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A numerical investigation is carried out to understand the equilibrium β-limit in a classi-
cal stellarator. The SPEC code is used in order to assess whether or not magnetic islands
and stochastic field-lines can emerge at high β. Two modes of operation are considered:
a net-current-free stellarator and a flux-conserving stellarator. Despite the fact that re-
laxation is allowed, the former is shown to maintain good flux surfaces up to the β-limit
predicted by ideal-MHD, above which a separatrix forms. The latter, which has no ideal
equilibrium β-limit, is shown to develop regions of magnetic islands and chaos at suffi-
ciently high β, thereby providing a ”non-ideal β-limit”. Perhaps surprisingly, however,
the value of β at which the Shafranov shift of the axis reaches a fraction of the minor
radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our
results to the High-Beta-Stellarator theory of (Freidberg 2014).

1. Introduction

In stellarators, the maximum achievable β is most probably set by the equilibrium and
not by its stability (Helander et al. 2012). In fact, magnetic surfaces are not guaranteed
to exist in three-dimensional MHD equilibria without a continuous symmetry. The po-
tential destruction of magnetic surfaces at sufficiently high β can thus lead to the loss of
confinement.

The equilibrium β-limit is not fully understood since it requires the accurate com-
putation of three-dimensional MHD equilibria, which generally consist of an intricate
combination of magnetic surfaces, magnetic islands, and magnetic field-line chaos. The
Stepped-Pressure Equilibrium Code (SPEC) was developed as one possible approach to
fulfil this highly non-trivial task (Hudson et al. 2012). SPEC has been rigorously verified
in axisymmetry (Hudson et al. 2012), in slighlty perturbed configurations (Loizu et al.
2015b,a, 2016a), and more recently in stellarator geometries (Loizu et al. 2016b).

With a view to progressing towards an understanding of the β-limit in advanced, fusion-
relevant stellarator experiments, we focus on a classical stellarator geometry with a simple
pressure pedestal and perform a basic numerical study of its equilibrium β-limit. The
simplified geometry allows us to use the High-Beta-Stellarator model (Freidberg 2014)
to guide our investigation.

2. Model and control parameters

We consider the fixed-boundary problem of a finite β equilibrium in a classical l = 2
stellarator. Namely, we must provide (i) the geometry of the boundary, e.g. via the Fourier
coefficients of the cylindrical coordinates defining the boundary surface, {Rmn, Zmn}; (ii)
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Figure 1. Boundary of a classical l = 2 stellarator with Np = 5 (left) and Np = 10 (right)
field periods. The inverse aspect ratio is ε = 0.1 and the colour represents the amplitude of the
vacuum magnetic field on the boundary as computed from SPEC.

the pressure profile as a function of the enclosed toroidal magnetic flux, p(Ψ); and (ii) an
additional profile, e.g. the rotational transform, ι-(Ψ), or the net toroidal current, Iϕ(Ψ).

2.0.1. Boundary

The simplest boundary representation that can model an l = 2 stellarator is that of a
rotating ellipse with no toroidally averaged elongation. Namely,

R(θ, ϕ) = R00 +R10 cos θ +R11 cos (θ −Npϕ)

Z(θ, ϕ) = Z00 + Z10 sin θ + Z11 sin (θ −Npϕ) (2.1)

with Z00 = 0, Z10 = −R10, and Z11 = R11. For our β-limit study, the main parameters
of interest in Eq. 2.1 are the major radius, R00, and the number of field periods, Np.
In fact these can be used to vary independently the inverse aspect ratio, ε, and the
vacuum rotational transform, ι-v, which are predicted to determine the ideal β-limit. We
therefore choose to fix the other parameters to R10 = 1 and R11 = 0.25. Two examples
of boundaries with different values of Np are shown in Fig. 1.

