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In this paper, we continue our investigation of the gyrokinetic turbulent phase-space
cascade of free energy in a multi-species, magnetized, pressure-anisotropic plasma, with
a focus on the sub-Larmor “dissipation” range. After a brief recapitulation of Kunz
et al. (2015), the study of which was the long-wavelength “inertial” range of gyrokinetic
turbulence (“kinetic reduced magnetohydrodynamics”; KRMHD), we present the linear
gyrokinetic theory of pressure-anisotropic “astrophysical” (i.e., slab) plasmas. Special
attention is paid to the effect of electron pressure anisotropy on kinetic Alfvén waves.
This is followed by a derivation and discussion of a very general gyrokinetic free-energy
conservation law, which captures both the KRMHD free-energy conservation at long
wavelengths and dual cascades of kinetic Alfvén waves and entropy at short wavelengths.
Our results have implications for how pressure anisotropy affects the differential heating
of ions and electrons as well as the ratio of parallel versus perpendicular phase mixing.

PACS codes:

1. Introduction

In a previous paper (Kunz et al. 2015, hereafter Paper I), we presented a theo-
retical framework for low-frequency electromagnetic (drift-)kinetic turbulence valid at
scales larger than the particles’ Larmor radii in a collisionless, multi-species plasma.
The result generalised reduced magnetohydrodynamics (RMHD; Kadomtsev & Pogutse
1974; Strauss 1976, 1977; Zank & Matthaeus 1992) and kinetic RMHD (Schekochihin
et al. 2009) to the case where the mean distribution function of the plasma is pressure-
anisotropic and different ion species are allowed to drift with respect to each other – a
situation routinely encountered in the solar wind (e.g. Hundhausen et al. 1967; Feldman
et al. 1973; Marsch et al. 1982a,b; Marsch 2006) and presumably ubiquitous in hot dilute
astrophysical plasma such as the intracluster medium of galaxy clusters (e.g. Schekochi-
hin et al. 2005; Schekochihin & Cowley 2006). This framework was obtained via two
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routes: one starting from Kulsrud’s formulation of kinetic MHD (Kulsrud 1964, 1983)
and one starting from applying the nonlinear gyrokinetic ordering (e.g. Frieman & Chen
1982; Howes et al. 2006) to the Vlasov-Maxwell set of equations. The latter approach
also enables a study of fluctuations at and below the ion Larmor scale, the subject of
this Paper.

Before embarking on any quantitative analysis or even qualitative discussion of what
the gyrokinetic framework entails, it seems most prudent to catalogue here the main
theoretical achievements and implications of Paper I. First, we showed that the main
physical feature of low-frequency long-wavelength plasma turbulence survives the gen-
eralisation to non-Maxwellian particle distribution functions: Alfvénic and compressive
fluctuations are energetically decoupled, with the latter passively advected by the for-
mer. The Alfvénic cascade is fluid, satisfying RMHD equations (with the Alfvén speed
modified by pressure anisotropy and interspecies drifts), whereas the compressive cascade
is kinetic and subject to collisionless damping. For a bi-Maxwellian plasma, the kinetic
cascade splits into three independent collisionless cascades. Secondly, the organising prin-
ciple of this long-wavelength turbulence was elucidated in the form of a conservation law
for the appropriately generalised kinetic free energy. Using this alongside linear theory, we
showed that non-Maxwellian features in the distribution function reduce the rate of col-
lisionless damping and the efficacy of magnetic stresses, and that these changes influence
the partitioning of free energy amongst the various cascade channels. As the firehose or
mirror instability thresholds are approached, the dynamics of the plasma are modified so
as to reduce the energetic cost of bending magnetic-field lines or of compressing/rarefying
them.

In this paper, the second in a series, we concentrate on the sub-Larmor-scale “dis-
sipation” range. We investigate the linear properties of kinetic Alfvén waves and their
nonlinear phase-space cascade in a plasma whose particle distribution functions exhibit
pressure anisotropy and interspecies drifts. We find that the stability conditions imposed
on the kinetic Alfvén waves by the anisotropy of the distribution functions are distinct
from those experienced by Alfvén waves and compressive fluctuations at long wave-
lengths. We further show that, similar to the dual Alfvénic-kinetic cascade of free energy
in the inertial range (Paper I), there are two sub-ion-Larmor-scale kinetic cascades: one
of kinetic Alfvén waves, which is governed by a set of fluid-like electron reduced magne-
tohydrodynamic (ERMHD) equations, and a passive cascade of ion entropy fluctuations
both in configuration and velocity space. While these cascades have been considered al-
ready for a single-ion-species isotropic plasma (Schekochihin et al. 2009), here we focus
on whether and to what extent those results carry over to the more general case. Special
attention is paid to the transition from the inertial range across the ion-Larmor scale to
the dissipation range, and the effect of pressure anisotropy on the spectral location of
this transition and on the amount of Landau-damped energy that ultimately makes its
way to collisional scales.

