln lnc K c2 2l l l l- -∣ ( ˜ ( ))∣ ∣ ( ˜ ( ))∣ for ,c Kl l lÎ [ ].
The behavior of (101) in a vicinity of the singular point

cl l= is analyzed in appendix D, where it is proven that the
equation possesses solutions compatible with (102).

We also expand J 1( ) in Fourier modes,

J v J v, , , , , e , 104
n

n
n1 1 iåy a l y l= a

=-¥

¥
 ( ) ( ) ( )( ) ( )

where

J c a cln 105n n c n
1

1, 2 2,l l= - + ( ˜ ( )) ˜ ( )( )

and where c n1, and c n2,˜ are the coefficients of the Fourier
expansions of c1 and c2˜ . Employing the solution for gbl, we
find that the contribution of the boundary layer to the right

side of (67) is

Q
m c

Z e
n vv

v Z e

m
J g

2
i d

2
d . 106

i
i

i n

i

i
n n

,

2 2 2

0

3

2
0 1

bl,
c

K

ò

ò

å
p d

j
l

=-

´ +

n

l

l

=-¥

¥ ¥

-
⎛

⎝⎜
⎞
⎠⎟ ( )( )

We proceed to show the scaling of (106) with the square
root of the collisionality, to which the n regime owes its
name. We will also prove that the scaling with the square root
of the collisionality must actually be corrected by a logarithm
due to the logarithmic singularities in (101). Finally, we will
show that the solution is independent of the constant K as
long as aln K c2 l l-∣ ( ˜ ( ))∣ is sufficiently large.

In (101), we perform the change of coordinate

z
a

1
ln

1
, 107c2

2
2 2

l l=
D D

-
⎛
⎝⎜

⎞
⎠⎟˜

( ) ( )

where

na
. 108

1

1 2n x
D = l⎛

⎝⎜
⎞
⎠⎟∣ ∣

( )

Then, equation (101) becomes

na

na

z

a

a

a
g

g g

i
ln

ln 1

1

2
1

ln ln 1

ln 1

,

109

n

z n z n

1

1 2
2

2
2

2
2 bl,

2
bl,

2
0,

D
- +

D
D

+ ¶ = ¶

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∣ ∣ ( ( ˜ ) )

[ ( ( ˜ ) )]
( ( ˜ ) )

( )

with

110

g
a

c
c

a a z

F

1

2

ln 1 ln ln 1 2 ln

.

n

n
n

i i

0,
1

1,
2,

2
2 2

2
2

0

=

´ -
D + D -

´ ¡

⎡
⎣⎢

⎤
⎦⎥

( )

˜
( ( ˜ )) [ ( ( ˜ ) ))]

Employing that z 1~ in the layer and performing an
expansion in the small quantity a1 ln 1 12

2D ( ( ˜ ) ) , one
obtains to lowest order

na

na
g g

i

2
0, 111n z n

1

1
bl,

2
bl,- + ¶ =

∣ ∣
( )

where we have used, in particular, that the right side of (109)
is small in a1 ln 1 2

2D( ( ˜ ) ), as can be deduced by inspecting
(110). Equation (111) has an exponentially decaying solution
with a characteristic width 1zD ~ . Using (107) to go back to
the original coordinate λ, we find that the width of the layer in
λ is

na a

1

ln 1
. 112

1

1 2

2
2

n x
D ~

D
l
n l⎛

⎝⎜
⎞
⎠⎟∣ ∣ ( ( ˜ ) )

( )

Therefore, not even to lowest order in a1 ln 1 12
2D ( ( ˜ ) )

does the width of the layer scale exactly with the square root
of the collision frequency. Although the logarithmic correc-
tions do not change the qualitative features of this
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collisionality regime, they must be accounted for in order to
have accurate results for the neoclassical fluxes. Noting the
asymptotic expression (105), and using the change of coor-
dinate (107) to rewrite the right side of (106), we find that the
size of Qi, n is

Q n T v L Sln . 113i
ii

ii i i i ti,
2

1 2

3 2
2 2

0
1

*
d

n
w

w n r~n
a

a y
-( ) ( )

Finally, we point out that the expansion of (109) in the small
quantity a1 ln 1 2

2D( ( ˜ ) ) can be continued to higher orders. It
is straightforward to check that, to any order, the boundary
condition for large z (equivalently, for large λ) can be imposed
at z = ¥. In other words, the solution to equation (109) is
independent of K when a1 ln 1 12

2D ( ( ˜ ) ) .