The inverse aspect ratio is

ε =
reff

R00
, (2.2)

where the effective minor radius is reff =
√
rmaxrmin, with rmax = R10 +R11 = 1.25 and

rmin = R10 − R11 = 0.75, respectively the major and minor axis of the rotating ellipse.
The vacuum rotational transform can be determined analytically (Helander 2014) as

ι-v =
Np
2

(rmax − rmin)2

r2
max + r2

min

. (2.3)

2.0.2. Pressure profile

We model a pressure pedestal by assuming that all the pressure gradient is concentrated
on a single flux-surface, namely p(Ψ) = p0 for Ψ 6 Ψa and p(Ψ) = 0 for Ψ > Ψa. This
step in the pressure is naturally described by the SPEC code: two Taylor-relaxed volumes
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separated by an ideal-interface supporting a pressure step [[p]] = p(Ψ+
a ) − p(Ψ−a ) = p0,

in correspondence to which a jump in B must arise according to [[p + B2

2µ0
]] = 0. This

implies the presence of a surface current that is simply a weak representation of the
pressure-driven (diamagnetic and Pfirsch-Schlüter) current. For our basic β-limit study,
we choose to fix the value Ψa = 0.3Ψedge and use the freedom in p0 to control the value
of β, which we define here as β = 2µ0p0/B

2
0 , where B0 = B(Ψ = 0).

2.0.3. Net-current-free versus flux-conserving

The SPEC code calculates MHD equilibria as extrema of the Multiregion, Relaxed
MHD (MRxMHD) energy functional (Hole et al. 2007; Hudson et al. 2007). In essence,
the energy functional is the same as in conventional ideal MHD equilibrium theory, but
the constraints under which the function is extremized are different. While in ideal-MHD
the magnetic topology is continuously constrained, in MRxMHD the topology is only
discretely constrained, thus allowing for partial relaxation. More precisely, the plasma
is partitioned into a finite number, NV , of nested volumes, Vv, that undergo Taylor
relaxation. These volumes are separated by NV − 1 interfaces that are constrained to
remain magnetic surfaces during the energy minimization process. For the β-limit study
at hand, we have NV = 2 volumes separated by one ideal-interface. The location and
shape of this interface is unkown a priori and determined self-consistently by a force-
balance condition. MRxMHD equilibrium states satisfy

∇×B = µvB in the volumes (2.4)[[
p+

B2

2µ0

]]
= 0 on the interface (2.5)

for v = 1, 2. In addition to providing the enclosed toroidal fluxes in each volume
(Ψa and Ψedge), the solution to Eq. 2.4 requires one more parameter if the volume is a
topological torus (the innermost volume) and two more parameters if the volume is an
annulus (the outer volume). Hence we must provide a total of 3 parameters to determine
the equilbrium solution at a given value of β.

If we want to enforce a zero net-toroidal-current, Iϕ = 0, we can impose µ1 = µ2 = 0
and then iterate on the total enclosed poloidal flux, ψp, until the surface current has no
net toroidal component. At each iteration step, the net toroidal surface current can be
easily calculated as

ICS
ϕ =

∫ 2π

0

[[B]] · eθ dθ (2.6)

by virtue of Ampere’s law. The iterative procedure can be implemented via a Newton
method and brings ICSϕ down to machine precision in a few steps. We refer to this mode
of operation as zero-net-current.

If we want to constrain the rotational transform, ι-(Ψ), we can enforce it to remain
constant on both sides of the ideal-interface, ι-+a = ι-−a = ι-a, and at the edge, ι-edge. Once
again, this can be achieved by iterating on the values of µ1,2 and ψp. We refer to this
mode of operation as flux-conserving.

We would like to remark that while the zero-net-current mode guarantees Iϕ = 0, it
does not guarantee that the rotational transform remains constant, and in particular we
expect ι-+a 6= ι-−a . Conversely, the flux-conserving mode guarantees that ι- remains constant
on certain surfaces (thus only locally flux-conserving) but in general we expect Iϕ 6= 0,
in particular at the location of the pressure-gradient.
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3. High-β equilibria and Shafranov shift

Figure 2 shows Poincaré plots of the equilibirium magnetic field at different values of
β for both the zero-net-current stellarator and the flux-conserving stellarator. In both
cases there is a Shafranov shift that increases with β. However, the Shafranov shift of the
axis, ∆ax, increases with β much faster in the zero-net-current stellarator. It is useful to
define the quantity

β0.5 ≡ β(∆ax =
reff

2
) , (3.1)

namely, the value of β at which the Shafranov shift of the axis reaches half of the minor
radius. According to ideal-MHD equilbrium theory (Miyamoto 2005), β0.5 is predicted
to scale as

β0.5 ∼ ε ι-2v ∼
N2
p

R00
(3.2)

for large aspect ratios, ε� 1, and slowly varying ι-v, which is true for ι-v � 1. A scan in
both R00 and Np has been carried out in order to assess how β0.5 scales in the numerical
MHD calculations. Figure 3 shows the result of this scan. Despite the fact that SPEC
allows for plasma relaxation, the scaling law 3.2 is very well reproduced in both modes of
operation. However, the values of β0.5 are much higher in the flux-conserving stellarator,
by a factor of about 6. This can be explained in terms of the High-Beta-Stellarator (HBS)
model developed in (Freidberg 2014).

