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Isotope effects on turbulent transport and entropy
transfer processes in toroidal plasmas

Motoki Nakata1†,
1National Institute for Fusion Science, Toki 509-5292, JAPAN

In this article, additional discussions on the nonlinear entropy transfer between turbulence and
zonal flows are given for the isotope ion mass effects on the trapped-electron-mode (TEM) driven
turbulent transport shown in Ref. 1. Spectral analyses with the triad entropy transfer function
reveal that the case with heavier isotope ions indicates a relatively smaller negative transfer (from
zonal flows to turbulence), which implies to the weaker nonlinear decay of zonal flows.

1. Introduction
Impact of isotope ion mass on the turbulent transport and plasma confinement is a long-

standing issue for several decades in plasma and fusion research, despite the broad interests
and the importance for realizing future burning plasmas. Many theoretical and numerical efforts,
especially for ITG-driven turbulence [e.g., Ref. 2], have been devoted so far to resolve a dis-
crepancy between the so-called gyro-Bohm scaling and the experimental observations indicating
an improved confinement with the opposite ion mass dependence[3]. Recently, Nakata et al.[1]
found that combined effects of the collisional TEM stabilization by the isotope ions and the
associated increase in the impacts of the steady zonal flows at the near-marginal linear stability
lead to the significant transport reduction with the opposite ion mass dependence in comparison
to the conventional gyro-Bohm scaling. In this article, for participants of The 1st JPP Frontiers
in Plasma Physics Conference, the ion mass impact on the nonlinear interactions between zonal
flows and turbulence is further investigated by means of the entropy balance/transfer analyses.

Here, we briefly summarize the gyrokinetic simulation model used in GKV code[4], and the
entropy balance/transfer diagnostics[5–7]. The electromagnetic gyrokinetic equation (in Fourier
representation with k⊥ = kx∇x+ ky∇y) describing the time evolution of the perturbed gyrocenter
distribution function δ f (g)

s on the five-dimensional phase-space (k⊥, z, 3∥, µ) is given by(
∂

∂t
+ 3∥b·∇ + iωDs −

µb·∇B
ms

∂

∂3∥

)
δgsk⊥ −

c
B

∑
∆

b·(k′⊥×k′′⊥
)
δψsk′⊥δgsk′′⊥

=
esFMs

Ts

(
∂δψk⊥

∂t
+ iω∗T sδψk⊥

)
+ Cs

(
δgsk⊥

)
, (1.1)

where the subscript “s” is the index of particle species, and δgsk⊥ stands for the non-adiabatic
part of the perturbed gyrocenter distribution function δ f (g)

sk⊥
, i.e., δgsk⊥ =δ f (g)

sk⊥
+ esJ0sδϕk⊥FMs/Ts.

The gyro-averaged potential fluctuation is denoted by δψk⊥ := J0s[δϕk⊥ − (3∥/c)δA∥k⊥ ], where
J0s := J0(k⊥3⊥/Ωs) is the zeroth-order Bessel function, and the former and latter terms mean the
electrostatic and electromagnetic parts in low-β limit, respectively. The symbol

∑
∆ appearing

in the nonlinear term of Eq. (1.1) means the double summations with respect to k′⊥ and k′′⊥,
which satisfy the triad-interaction condition of k⊥ = k′⊥ + k′′⊥. Note that the notations follow the
usual convention, e.g., the particle mass, the electric charge, the equilibrium temperature, and the
gyrofrequency are denoted by ms, es, Ts, and Ωs=esB/msc, respectively.
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By using the gyrokinetic and the Poisson-Ampère equations, one can derive another important
equation describing the balance and transfer of the entropy variable δSsk⊥ := ⟨

∫
d3 |δ fk⊥ |2/2FMs⟩z

defined with the particle (not gyrocenter here) distribution function δ fk⊥ = −esδϕk⊥FMs/Ts +

δgsk⊥e−ik⊥·ρs ,

∑
s

 d
dt

TsδS
(trb)
s︸       ︷︷       ︸

(i)

+TsδR
(trb)
s︸     ︷︷     ︸

(ii)

+TsTs︸ ︷︷ ︸
(iii)

−TsΩ
(trb)
s︸    ︷︷    ︸

(iv)

−TsD
(trb)
s︸    ︷︷    ︸

(v)

 = 0 , (1.2)

∑
s

 d
dt

TsδS
(zf)
s︸      ︷︷      ︸

(i)

+TsδR
(zf)
s︸    ︷︷    ︸

(ii)

−TsTs︸ ︷︷ ︸
(iii)

−TsD
(zf)
s︸   ︷︷   ︸

(v)

 = 0 , (1.3)

where the superscripts “(trb)” and “(zf)” mean the non-zonal and zonal components in the
wavenumber space, respectively, i.e., X(trb) :=