Recall that 1
1j( ) remains to be found. In order to write the

precise form of the quasineutrality equation that determines

1
1j( ) (given in section 4.2.1), we have to solve for the layer

around points where J 00¶ =y
( ) . This is the subject of

section 4.2.

4.2. Layer around points where ωα ¼ 0: the superbanana-
plateau regime

The outer solution (72) for the distribution function is correct
everywhere except near the boundary between the passing
and trapped regions (already treated in section 4.1) and in the
neighborhood of points where 0w =a (equivalently, points
where J 00¶ =y

( ) ). Around these ‘resonant points’ the
1iin wa  expansion is not valid. This region of phase space

is the subject of the present section.
In order to understand what happens in the vicinity of a

point where 0w =a , we go back to equation (64) and do not
carry out the 1iin wa  expansion. That is, we consider the
equation

g C g S 114i ii
ℓ

i
1 0 1w ¶ + =a a [ ] ( )( ) ( ) ( )

with

S v
m c

Z e
J F, , , . 115i

i t b

i i0
1

0y a l
t

=
Y¢

¶ ¡a( ) ( )( )
( )

Below we will find it useful to distinguish between the con-
tributions to J 1¶a ( ) coming from B1 and from 1j( ). Defining

J v
B

B
l

1
d 116B

l

l
1 1

0b

b
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20

òl
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( )( )
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J
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m v B
l

2

1
d , 117i
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l
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b
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ò
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-
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( )

we write S S SB= + j, where

S v
m c

Z e
J F, , , 118B

i

i t b
B i i0
1

0y a l
t

=
Y¢

¶ ¡a( ) ( )( )
( )

and

S v
m c

Z e
J F, , , . 119i

i t b

i i0
1

0y a l
t

=
Y¢

¶ ¡j a j( ) ( )( )
( )

We call rl the values of λ that satisfy 0w =a . Given an
omnigeneous magnetic field B0, they are found from the
equation (recall (62) and (75))

B
Z e

m v
,

2
. 120r r

i

i
0

0
2

l y l
j y

¶ = -
¢

y ( )
( )

( )

Of course, in general rl is a function of ψ and v,
v,r rl l yº ( ). The qualitative discussion on the number of

zeroes of (120) depends on the number of zeroes of (120) for
the particular case of 00j¢ = ,

B , 0. 121r0 0y l¶ =y ( ) ( )

To fix ideas, we assume the common situation in which one,
and only one value of λ solves equation (121). In this setting,
for any value of 0j¢ and v, wa vanishes at most for one value of
λ. And for any given value of 0j¢ , there exists a minimum
value of v such that 0w =a for some value of λ. We denote
this value of v by vmin .

Around rl ,

O , 122r r r
2w l w l l l l l= ¶ - + -a l a( ) ( )( ) (( ) ) ( )

where the dependence on ψ and v has been omitted for
simplicity. The balance of the two terms on the left side of
(114) implies that in a neighborhood of rl of size sb pDl

‐ ,

B
. 123r

iisb p

0
2 sb p 2

w l
n

¶ D ~
D

l a l
l

( )
( )

( )‐
‐

Since, typically, B L vr i ti0 0
1

*
w l r¶ ~l a

-( ) , one finds

B 1. 124i

i
0

sb p
1 3

*

*

n
r

D ~l 
⎛
⎝⎜

⎞
⎠⎟ ( )‐

In the particular case of a large-aspect-ratio tokamak with
broken symmetry, this estimation coincides with the one
obtained in [32].

Denote by grl the distribution function in this ‘resonant
layer’. The pitch-angle scattering piece of the collision
operator dominates the collision term in this layer,

C g
v

v B
v g ..., 125ii

ℓ 0
rl

0

2
0

0
rl

n
l= ¶ ¶ +

l
l l[ ] ( ) ( )( ) ∣∣

( )
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( )

and, in fact, we can keep only the term involving g2
rl¶l .