4. β-limits and the HBS theory

The HBS model for a classical stellarator developed in (Freidberg 2014) predicts that
the rotational transform at the plasma edge, ι-a, evolves with β and plasma current as

ι-a = (ι-v + ι-I)
(
1− ν2

)1/2
(4.1)

where ι-I is the transform produced by the net toroidal current,

ι-I =
µ0Iϕ

2πa2B0
, (4.2)

and

ν =
β

εa(ι-v + ι-I)2
, (4.3)

where a is the effective minor radius of the plasma edge and εa = a/R. For our system,
we have a =

√
Ψa/Ψedgereff and thus εa =

√
Ψa/Ψedgeε. In the context of the HBS the-

ory, the zero-net-current stellarator can be analyzed by taking ι-I = 0. Equation 4.1 then
implies that ι-a decreases with increasing β. This is visible in Figure 4, where the profile
ι-(Ψ) is shown for a given zero-net-current stellarator SPEC equilibrium at finite β. A
jump in the rotational transform self-consistently develops on the ideal interface support-
ing the pressure gradient, namely at Ψa = 0.3Ψedge. The ideal MHD equilibirum code
VMEC was also run for this case and shown to produce essentially the same transform
profile (in VMEC the pressure pedestal has a finite width). In Fig. 5, the value of ι-a is
shown as a function of β and compared to the HBS prediction, Eq. 4.1, showing excellent
agreement. The point where ι-a = 0 corresponds to the emergence of a separatrix (see,
e.g., Fig. 2) and this defines the ideal β-limit, namely

βlim = εaι-
2
v . (4.4)

For the flux-conserving stellarator, we can impose ι-a = ι-v in the HBS model. This leads
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Figure 2. Poincaré section (ϕ = 0◦) of the equilibrium magnetic field at different values of β.
Left: zero-net-current stellarator. Right: flux-conserving stellarator. Here Np = 5 and ε = 0.1.

to an expression for the value of the plasma current that is necessary to maintain ι-a
constant. One obtains (Freidberg 2014)

ι-I = ι-v

(√1

2

(
1 +

√
1 + 4H2

)
− 1
)
, (4.5)

where

H =
β

εaι2v
. (4.6)

Figure 6 shows the net toroidal surface current in SPEC equilibria as a function of β
and compares it to the HBS prediction, Eq. 4.5, showing very good agreement. For large
H � 1, one has Iϕ ∼

√
β, and the HBS model predicts that no β-limit is reached because
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Figure 3. Scaling of β0.5 with the inverse aspect ratio, ε ∼ 1/R00 (left), and with the vacuum
iota, ι-v ∼ Np (right). Black stars are for the flux-conserving stellarator. Magenta pentagrams
are for the zero-net-current stellarator. The dashed lines have slope 1 (left) and 2 (right).

the plasma current keeps rising and preventing the separatrix to form. From SPEC
equilibrium calculations, however, where plasma relaxation is allowed, we observe that
magnetic islands and chaotic field-lines emerge at sufficiently high β, thereby providing
a ”non-ideal β-limit”. In all the flux-conserving stellarator calculations, the emergence
of chaos seems to happen always at values of β at which the Shafranov shift is about
half the minor radius, i.e. βlim ≈ β0.5. The exact mechanism explaining this transition is
under investigation. We can nevertheless quantify the emergence of chaos by calculating
the fractal dimension of the field-lines on the Poincare section as a function of β (Meiss
1992). More precisely, we can evaluate the so-called box-counting dimension, or Hausdorff
dimension,

D = lim
L→0

log(N)

log(L)
(4.7)

where L is the size of the boxes and N is the number of boxes containing at least one
point of the magnetic field-line on the Poincaré section. If the field-line traces a magnetic
surface, or even a magnetic island, one expects D = 1. If the magnetic field-line trajectory
is chaotic, however, it fills up a certain ”area” in the Poincaré section, and D > 1 is
expected. We calculated the value of D for a given flux-conserving stellarator and found
that field-lines abruptly transition from D = 1 (at low β) to D = 1.7 (at sufficiently high
β), such that the fraction of the of field-lines with D = 1.7 smoothly increases with β.
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