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In this work, the role of three-dimensional shaping on rotational transform is explored.
The susceptance matrix as defined by Strand & Houlberg (2001) is presented and
compared to simulations three dimensional MHD equilibria with simple shapes. The
dependence of the edge rotational transform on axisymmetric shaping is briefly explored.
It is then shown how simple three dimensional shaping can drive rotational transform
in stellarators. This work concludes with a discussion of the non-linearity of the three
dimensional shape space as defined in terms of magnetic symmetry.

1. Introduction

The goal of magnetic confinement nuclear fusion is to use magnetic fields to confine
a hot plasma long enough so that a burning plasma state can be reached. While many
magnetic configurations have been considered, those of the toroidally closed class show
the greatest maturity. In this class of device two subclasses exist, those which are
axisymmetric and those which are non-axisymmetric. In the axisymmetric branch, exist
the tokamak and field reversed configuration. While in the non-axisymmetric branch
one finds stellarators and heliotrons. Spanning the space are the reverse field pinch
devices which can exhibit an axisymmetric nature, or bifurcate into a state with non-
axisymmetric plasma cores. In this paper, the role of three-dimensional shaping in
confinement is explored.

2. Theory

Consider a charged particle in a uniform magnetic field. The relevant force acting on
the particle is the Lorentz force

~F = q
(
~E + ~v × ~B

)
(2.1)

where q is the particles charge, ~E the electric field, ~v its velocity, and ~B is the magnetic
field. If the particle possesses any component of velocity perpendicular to the magnetic
field it will begin to exhibit cyclotron motion. One may generate such a field using a
solenoid, however collisions between particles will tend to equalize the components of
the velocity parallel to and perpendicular to the magnetic field. Thus particle will tend
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to stream along the magnetic field line at finite temperatures (ignoring an additional
hierarchy of complicated physics). This implies that we must in some way ‘cap’ the ends
of this magnetic bottle.

One concept for ‘capping’ the bottle is to use a magnetic mirror force to reflect the
particles back along the field line. However, this is only a partial solution as the fastest
particle will still tend to escape. Ultimately cooling the plasma before being able to reach
fusion relevant temperatures. The more agreed upon solution is to deform the straight
field into a toroidal one. While this avoids the problems of end losses, the magnetic field
now becomes curved (and a field gradient forms). This curvature of the magnetic field
causes particles to drift across magnetic field lines. For particles on the inboard side of
the torus, such a drift brings them toward the center of the device. While for particles
on the outboard side, the motion is away from the center.

If the magnetic field lines could be curved in such a way that particles spend more of
their time in the ‘good’ curvature region than in the ‘bad,’ the net effect of the magnetic
field would be to ‘confine’ particles to a hot core region. The ‘Hairy Ball Theorem’ of
algebraic topology (Eisenberg & Guy 1979) tells us that for a torus this is possible.
From this point forward we will restrict ourselves to a discussion where nested surfaces
of toroidal flux exist everywhere in our magnetic configuration up to some enclosing flux
surface. This enclosing surface will be called the last closed magnetic surface (LCMS). At
the center of the torus we thus have a single magnetic field line. While this assumption
may in fact be artificial, the ramifications of such an assumption will be discussed later
in this work.

The ‘rate’ at which magnetic field lines rotate about the magnetic axis is defined by
a quantity called the rotational transform, which is defined in terms of poloidal (Ψ) and
toroidal (Φ) magnetic fluxes (Bateman 1973; Strand & Houlberg 2001)

ι =
dΨ

dΦ
. (2.2)

So put another way, the act of confining charged particles with magnetic fields is the act
of generating rotational transform in a toroidal device.

Rotational transform can be generated by non-axisymmetric shaping or toroidal cur-
rent as defined by

ι =
µ0I

S11Φ′
− S12

S11
(2.3)

where µ0 is the permeability of free space, I the toroidal current, Φ′ = dΦ/dρ, and S are
the components of the susceptance matrix. In general the suseptance matrix is defined
as:

µ0

(
I
F

)
=

(
S11 S12

S21 S22

)(
dΨ/dρ
dΦ/dρ

)
(2.4)

where F is the poloidal current and ρ is a radial coordinate. Assuming a nested flux
surface representation and a magnetic stream function λ we can redefine our poloidal
angle (θ∗ = θ + λ (ρ, θ, ζ)), we may write our magnetic field in the form

~B =
1

2π
√
g

[(
dΨ

dρ
− dλ

dζ

dΦ

dρ

)
~eθ +

(
1 +

dλ

dθ

)
dΦ

dρ
~eζ

]
. (2.5)

where
√
g is the coordinate Jacobian. Here we note that our choice of magnetic field

representation is exactly that of the VMEC equilibrium code (Hirshman & Whitson
1983), allowing us to write the components of the susceptance matrix in terms of
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geometric quantities

S11 =
dV/dρ

4π2

〈
gθθ
g

〉
(2.6)

S12 =
dV/dρ

4π2

〈
gθζ (1 + dλ/dθ)− gθθdλ/dζ

g

〉
(2.7)

S21 =
dV/dρ

4π2

〈
gζζ (1 + dλ/dθ)− gζθdλ/dζ

g

〉
(2.8)

S22 =
dV/dρ

4π2

〈
gζθ
g

〉
(2.9)

where gkk are the components to the coordinate metric tensor. Clearly the S11 and S22

coefficients depend purely on the geometry of the flux surfaces.