Hence, in the resonant layer we write the drift kinetic equation
as

g g S S , 126r r r B r, rl
2

rl ,w l l n c¶ - ¶ + ¶ = +l a a l l j( ) ( )

with

v B B, 1 , 127r r r0
1

0c y l l--( ) ≔ ( ) ( )

v v v, , , , , 128r r,w y w y l y¶ ¶l a l a( ) ≔ ( ( )) ( )

S v S v v, , , , , , 129B r B r, y a y a l y( ) ≔ ( ( )) ( )

and

S v
m c

Z e
J v F, , , , , , , 130i

i t b r

i i

,
0

1
0y a l

t
y a l=

Y¢
¶ ¡j a j
( ) ( ) ( )( )

( )

with v v, , ,b r b r,
0 0t t y l y= ( ( ))( ) ( ) and

11

Plasma Phys. Control. Fusion 59 (2017) 055014 I Calvo et al



We have denoted by lL and lR, respectively, the left and right
bounce points of the orbit corresponding to ;rl l= i.e. the
solutions for l of B l1 0r 0l- =( ) . In (131), lb10

˜ and lb20
˜ are

approximations to the exact bounce points, lb10
and lb20

, given
by

l l
B l

B l
132b L

L

r l L
r

0

0
10 l

l l- =
¶

-˜ ( )
∣ ( )∣

( ) ( )

and

l l
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B l
. 133R b

R

r l R
r

0

0
20 l

l l- =
¶

-˜ ( )
∣ ( )∣

( ) ( )

Expression (131) is an asymptotic approximation to J 1
j
( ) near

the resonant value of the pitch-angle coordinate, as can be
proven by using the techniques developed in [30]. Obviously,
if 1j( ) were regular everywhere, one could simply evaluate
J 1
j
( ) at the resonant value rl l= (which would amount to

retaining only the first term in square brackets in (131)).
However, in sections 4.2.1 and 4.2.2 we will show that if 0j¢
is small then T e T ei i i i

1 1 6
* *j r n~ ( )( ) in a neighbor-

hood of lL and lR, and therefore the more elaborate asymptotic
expression (131) is nedeed.

Equation (126) is viewed as a differential equation in
,l Î -¥ ¥( ) with vanishing boundary conditions at infi-

nity. Note that a rescaling of the coordinate λ

x 134r

r
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⎞
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gives the expression
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for the size of the layer needed to make the two terms on the
left side of (126) comparable. Then, the size of the distribu-
tion function in the layer can be estimated as10
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Define the Fourier expansions
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The coefficient grl,0 vanishes due to (51), and SB r, 0( ) and S 0j( )
vanish due to definition (115). Inserting the expansions in
(126) and noting that r,w¶l a and rc do not depend on α, we
find an ordinary differential equation for each mode g nrl, ,

n g g

S S

i

. 138

r r n r n
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w l l n c¶ - + ¶
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In terms of the solution to this set of equations, the energy
flux(67) can be written as
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Here, J n
1

j
( )( ) are the coefficients of the Fourier expansion of

J 1
j
( ) and JB r n,

1( )( ) are the coefficients of the Fourier expansion
of

J v J v v, , , , , , . 140B r B r,
1 1y a y a l y( ) ≔ ( ( )) ( )( ) ( )

As long as v vtimin  , the typical size of the energy flux is

Q n T v S , 141i i i i ti,sb p
2
*

d r~ y ( )‐

which is a consequence of using (135) and (136) in (139). In
particular, Qi,sb p‐ does not scale with any power of colli-
sionality. This is the most characteristic feature of the
superbanana-plateau regime. Below, we explain that the
estimates (135), (136) and (141), that are correct for suffi-
ciently large radial electric field (see section 4.2.3), must be
refined by including logarithmic corrections if the radial
electric field is small enough (see section 4.2.2). The reason is
that to obtain (135), (136) and (141), we have skipped fea-

tures of J 1
j
( ) that are important when 0j¢ is small.
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10 The perturbation to the Maxwellian has a size g gi
1

rld d~( ) in the layer.
From (136), one might be worried that the perturbation to the Maxwellian
becomes larger than the Maxwellian when i i