∑
kx

∑
ky,0 Xkx, ky , X(zf) :=

∑
kx

Xkx, ky=0. Each term
represents (i) the variation of the entropy variable, (ii) the variation of the field energy due
to the wave-particle interactions, (iii) the nonlinear entropy transfer from non-zonal to zonal
modes, (iv) the entropy production by turbulent particle and heat fluxes, and (v) the collisional
dissipation, respectively (see, e.g., Refs. 5 and 6 for their definitions). Note that, by the definition,
the turbulent-flux driven entropy production term does not appear for the zonal modes in Eq.
(1.3). The entropy balance/transfer equation provides us with a good measure for the turbulence
simulation accuracy as well as useful physical insights associated with the turbulence saturation
mechanisms. The detailed numerical analyses of the entropy balance and the transfer processes
in ITG turbulence are shown in, e.g., Refs. 6 and 7.

The definition of the entropy transfer function Tsk⊥ for arbitrary k⊥ is given by

Tsk⊥ =
∑
p⊥

∑
q⊥

δk⊥+p⊥+q⊥, 0Js
[
k⊥|p⊥, q⊥

]
, (1.4)
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[
k⊥|p⊥, q⊥

]
=

⟨
c
B

b · (p⊥ × q⊥)
∫

d3
1

2FMs
Re

[
δψp⊥hsq⊥hsk⊥− δψq⊥hsp⊥hsk⊥

] ⟩
, (1.5)

where the notation with k′⊥ and k′′⊥ shown in Eq. (1.1) is replaced by −p⊥ and −q⊥, respectively,
in order to represent symmetrically the triad-interaction condition for three wavenumber vectors,
i.e., k⊥+ p⊥+ q⊥=0. We call the function Js[k⊥|p⊥, q⊥] the “triad (entropy) transfer function”,
hereafter. It should be noted that the triad transfer function possesses the following symmetry
properties,

Js
[
k⊥|p⊥, q⊥

]
= Js

[
k⊥|q⊥, p⊥

]
, (1.6)

Js
[
k⊥|p⊥, q⊥

]
= Js

[−k⊥| − p⊥,−q⊥
]
. (1.7)

Furthermore, one obtains straightforwardly the “detailed balance relation” for the triad-
interactions,

Js
[
k⊥|p⊥, q⊥

]
+Js

[
p⊥|q⊥, k⊥

]
+Js

[
q⊥|k⊥, p⊥

]
= 0 . (1.8)

The entropy transfer function integrated over the zonal modes, Ts, represents the transfer
of the entropy fluctuation from turbulence to zonal flows so that the positive and negative
signs of Ts appear in Eqs. (1.2) and (1.3), respectively. Note that Ts is regarded as a kinetic
extension of the zonal-flow energy production due to the Reynolds stress. Actually, by using the
simplest approximation for the non-adiabatic part of the ion gyrocenter distribution function, i.e.,
δgik⊥≃n0FMi(1 + k2

⊥ρ
2
ti/2)eδϕk⊥/Ti, one can reduce Ti to the conventional hydrodynamic energy

production, which is described by the product of the Reynolds stress and the zonal-flow shear.
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Figure 1. Collisionality dependence of the mixing-length diffusivity γ/k2
⊥ for the linear TEM(solid lines)

and ITG(dashed lines) modes in CBC-like tokamak H- and D-plasmas. Turbulent heat flux
∑

s qs obtained
from nonlinear simulations are shown by symbols, where the values are uniformly scaled such that
NL-TEM(H) and NL-ITG(H) match with L-TEM(H) and L-ITG(H) at ν∗ei=0.018, respectively.

2. Turbulent transport reduction by isotope ion mass
Following Ref. 1, the reduction of the TEM-driven turbulent transport by the isotope ion mass

effect is briefly demonstrated, where we examine the TEM (and ITG) turbulence in CBC-like
tokamak plasmas with the equilibrium parameters of {Rax/LTi = 1, Rax/LTe = 8, Rax/Ln = 3,
Te/Ti = 3} for the TEM case and {Rax/LTi = 8, Rax/LTe = 8, Rax/Ln = 3, Te/Ti = 1} for the ITG
case. The so-called s – α toroidal geometry with q(ρ0)= 1.42, ŝ(ρ0)= 0.8, and aρ0/Rax = 0.18 is
considered.

The linear and nonlinear GKV simulation results for H- and D-plasmas are summarized in
Fig. 1, where the collisionality dependencies of the mixing-length diffusivity (γ/k2

⊥)/χGB(H)
and turbulent heat flux

∑
s qs/qGB(H) in the TEM and ITG cases are compared. Note that the

hydrogen gyro-Bohm units, χGB(H) and qGB(H), are used for the normalization. For the cases in
ITG modes (labeled by L-ITG in the figure) with weak ν∗ii dependence, we see that the mixing-
length diffusivity show a gyro-Bohm like mass dependence, i.e., γ/k2

⊥ ∝
√

As. The similar
√

As
dependence is found in the collisionless limit of TEM (labeled by L-TEM in the figure). However,
different reduction tendency of the TEM growth rates depending on the isotope ion species is
revealed in the finite collisionality regime, where the ion mass dependence in the ratio of the
electron-ion collision frequency to the ion transit one, i.e., νei/ωti∝ (mi/me)1/2, leads to stronger
collisional stabilization of TEM for heavier isotope ions. Note also that the stabilization effect
on ITG modes by the ion-ion collisions is almost independent of the ion mass, i.e., νii/ωti∝ m0

i .
Accordingly, the opposite ion mass dependence of A−αs with α> 0 appears for TEM in a certain
collisionality regime, i.e., ν∗ei⩾0.025 in the present case.

