
Unified nonlinear theory of spontaneous and forced helical resonant MHD states
J. Loizu and P. Helander

Citation: Physics of Plasmas 24, 040701 (2017); doi: 10.1063/1.4979678
View online: http://dx.doi.org/10.1063/1.4979678
View Table of Contents: http://aip.scitation.org/toc/php/24/4
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/669831048/x01/AIP-PT/APR_PoPArticleDL_032217/APRconf_1640x440Banner_12-16B.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Loizu%2C+J
http://aip.scitation.org/author/Helander%2C+P
/loi/php
http://dx.doi.org/10.1063/1.4979678
http://aip.scitation.org/toc/php/24/4
http://aip.scitation.org/publisher/


Unified nonlinear theory of spontaneous and forced helical resonant MHD
states

J. Loizu and P. Helander
Max-Planck-Institut f€ur Plasmaphysik, D-17491 Greifswald, Germany

(Received 20 January 2017; accepted 21 March 2017; published online 31 March 2017)

It is shown that the theory of the nonlinearly saturated ideal internal kink mode by Rosenbluth

et al. [Phys Fluids 16(11), 1894 (1973)] can be used to find the fully nonlinear ideal plasma

response to an externally applied resonant magnetic perturbation. It is also demonstrated that the

solution leads to a jump in the rotational transform across the resonant surface caused by a zonal
current sheet. Its amplitude scales linearly with the plasma perturbation despite the nonlinearity of

the solution. This confirms a recent conjecture that three-dimensional MHD equilibria with nested

magnetic surfaces generally contain discontinuities in the rotational transform [J. Loizu et al., Phys

Plasmas 22(9), 090704 (2015)]. It also lends support to Parker’s long-standing suggestion that

“almost all” MHD equilibria possess current sheets. [http://dx.doi.org/10.1063/1.4979678]

The theory of ideal magnetohydrodynamics (MHD) has

no inherent length scale and thus allows current sheets to

develop and cause discontinuities in a magnetic field.1–3

Mathematically, these current sheets are represented by

Dirac d-function current densities and are physically accept-

able in the sense that their integral is finite. Sometimes, it

is argued that any finite resistivity, however small, will regu-

larize the current density singularity, whose existence is

therefore merely an academic matter. However, the mere

tendency to form a true singularity in the ideal-MHD limit

has fundamental and broader consequences for reconnection

and turbulent dynamics across plasma physics.4–7

For half a century, a quandary has existed at the heart of

theoretical plasma physics: three-dimensional MHD equilib-

ria with nested surfaces seem to suffer from two intolerable

pathologies: (i) pressure-driven infinite currents arise around

resonant rational surfaces unless the pressure gradient van-

ishes locally8,9 (at every resonant surface!) and (ii) the equi-

librium field is not an analytical function of the shape of the

boundary since arbitrarily small perturbations can (even line-

arly) result in an unphysical overlapping of surfaces.10,11

Historically, the cause of these pathologies has been attrib-

uted to the class of possible pressure profiles, but the form of

the pressure profile—whether it is smooth, continuous, or

pathological in some sense—is not the cause of the problem

because the problem (ii) remains at zero pressure.

Recently, a new class of three-dimensional ideal-MHD

equilibria with nested surfaces was proposed, which allows

for arbitrary pressure profiles, including smooth ones.11,12

For this class of equilibria, all current densities are integrable

and nested surfaces are preserved. These properties are

ensured by the presence of zonal (i.e., net-current carrying)

current sheets that produce a jump in the rotational transform

across resonant surfaces. Since this seems to be the only

class of equilibria that solves both problems (i) and (ii), it

was conjectured that any physically valid equilibrium with

nested resonant surfaces must belong to this class.