3
* *

n r d< . This is not a problem,
however, because the analysis in this subsection does not apply to such small
values of the collisionality. This is explained in section 6 (see
equation (185)).
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Before turning to deal with the quasineutrality equation
in the next subsection, it is useful to identify the piece of the
distribution function gi

1( ) out of the resonant layer. As we
pointed out, g0 diverges when J 00¶ =y

( ) and therefore it has
to be replaced by grl in the layer. Sometimes, it is convenient
to explicitly write gi

1( ) as a sum of terms that are specifically
associated to the layer and to the region external to the layer.
This splitting is given by

g g g , 142i
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0
out

rl= + ( )( )

where
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4.2.1. Quasineutrality equation. We are ready to write more
explicitly the quasineutrality equation (78), needed to find

1j( ). The solution (72) does not contribute to transport but it
does contribute to (78). The component gbl, associated to the
n regime, gives a negligible contribution because g Fibl 0~

and the size of the layer is small (see (112)). However, in
general, grl does contribute to (78) as much as g0 (more
precisely, as much as g0

out, defined in (143)) due to the
combination of (135) and (136).

Asymptotically, (78) reads

Here,
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Of course, Ll and Rl depend on ψ and v as well, but for
brevity we have only displayed the dependence on l, as we
often do with other functions along the paper. The necessity

for the complicated asymptotic expansion employed for the
factor v 0 1-∣ ∣∣∣

( ) , instead of simply keeping the first term in
square brackets in (144), can be understood by observing that
such a term diverges when l lL= . Let us discuss this in more
detail.

The function v,rl y( ) is obtained from condition (120).
For the particular case of 00j¢ = , the resonant value of λ is
obtained from (121) and is denoted by r0l y( ), where we have
stressed that r0l does not depend on v. This will be important
in what follows. The correction r r0l l- that is linear in 0j¢ is
found from
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Defining lL0 and lR0 as the solutions for l of
B l1 0r0 0l- =( ) , the corrections l lL L0- and l lR R0- are
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In order to make further progress we have to give an
ordering for 0j¢ , distinguishing the cases of small and large
radial electric field as defined by the conditions
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4.2.2. Small j′
0. Let us take the first term that contains grl in

(144). Using (148), we can write
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If (150) holds, we can set 00j¢ = in the previous expressions
and find
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where L0l stands for the function Ll in the particular case of
00j¢ = . The key observation is that the quantity under the

square root on the right side of the last equation is independent
of v. Then, at l lL0= , the right side of (154) becomes
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Therefore, when 0j¢ is small, the first term that contains grl in
(144) gives a contribution to 1j( ) whose typical size is
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When inserted in (131), this piece of 1j( ) gives a contribution to

J 1
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( ) that scales as
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We are ready to show why the estimates (135), (136) and
(141) are not completely correct if 0j¢ is small. Inspecting the

size of each term in (126) and recalling (158), one concludes
that the width of the layer, sb pDl

‐ , is determined by balancing
the collision term and the last term on the right side of
equation (126). The result is
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The size of the distribution function is found by balancing the
two terms on the right side of (126), obtaining
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Then, the ion energy flux (139) scales as
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4.2.3. Large j′
0. We consider again the first term that

contains grl in (144) and recall expressions (152) and (153).
Now, assume that (151) holds. Then,

B l B lr l L L r L0 0l k l l¶ -∣ ( ) ∣ ∣ ∣ ( ), and we can neglect
B lr L0l l-( ) ( ) in the quantity under the square root in

(152). The same argument can be applied to the second term
containing grl in (144). Therefore, if (151) is satisfied, (144)
simplifies to
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When 0j¢ satisfies (151), we can solve (138) analytically.
Its solution vanishing at infinity is
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Sr n, are the coefficients of the Fourier expansion of Sr,

S v S v v, , , , , , , 166r ry a y a l y( ) ≔ ( ( )) ( )

and S S SB= + j has been defined in (115). Note that for Sr to
be well defined, it is essential that (163) be correct as the
asymptotic expression of J 1

j
( ) near rl l= , and this is only

true as long as condition (151) is met. Then, the contribution
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of resonant particles to (67) is
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Next, we prove that the right side of (167) has a non-zero
limit when 0b  . For this, we employ the identity
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and the property ax a x1d d= -( ) ∣ ∣ ( ), where d (·) is the Dirac
delta distribution and a is a real number. Then, for 1b  , the
asymptotically dominant term is
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4.3. Formula for the ion energy flux when νi�{ρi�

Since the layers studied in sections 4.1 and 4.2 are small and,
in general, they are located around different points of phase
space, their contributions to transport are additive. This means
that we can write, for i i* *

n r ,

Q Q Q , 172i i i, ,sb p= +n ( )‐

where Qi, n is given by (106) and Qi,sb p‐ is given by (139).
The weight of each term in (172) is determined by the value
of vmin . Typically, the estimate (141) will be supressed by a
factor v vexp timin

2 2-( ). Recalling also the estimate (113), we
deduce that the superbanana-plateau regime dominates over
the n regime when
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Conversely, the n regime dominates over the superbanana-
plateau regime when
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Finally, we note that the value of vmin is set by the size of

0j¢ , but also by the specific λ-dependence of B , r0 0y l¶y ( )
(recall condition (121)).

5. Calculation of the radial electric field

The radial electric field, determined by 0j¢ , is one of the
quantities that are routinely computed in standard neoclassical
calculations. It is found by imposing that the radial electric
current vanish.

Let us denote by iG and eG the radial fluxes of ions and
electrons. The radial electric field is obtained by imposing

Z e e 0. 175i i eG - G = ( )

To lowest order in a mass ratio expansion m m 1e i  this
is equivalent to the condition

0. 176iG = ( )

The calculation of iG is completely analogous to that of
Qi. Hence, asymptotically, (176) amounts to the condition
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6. Estimation of νδ�

In section 4 we have solved the drift-kinetic equation and
computed Qi when i i* *

n r . But we have advanced in the
introduction that our results are not valid for arbitrarily small

i*n . There exists a value of the collisionality, that we call *nd ,
below which equation (172) is expected to be incorrect
because the approximation to the drift-kinetic equation in (64)
is incorrect. Hence, it is more precise to say that our results in
section 4 are correct when i i* * *

n n rd   . In this section
we explain the reason for the existence of *nd and estimate its
value.

The limitations of equation (64) for sufficiently small i*n
are well understood by inspecting the drift-kinetic equation
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written with the parallel velocity u and the magnetic moment
μ as independent coordinates. The drift-kinetic equation in
terms of these coordinates is calculated in [11] to second
order in a i*

r expansion. If we denote by F uR, ,i m ( ) the
distribution function expressed in coordinates uR, , ,m g{ },
and by F u FR, ,i i1 m d~ ( ) the deviation of F uR, ,i m ( ) from a
Maxwellian distribution, we can check that the drift-kinetic
equation in [11] contains a term of the form

u Fv v . 180B i E u i, ,0 1k + ¶· ( ) ̌ ( )

Only the piece

u F
v

L
Fv v , 181B i E u i i

ti
i, ,0

0
1

0*
k r d+ ¶ ~[ · ( )] ̌ ̌ ( )( )

corresponding to the omnigeneous magnetic field B0, enters
(64). The effect of higher-order terms like

u Fv v 182B i E u i, ,0
1

1k + ¶[ · ( )] ̌ ( )( )

has not been included. In section 4 we learnt that transport is
dominated by two collisional layers when i i* *

n r . In these
layers, derivatives with respect to u (or, equivalently, with
respect to λ) are large, and they grow as i*n decreases. Let us
denote by uD the width of the layer in the coordinate u. The
term (182) becomes comparable with the pitch-angle scat-
tering piece of the collision operator when

v

L v v
. 183i ti

u ti

ii

u ti0
2

*
dr n
D

~
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If the stellarator is in the n regime, the boundary layer has a
width vu ti i i* *

n rD ~n and we get the estimation [33]

. 184i
2

* *
n d r~d ( )

If the stellarator is in the superbanana-plateau regime, the size
of the boundary layer is vu ti i i

sb p 1 3
* *

n rD ~ ( )‐ and we get
[34]

. 185i
3 2

* *
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When i* *n nd , effects like those described in [35] must
be taken into account. We leave this for future work.