3. The dependence of rotational transform on flux surface geometry

Equation 2.3 tells us that there are two ways of generating transform: toroidal current
and three-dimensional shaping. To explore this statement we employ the VMEC equilib-
rium code to calculate various equilibria and assess the impact of magnetic geometry on
rotational transform. To do this we first examine the effect of the gθθ term in axisymmetry
then move onto non-axisymmetric perturbations.

As VMEC will be our tool it is worthwhile to review the nature of the flux surface
representation used in the code. For stellarator symmetric equilibrium the flux surfaces
are parametrized by functions which trace out the magnetic surfaces, namely

R (ρ, θ∗, ζ) =

N∑
n=−N

M∑
m=0

R (ρ) cos (mθ∗ − nNFP ζ) (3.1)

Z (ρ, θ∗, ζ) =

N∑
n=−N

M∑
m=0

Z (ρ) sin (mθ∗ − nNFP ζ) (3.2)

where N is the toroidal truncation of modes, M the poloidal truncation of modes, and
NFP the magnetic field periodicity. The λ (ρ, θ∗, ζ) function has odd parity, thus a similar
for to equation 3.2.

3.1. Axisymmetric equilibria

For axisymmetric equilibria the S12 component of the susceptance matrix vanishes,
leaving only the S11 component (and toroidal current) to generate rotational transform.
An aspect ratio 10 circular cross section equilibrium (at zero beta but finite toroidal
current) serves as a basis for examining the relationship between S11 and rotational
transform. It is then a simple matter to elliptically deform the equilibria by adjusting
the n = 0,m = 1 mode of the Z harmonics. Figure 1 depicts the dependence of edge
transform on the S11 component of the susceptance matrix as the equilibrium is deformed.
In this plot the equilibria with larger deformation are located on the left of the graph.
It is important to remember that rotational transform is the inverse of the safety factor
(ι = 1/q). The result tells us that as we add ellipticity to the axisymmetric equilibrium
the value of q increases (hold all else constant).

If we consider the effect on the iota profile, this result holds for other modes which
increase the gθθ metric. The toroidal current to zeroth order acts as a ridge shift to the
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Figure 1. Comparison between edge rotational transform and S11 component of the
susceptance matrix. Circles indicate simulation results while the line is a linear fit to said data.

rotational transform (ignoring profile effects). While the boundary perturbations have
more nuanced effects on the rotational transform profile. The m = 1 modes (which
generate ellipticity) tend to penetrate to the core, meanwhile the higher order modes
tend to decay into the core with higher orders falling off faster. This makes it possible to
tailor the iota profile through shaping and current.

3.2. Non-axisymmetric equilibria

When the toroidal symmetry of the device is broken the S12 term becomes non-zero
allowing rotational transform to be produced even when the enclosed toroidal current
becomes zero. Such is the design concept surrounding stellarators and heliotrons. Here
the ratio ιvac = −S12/S11 defines the ‘vacuum’ transform. It should now be clear that
by maximizing the S11 component of the susceptance, a robustness of the iota profile to
currents (be they ohmic, bootstrap, beam driven or electron-cyclotron drive) can be built
into an equilibrium. However, this also suggests that the S12 component be maximized
as well to generate the vacuum transform.

A better understanding of how boundary shapes drive vacuum transform in stellarators
can be seen in figure 2. We begin by perturbing the axisymmetric equilibria (toroidal
current set to zero) with n = 1,m = 1 (upper plots) and n = 2,m = 2 perturbations
and examine the resulting rotational transform profiles. The n = 1,m = 1 perturbation
deforms the equilibria into a rotating ellipse. The resulting rotational transform profile
posses reversed shear and modifies both the edge and axis values of the profile. The n =
2,m = 2 perturbation creates a rotating triangular feature to the equilibrium, becoming
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Figure 2. Examples of non-axisymmetric modes driving vacuum rotational transform. Colors
relate boundary shapes to transform profiles while dashed line indicate boundary shape at the
second symmetry plane. The negative values are due to choice of sign on poloidal angle and
toroidal harmonics.

slightly scalloped at the largest amplitude explored. It is worthwhile to note that the
n = 2 nature implies that the half-field period plane has the same cross section as the
other symmetry planes. The m = 2 nature of this perturbation results in a modification
to the rotational transform at the edge but not in the core. We note that the sign of
these transform profiles is a function of the choice of sign in the toroidal modes.

While these two examples appear trivial, they already show that three dimensional
shaping can be used to tailor the vacuum rotational transform of a stellarator. Specifically
the low order modes (m < 2) should provide an ability to tailor the transform on axis.
Meanwhile the higher order modes allow tailoring of the edge transform. Thus the design
of a stellarator becomes a the task of combining these modes to produce an equilibrium
with the desired properties.