In this Letter, we show that the nonlinearly saturated

internal kink mode1 belongs to this new class of equilibria,

i.e., that the rotational transform jumps across the resonant

surface and does so with a magnitude that scales as predicted

by the conjecture. We also demonstrate that the same theory

can be applied to find the fully nonlinear, ideal plasma

response to an externally applied resonant magnetic pertur-

bation (RMP), which thus causes a discontinuity in the rota-

tional transform at the rational surface. This result unifies the

description of spontaneous and forced helical equilibrium

states and confirms the conjecture for a large-aspect-ratio

tokamak. It also elucidates the question of how to reliably

predict the ideal plasma response to RMPs,13 which is of cru-

cial importance for present and future magnetic fusion

devices.14

The need for a jump in the rotational transform, Di�, to

develop in three-dimensional MHD equilibria with nested

resonant surfaces follows from a sine qua non condition for

the existence of perturbed equilibria that can be written as

jdn=dsj < 1, which states that the differential displacement

of magnetic surfaces, dn, with respect to an initial equilib-

rium, cannot exceed the differential distance between surfa-

ces, ds ¼ ffiffiffiffiffiffiffiffi
gww
p

dw. Here, w is a general flux-surface label

and gww is the corresponding metric element. This condition

guarantees that nested surfaces are preserved. From an

asymptotic study of Newcomb’s equation,15 which deter-

mines the radial profile of the displacement in a perturbed

screw-pinch, a condition was derived11 for the minimum

magnitude of the jump in the rotational transform across a

resonant rational

Di�> Di�min ¼ 2i�
0
sns; (1)

which guarantees jdn=drj < 1. Here, ns and i�
0
s are the dis-

placement and radial derivative of the rotational transform,

respectively, both evaluated at the resonant surface. Note

that this jump is associated with a zonal current sheet, by

which we mean that the surface-average of the d-function

current density is non-zero.

The m ¼ n ¼ 1 internal kink instability occurs in a

cylindrical tokamak when the safety factor is anywhere
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q ¼ 1=i�< 1. As noted by Rosenbluth et al.1 in their theory

of the nonlinear saturation of this instability, however, all

harmonics are excited to a comparable amplitude in a bound-

ary layer around the q ¼ 1 surface, and therefore, the pertur-

bation theory is not applicable. By using a full nonlinear

treatment, a nearby ideally stable equilibrium was found that

has nested surfaces, an axisymmetric boundary, a current

sheet on the resonant surface, and an inner helical plasma

column with helicity m ¼ n ¼ 1. The nonlinear solution for

the displacement of the magnetic surfaces is

n x; hð Þ ¼
ðx

0

jx0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f x0ð Þ þ g hð Þ

p � 1

" #
dx0 þ h hð Þ; (2)

where h is the polar angle and n is the radial displacement

of a flux surface originally situated at a radius x with respect

to the resonant surface. The displacement is ensured to be

continuous and is fully determined by three functions,

namely, f(x), gðhÞ, and hðhÞ. Before calculating these func-

tions, we notice that, thanks to Eq. (2), the equilibrium is

guaranteed to satisfy the sine qua non condition, in fact,

marginally

lim
x!0

@n
@x
¼ �1: (3)

The function hðhÞ¼ 1
2
na cosh is determined by asymptotic

matching to the linear theory outside the resonant layer, i.e., by

imposing nðx!�1;hÞ¼na cosh and nðx!þ1;hÞ ¼0 in

Eq. (2). Here, na is the kink of the magnetic axis, which is

unknown a priori. The function f(x) can be determined once

gðhÞ is known since it satisfies

þ
dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f xð Þ þ g hð Þ
q ¼ 1

x
; (4)

where
Þ

dh ¼
Ð 2p

0
dh=2p. Equation (4) is simply the con-

straint (to the lowest order in n) of the conserved toroidal

magnetic flux. The most complicated task is to determine

gðhÞ, which is the solution to the integral equation

ð1
0

df
2u0 fð Þ
u3 fð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ ĝ hð Þ

p � u fð Þ
" #

¼ cos h; (5)

where ĝ ¼ g=n2
a and uðf Þ ¼

Þ
dh=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ ĝðhÞ

p
. Fortunately,

Rosenbluth could reformulate this equation as a variational

principle, in which gðhÞ is the function that extremizes the

functional

K ĝ½ � ¼
ð1

0

df
1

u fð Þ �
ffiffiffi
f

p
� 1

2
ffiffiffi
f
p
þ

ĝdh
� �

þ
þ

ĝ cos hdh: (6)