7. Conclusions

Omnigeneity is the property of stellarators that have been
perfectly optimized regarding neoclassical transport. It has
been argued in [14] and in the introduction of the present
paper that, in practice, deviations from omnigeneity have a
non-negligible effect on the neoclassical fluxes. It is natural to
expect that this effect will be larger at low collisionality i*n .

The 1 n regime in stellarators close to omnigeneity is
studied in [14]; this regime is defined by 1i i* *r n  . In the
core of hot stellarator plasmas, even lower collisionality regimes
are relevant. The subject of this paper has been the study of the
parameter range i i* * *

 n n rd , with the restriction (39)
for the perturbations of the omnigeneous configuration (i.e. the
gradients of the perturbations have to be small).

When i i* *
n r , the components of the drifts tangential to

the flux surface have to be retained. For a generic stellarator in

this collisionality regime, the drift-kinetic equation becomes
radially non-local. Transport in a stellarator close to omnigeneity
conserves radial locality. The appropriate radially local drift-
kinetic equation to solve for the dominant non-omnigeneous
piece of the distribution function has been derived in section 3.
In section 4 the equation has been solved and an explicit formula
for the ion energy flux Qi has been provided in (172). The
formula manifests, in particular, that when i i* *

n r transport is
determined by two small collisional layers. One of the layers is
located around the boundary between trapped and passing par-
ticles and the other is located in the neighborhood of the phase-
space points where the precession frequency (which is caused by
the tangential drifts) vanishes. The former corresponds to the n
regime and the latter to the superbanana-plateau regime. In
addition, we have shown that the neoclassical fluxes scale with
the square of the size of the deviation from omnigeneity.

In section 4 we have also discussed the quasineutrality
equation, employed to find the electric field tangent to the flux
surface. We have proven that the superbanana-plateau layer
needs to be worked out in order to calculate the tangent
electric field. The careful analysis of the quasineutrality
equation showed that the specific form of the drift-kinetic
equation in the superbanana-plateau regime depends on the
size of the radial electric field. In section 5 we have given the
equation to determine the radial electric field.

Finally, in section 6 we have explained why the results of
section 4 are not valid below a certain value of the colli-
sionality, that we call *nd and that we have estimated. The
treatment of the regime i* *n nd in stellarators close to
omnigeneity is left for future work.
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Appendix A. Proof of relations (35) and (36)

Starting from (15) and (16), let us first manipulate the radial
components of the drifts. We employ that the radial B drift
can be conveniently rewritten with the help of the identity

B
B

B Bb r b , A.1
t

ly´   =
Y¢

-¶ + ¶ ¶a a( ˆ ) · ( · ˆ ) ( )

where we have used B t y a= Y¢ ´  , r bl¶ = ˆ , and the
relations

g

l

r
1

and cyclic permutations of , , , A.2

ly a

y a

 ´  = ¶

( { }) ( )
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with the volume element given by

g
B

. A.3t=
Y¢

( )

Here, the position in euclidean coordinates is viewed as a
function of the flux coordinates, lr , ,y a( ).

In order to recast the radial curvature drift we use that
b bk = ˆ · ˆ and that, trivially,

l

b b b b r

b b r b b r .

A.4
l

y

a

 =  ¶ 

+  ¶  +  ¶ 

y

a

ˆ · ˆ ( ˆ · ˆ · )

( ˆ · ˆ · ) ( ˆ · ˆ · )
( )

The last term in the previous equation equals zero because
r bl¶ = ˆ and b b b 0 ºˆ · ˆ · ˆ . Then, it is easy to see that

B
b b b r. A.5

t

k y´  = -
Y¢

 ¶a( ˆ ) · ˆ · ˆ · ( )

Noting that b b bl = ¶ˆ · ˆ ˆ , integrating by parts in l and using
that b r b b 0l¶ ¶ = ¶ ºa aˆ · ˆ · ˆ , we get

B
b b r . A.6

t
lk y´  = -

Y¢
¶ ¶a( ˆ ) · ( ˆ · ) ( )

Finally, the radial E×B drift will be rewritten by
employing

B
b r b , A.7

t
lj y j j´   =

Y¢
-¶ + ¶ ¶a a( ˆ ) · ( · ˆ ) ( )

which is obtained exactly in the same way as (A.1).