Stellarators usually use a multitude of modes to drive rotational transform. In figure
3, a set of boundary deformations is explored where the relative amplitudes of the modes
are equal. We see that modes with m = 1 nature penetrate to the core region while modes
of higher m are damped. By changing the sign of the modes the sign of their contribution
to the rotational transform can also be changed. We see that the n = 1,m = 2 mode
drive a similar level of core transform as that of the n = 1,m = 1 mode but significantly
more edge transform. Simulations indicate that it is possible to combine the n = 1,m = 1
boundary modes and n = 2,m = 2 boundary modes and recomputes the equilibria. The
resulting equilibria has a transform almost identically matching that found by simply
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Figure 3. Comparison of vacuum transform driven by various non-axisymmetric modes. Care
is taken so that edge mode amplitude is similar in each case.

adding the two individual transforms together. This result may not hold should the
magnetic axis become sufficiently non-axisymmetric.

4. Discussion

This work has begun to explore the role of three dimensional shaping on the generation
(and modification) of rotational transform in ideal magnetohydrodynamic toroidal equi-
libria. While not exhaustive, this work shows that modes with toroidal modes less than 2
are the primary means by which transform on axis can be driven. The dependence of core
transform on edge poloidal perturbations appears weak at best, with the n = 1,m = 1
mode driving nearly the same amount of transform as the n = 1,m = 2 mode for similar
perturbation amplitudes. At the edge of the equilibrium modes with higher poloidal mode
number appear to drive larger amounts of transform for the same level of boundary
displacement. However, this suggests that the same (or similar) rotational transform
profiles can be achieved through a multitude of boundary modes. Numerical simulations
combining different modes supports the idea of linear combinations of modes to produce
a profile which is the the sum of the profiles driven by different modes.

It is important to note that in this work, we have ignored the possibility of islands and
stochastic regions at rational surfaces. Moreover, we have completely neglected the recent
results by Loizu et al. (2015) regarding the necessity of non-smooth rotational transform
profiles across rational surfaces. In the latter case, the shielding currents scale as the
amplitude of the resonant harmonic. However, the result of inclusion of these harmonics
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Figure 4. Mapping on n-dimensional parameter space around the NCSX fixed boundary
equilibium (+). An axisymmetric tokamak equilibria (similar to NCSX, o) and a tubulent
transport optimized version of NCSX (not depicted). Color contours indicate levels of
non-axisymmetry.

does not drastically change the transform profile, but simply to cause the profile to be
modified in the neighborhood of such surfaces (Lazerson et al. 2016). If we imagine a
plasma model which allows the islands to open, then we again expect the island width to
scale as the resonant harmonic. Again while modifying the profile in the neighborhood of
the island, overall the equilibrium profile is mostly unperturbed (excluding pathological
examples). We note that there clearly exists a freedom in approximating a rotational
transform profile using many different modes. This suggest that one could design a
stellarator by first choosing a rotational transform profile with known resonances, then
explicitly setting the resonant components to zero and using the non-resonant boundary
deformations to create the transform.

Before concluding this discussion the authors would like to take the time to point out
that generation of transform alone is not enough to confine the particles in a nuclear fusion
device. To this end a great deal of work (mostly associated with stellarators) has gone
into the development of optimized three-dimensional equilibria (Mynick et al. 1982; Spong
et al. 1998; Mynick 2006). Here the optimization usually focuses on minimizing the radial
transport of particles through magnetic symmetries. These symmetries include helically
symmetric (the HSX device) (Boozer 1995), quasi-oniginatiy (W7-X) (Hall & McNamara
1975), and quasi-axisymmetry (NCSX) (Garabedian 1996). This last one being relevant to
this paper as the tokamak falls into the quasi-axisymmetric category (axisymmetry being
the pure realization of quasi-axisymmetry). Of course any perturbation to a tokamak
which breaks toroidal symmetry takes the equilibrium away from it’s ideal axisymmetric
state. However, the situation in practice is quite more complicated. In figure 4, we have
mapped the n-dimensional space around the NCSX equilibrium by defining two vectors
and evaluating equilibria in the subspace defined by these two vectors. In one direction
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(along x-axis) we smoothly deform the NCSX equilibria into an axisymmetric tokamak
equilibria. In the other direction, we smoothly deform the boundary toward a turbulent
transport optimized version of NCSX. The amplitude of the color map indicates how non-
axisymmetric the magnetic equilibria are. This database was generated from ∼ 10000
VMEC runs produced by the STELLOPT code.

The purpose of showing this seemingly separate work is to demonstrate that in moving
from an axisymmetric tokamak to the quasi-axisymmetric NCSX equilbria the non-
axisymmetry increases and then decreases. And while NCSX is clearly not axisymmetric,
it is predicted to have transport levels approaching that of a tokamak. It should now be
clear that the selection of modes to generate transform in stellarators is much more
complicated than the analysis presented here. Still this work acts as a starting point, and
future works will explore the dependency of radial transport, stability, and bootstrap
current in future works.
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