As a matter of fact, K possesses a maximum, Kmax � 0:025,

which determines the amplitude of the kink, na.1 In order to

maximize K, we rewrite the first integral in Eq. (6) in a way

that avoids subtracting two divergent terms, i.e., the first two

terms as f !1. Then, the extremum is found numerically

by writing gðhÞ ¼ ð
P

cm cosðmhÞÞ2 and iterating on fcmg.
The quadratic form is used to ensure that g � 0. Figure 1

shows the solution for the functions gðhÞ and f(x) as well as

the corresponding displacement nðx; hÞ.
First, we observe the formation of a nonlinear layer in n

around the resonant surface. The width of the layer, l,
depends on h, with a maximum scale l � OðnaÞ at h ¼ 0,

and no minimum scale, l! 0 as h! p. This type of solu-

tion is expected by virtue of Eq. (3). In fact, for h > p=2, the

displacement must go from nðx! �1; hÞ ¼ na cos h < 0 to

nðx! þ1; hÞ ¼ 0 while developing a negative gradient,

Eq. (3), at the resonant surface. Hence, a nonlinear layer, at

least cubic in x, must form around the resonant surface.

Second, we remark that the function gðhÞ can be very

well approximated by

g hð Þ � 1

3
n2

a cos8 h=2ð Þ: (7)

This is a universal solution in the sense that it does not

depend on the specific equilibrium current and pressure pro-

files. Its form is inferred from an asymptotic analysis, and

the coefficient in front has been adjusted to match the maxi-

mum of the function to the numerical solution. We now ver-

ify that this form for g is consistent with the asymptotics of

FIG. 1. Nonlinear solution for the internal kink. Left: numerical solution for gðhÞ (solid magenta) obtained by minimizing the functional K, Eq. (6), starting from

an initial guess (solid grey). The dashed-black line is the function 1
3

cos8ðh=2Þ. Middle: numerical solution for f(x) obtained from Eq. (4) and using the solution

for gðhÞ. Right: numerical solution for the radial profile of the displacement at different poloidal locations. The location of the resonant surface is x¼ 0.
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Eq. (5) for h! p. Taking the derivative of Eq. (5) with

respect to h, we have thatð1
0

u0 fð Þ
u3 fð Þ

df

f þ ĝ hð Þ
� �3=2

ĝ0 hð Þ ¼ sin h; (8)

and for small g, the integral is dominated by contributions

from small f. Assuming that around h ¼ p we have

ĝðhÞ � kðp� hÞn, we find that uðf Þ � cnk
�1=nf 1=n�1=2 for

f ! 0, where cn ¼
Ð1

0
ð1þ xnÞ�1=2dx. Thus, Eq. (8) is, for

h! p,

n

2
� 1

� � ffiffiffi
k
p

c2
n

p� hð Þ
n
2
�3

dn ¼ p� h; (9)

where dn ¼
Ð1

0
x2=nð1þ xnÞ�3=2dx. Hence, n¼ 8 and

k ¼ c4
n=ð9d2

nÞ, which can be evaluated using Gamma func-

tions, giving k ’ 10�3. The expansion of Eq. (7) around h ¼
p gives ĝðhÞ � ðp� hÞ8=768, in reasonable agreement with

the asymptotic calculation.

Finally, we remark that while the displacement, n, is

continuous, the poloidal magnetic field, Bh, is not. A jump

occurs across the resonant surface6

Bh½ �½ � ¼ 2
rs

R
Bzi�
0
sna

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g hð Þ=n2

a

q
; (10)

where ½½Bh�� ¼ Bhðx ¼ 0þÞ � Bhðx ¼ 0�Þ, rs is the initial

radius of the resonant surface, 2pR is the length of the peri-

odic cylinder, Bz is the axial or toroidal magnetic field, and i�
0
s

is the radial derivative of the equilibrium rotational trans-

form, i�¼ RBh=ðrBzÞ, at r¼ rs. Equations (7) and (10) imply

the existence of a current sheet peaking at h¼ 0 and with

multiple harmonic content: m¼ 0, m¼ 1, and m¼ 2 compo-

nents are present. The finite zonal component (m¼ 0) is

what produces a jump in the rotational transform

Di�¼ 2i�
0
sna

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðhÞ=n2

a

q
dh � 0:45i�

0
sna; (11)

which, despite the nonlinearity of the solution, scales linearly

with the axis kink! The scaling in Eq. (11) agrees with the

constraint given by Eq. (1), but the coefficient in front is

slightly different because in Eq. (1), Di� refers to the jump

across the entire nonlinear layer whereas in Eq. (11), it only

denotes the actual discontinuity at x¼ 0. There is, in fact, a

nonsingular part of the current density within the boundary

layer that accounts for the other half of the total zonal cur-

rent.3 In any case, this calculation proves that the saturated

internal kink contains a discontinuity in the rotational trans-

form and thus belongs to the class of equilibria postulated in

Ref. 11.