It is also revealed that the turbulent heat fluxes in both the ITG and TEM driven turbulence
(labeled by NL-ITG and NL-TEM) show the qualitatively similar dependence with the linear
results, where the scaling constants of αscale=0.787×10−2 and αscale=1.05×10−2 are, respectively,
multiplied to NL-ITG and NL-TEM values such that the nonlinear result in the H-plasma at
ν∗ei=0.018 matches the linear one for qualitative comparisons of the profile. We also see that, for
larger ν∗ei, the TEM driven turbulent transport obtained from the nonlinear simulation is smaller
than the mixing length estimation. This tendency is because the turbulence suppression by zonal
flows becomes stronger as the TEM growth rate decreases towards the marginal stability with
increasing ν∗ei. The strong impact of the TEM-driven zonal flow on the turbulence suppression is
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Figure 2. (a)time evolution of the zonal-flow (thick lines) and turbulence (thin lines) energy in tokamak
TEM turbulence with hydrogen and deuterium ions, where ν∗ei = 0.035. (b)the turbulent heat flux in the
cases with (solid lines) and without (dashed lines) zonal-flow components.

also shown in Fig. 2(b), where the numerical simulations with and without the zonal components
are compared. It has been clarified that, as shown in Fig. 2(a), the relative amplitude of the steady
zonal flows, WZF/W turb., is enhanced in the near-marginal TEM case with ν∗ei = 0.035 resulting
from the collisional stabilization by heavier isotope ions, while the lower and comparable am-
plitudes are found in H- and D-plasmas with relatively higher TEM growth rates. Indeed, the
absolute values of the zonal-flow energy WZF in D-plasmas are kept to be the similar level to that
in H-plasma, despite the decrease of the turbulence energy which is the nonlinear source of the
zonal-flow generation [Fig. 2(a)]. Note also that the effective zonal-flow shearing rate compared
to the maximum growth rate, ωZF/γmax, in D-plasma is more than twice as large as those in
H-plasma, where ωZF = ⟨|∂x3ZF|⟩x, and ⟨· · ·⟩x means the spatial average in the x direction.

3. Entropy transfer for zonal modes
Underlying mechanisms of the zonal flow enhancement in the near-marginal stability for D-

plasma are analyzed by using the entropy balance relation with the triad entropy transfer function
given in Eq. (1.4). From gyrokinetic entropy balance equation for zonal modes, Eq. (1.3), with
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Figure 3. Radial wavenumber(kzf) spectra of the nonlinear (i) production(T (+)
skzf

), (ii) decay(T (−)
skzf

), and (iii)
collisional dissipation(D(ZF)

skzf
) for zonal flows in the tokamak (a)H- and (b)D-plasmas with ν∗ei = 0.035,

corresponding to Fig. 1.

the radial wavenumber of kzf , one can derive a balance relation in the steady turbulence state,
i.e.,

∑
s TsT (+)

skzf
= −∑

s Ts[T (−)
skzf
+ D(ZF)

skzf
] (the overline symbol for long-time average is omitted).

Here, the nonlinear production(+) and decay(-) are described by T (±)
skzf
=

∑
q⊥ (1/2)[Gskzf (q⊥) ±

|Gskzf (q⊥)|], where Gskzf (q⊥) = Js[kzf | p⊥ =−(kzf + q⊥) , q⊥] denotes the triad entropy transfer
function for zonal modes. Figures 3(a) and 3(b) show the comparison of kzf-spectra in the
nonlinear production(T (+)

skzf
), nonlinear decay(T (−)

skzf
), and collisional dissipation(D(ZF)

skzf
) terms for

H- and D-plasmas with ν∗ei = 0.035 corresponding to Fig. 1. It is found that, for D-plasma at near-
marginal stability, the relative magnitude of the nonlinear decay (due to e.g., tertiary instability of
zonal modes[8–10]) characterized by |T (−)

skzf
|/|T (+)

skzf
| is smaller than that for H-plasma with higher

TEM growth rate. This is analogous to the steady entropy balance and transfer for the ITG-driven
zonal flows in the Dimits-shift regime[7], but we need further deeper analyses of the isotope ion
mass (and also magnetic geometry) impacts on the tertiary modes for zonal flows.
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