Recalling (15) and (16), and collecting the results (A.1),
(A.6) and (A.7), we find

v
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Analogously, one can show that
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The last term in both (A.8) and (A.9) vanishes because v∣∣
equals zero at lb1

and lb2
. Finally, using definition (34), we

obtain (35) and (36).

Appendix B. Proof that the adiabatic response does
not contribute to the energy flux

The adiabatic response is contained in Fi0
0( ), defined in (49).

Its contribution to the energy flux (1) is given by

Q V

B

v
m Fv
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d d
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with v v vd i M i E, ,= + (see definitions (15) and (16)). In (B.1)
we have used that

f S V fd , B.22ò y y= ¢ á  ñy( ) ∣ ∣ ( )

where the flux surface average operation andV y¢( ) have been
defined in (23) and (24).

A direct check shows that
v

vv b . B.3d i
i

, y y =
W

 ´ · · ( ˆ ) ( )∣∣
∣∣

Then,

where we have used that Fi0
0( ) is a flux function, and in the

second equality we have employed that the integrand
vanishes when B Z e mi i

1 m j= -- ( ) and when  =
Z e mi ij . Finally, recalling the identity

V
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1
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y
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for any vector field A and applying it to (B.4) we deduce that
Qi,ad vanishes.

Appendix C. Asymptotic expansion of ∂ψJ
ð0Þ near the

boundary between trapped and passing particles

We show that

J
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has the form (86) for small 0cl l- > by, first, using the
trivial identity

which is well defined for sufficiently small cl l- . Here, we
have only displayed the dependence of B0 on l. The values lM k, ,
for k=1, 2, locate two consecutive absolute maxima of B0
when moving along the field line; in particular,
B l BM k0 , 0,max=( ) for k=1, 2. The second integral on the
right side of (C.2) is finite when cl l , and hence it
contributes to a2 and higher-order terms in (86). The first integral
on the right side of (C.2) can be computed analytically; namely,

For small cl l- ,

l l
B l

B l

2
..., C.4b M
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c l M k
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l l
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and
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20
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- = -
-

¶
+

( )( )
∣ ( )∣

( )

whereas l l O Lb M,1 020 - = ( ) and l l O Lb M,2 010 - = ( ). Using
these results in (C.3), it is straightforward to deduce that

from which equation (87) follows.

Appendix D. Analysis of equation (101) in a
neighborhood of λ ¼ λc

In this appendix we use the variable x cl l= - and rewrite
(101) as

g n
a

a x g gi ln , D.1x n n x n
2 1

2
2

0,n x
¶ + = -¶

l
( ˜ ) ( )

where g x g xn n cbl, l= +( ) ( ) and g x g xn n c0, 0, l= +( ) ( ).
The equations (101) for n 0¹ (recall that g x0 ( ) and g x0,0 ( )
vanish) have an irregular singular point [31] at x=0.

The standard methods do not work when applied to the
homogeneous equation
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near x=0. However, one can check that the ansatz
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is consistent, in the sense that by substitution in (D.2) one can
find recurrence relations that determine all the coefficients
Am p, except two of them. The free coefficients can be taken to
be A0,0 and A1,0. In order to show this, it is advisable to start
by writing the equation provided by terms in (D.2) that are
proportional to xln and the equation corresponding to terms
proportional to x xln .

Hence, there exist two linearly independent solutions of
(D.2) that are finite at x=0.

It is easy to realize that the source term on the right side of
(D.1) does not make gn diverge at x=0. First, note that g n0, is
finite for any value of x. If one takes g g fn n n0,= - + , (D.1)
gives the following equation for fn:

f n
a

a x f

n
c a x c F

i ln

i
ln , D.4

x n n

n n i i

2 1
2

1, 2 2, 0

n x

n x

¶ +

= + ¡

l

l

( ˜ )

( ( ˜ ) ˜ ) ( )

where c1 and c2˜ have been defined in (92) and (95). Since the
indefinite integrals of xln are finite everywhere, the source term
on the right side of (D.4) does not introduce singularities in fn
and we conclude that gn is finite for any value of x; in particular,
it is finite at x=0.
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