The nonlinear theory developed by Rosenbluth et al. is

in fact more general than previously recognized. All that the

theory does is to seek helical states of given helicity (m, n)

that satisfy ideal force-balance inside and outside a boundary

layer around a resonant rational surface. This is carried out

by applying flux-conservation constraints with respect to an

initially axisymmetric state, solving the force-balance equa-

tion in the nonlinear layer and matching the solution to the

linear theory outside the layer. With this in mind, one can

reformulate the problem for a forced helical state produced

by applying a resonant magnetic perturbation on the bound-

ary of a cylindrical tokamak. For a generic boundary pertur-

bation of the form na cosðmh� nuÞ, it follows that Eqs.

(2)–(4) are still valid, and Eqs. (5) and (6) are only slightly

modified simply because the helicity is general and the per-

turbation is nonzero on the boundary and zero on the axis

rather than the other way around. In particular, the functional

K½ĝ� becomes

K ĝ½ � ¼
ð1

0

df
1

u fð Þ �
ffiffiffi
f

p
� 1

2
ffiffiffi
f
p
þ

ĝdh
� �

�
þ

ĝ cos mhð Þdh:

(12)

The maximum of K is found to be independent of m and has

the same value as for the internal kink. The numerical solu-

tion for the function g is again well approximated by

g hð Þ � 1

3
n2

a sin8 mh=2ð Þ; (13)

and the solutions for f(x) and nðx; hÞ are the same as before

with the replacements x! �x and h! mhþ p=2. We

would like to remark that the implicit u-dependence in

Eq. (13) is obtained by replacing mh with mh� nu as for the

internal kink.

An example of the nonlinear solution for an m ¼ 2;
n ¼ 1 boundary perturbation is shown in Fig. 2. For this

case, the nonlinear layer becomes infinitesimally narrow at

two poloidal locations, but only one is shown. A jump in the

rotational transform is also present in the nonlinear solution

and is given by

Di�¼ 2mi�
0
sna

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðhÞ=n2

a

q
dh � 0:9i�

0
sna: (14)

The jump in the rotational transform obtained for a general

RMP is thus the same as for the saturated internal kink,

except for an additional linear scaling with the poloidal

mode number m and the fact that the quantity na is the ampli-

tude of the RMP, which is thus known.

There are several important implications of these results

for both the theory and the experiments. First, we have con-

firmed the conjecture that MHD equilibria with nested and
resonant surfaces possess a discontinuous rotational trans-

form, i.e., zonal current sheets, across the resonances, by

showing that this statement is rigorously true in a large-

aspect-ratio tokamak. An important consequence is that this

class of equilibria can support arbitrarily smooth pressure

profiles without generating infinite currents. The discovery

of these equilibria lends support to Parker’s long-standing

suggestion that “almost all” MHD equilibria possess current

sheets.16,17 Second, an explanation emerges for the apparent

disagreement between linear and nonlinear ideal equilibrium

codes when trying to calculate the plasma response to RMPs

in tokamaks:10 on the one hand, linear codes allow for cur-

rent sheets to form but as of now, they have always assumed

that the zonal component of the current sheet vanishes (thus

leading to an unphysical overlapping of surfaces and the
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need to artificially flatten the pressure to avoid infinite

pressure-driven currents); on the other hand, nonlinear codes

are by construction guaranteed to preserve the topology of

nested surfaces but do not allow magnetic field discontinu-

ities (thus, the current sheet is never resolved). Third, the

presence of a zonal current sheet has a global effect on the

plasma response: RMPs were recently predicted to penetrate

beyond the resonance and to be significantly amplified with

increasing plasma pressure.12 This prediction was based on

the conjecture that has now been proved but did not provide

a specific value for the jump in the rotational transform,

which is now supplied by the nonlinear theory. Remarkably,

perhaps, the linear scaling of the rotational transform with

the RMP amplitude remains valid in the nonlinear theory.

The latter also makes a further prediction, namely, that

higher harmonics are excited to comparable amplitudes

throughout the entire plasma column enclosed by the reso-

nant surface (even without any toroidicity induced mode

coupling). Finally, we note that, by generalizing the nonlin-

ear theory discussed here for non-circular and toroidal geom-

etry, quantitative predictions can be produced for the ideal

plasma response to RMPs in tokamaks.
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