All sections and equations in Paper I are referenced using the prefix “I–”; e.g. (I–C1)
refers to equation (C1) of Paper I and §I–4 refers to section 4 of Paper I.

2. Prerequisites

2.1. Basic equations and notation

Although it would be wise for any reader of this paper to have at least surveyed its
immediate predecessor, for completeness, we provide here the basic equations derived in
Paper I from which this paper’s results follow, as well as the notation introduced in Paper



Kinetic turbulence in pressure-anisotropic plasmas 3

I by which this paper’s results may be understood.† This recapitulation starts with the
Vlasov-Landau equation,

ḟs
.
=
∂fs
∂t

+ v ·∇fs +
qs
ms

(
E +

v×B

c

)
· ∂fs
∂v

=

(
∂fs
∂t

)
coll

, (2.1)

governing the space-time evolution of the particle distribution function of species s,
fs = fs(t,v, r), where v is the velocity-space variable and r is the real-space variable.
The charge and mass of species s are denoted qs and ms, respectively; c is the speed
of light. The electric field E and magnetic field B are expressed in terms of scalar and
vector potentials:

E = −∇ϕ− 1

c

∂A

∂t
and B = B0ẑ +∇×A, (2.2)

where B0ẑ is the guide magnetic field, taken to lie along the z axis, and ∇·A = 0 (the
Coulomb gauge). These fields satisfy the plasma quasineutrality constraint,

0 =
∑
s

qsns =
∑
s

qs

∫
d3v fs, (2.3)

and the pre-Maxwell version of Ampère’s law,

−∇2A =
4π

c
j =

4π

c

∑
s

qsnsus =
4π

c

∑
s

qs

∫
d3v vfs, (2.4)

where ns and us are the number density and mean velocity of species s and j is the
current density.

The term on the right-hand side of (2.1) represents the effect of collisions on the
distribution function; in this paper, collisions are assumed to be sub-dominant and thus
its specific form will not be required (precisely what ‘sub-dominant’ means will be stated
below). The assumption of weak collisionality gives the pressure tensor

Ps
.
=

∫
d3vms(v − us)(v − us)fs (2.5)

the freedom to be anisotropic, even in the mean (zeroth-order) background. An example
of such a pressure tensor is that describing a gyrotropic plasma (see §2.3),

Ps = p⊥s
(
I − b̂b̂

)
+ p‖sb̂b̂, (2.6)

where I is the unit dyadic, b̂
.
= B/B is the unit vector in the direction of the magnetic

field, the subscript ⊥ (‖) denotes the component perpendicular (parallel) to b̂, and

p‖s
.
= nsT‖s =

∫
d3vms(v‖ − u‖s)2fs, (2.7)

p⊥s
.
= nsT⊥s =

∫
d3v

ms

2
|v⊥ − u⊥s|2fs (2.8)

are the parallel and perpendicular pressures, respectively, of species s. An oft-employed
distribution function that exhibits such pressure anisotropy is the bi-Maxwellian

fbi-M,s(v‖, v⊥)
.
=

ns√
πvth‖s

exp

[
−

(v‖ − u‖s)2

v2
th‖s

]
1

πv2
th⊥s

exp

[
−|v⊥ − u⊥s|2

v2
th⊥s

]
, (2.9)

† A glossary of frequently used symbols can be found in Appendix E of Paper I.
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where

vth‖s
.
=

√
2T‖s

ms
and vth⊥s

.
=

√
2T⊥s
ms

(2.10)

are the parallel and perpendicular thermal speeds of species s. Pressure anisotropy is
caused in a weakly collisional plasma by adiabatic invariance; conservation of the mag-
netic moment µs

.
= ms|v⊥ − u⊥s|2/2B implies that a slow change in magnetic-field

strength must be accompanied by a proportional change in the perpendicular temper-
ature of species s. While such velocity-space anisotropy is generically exhibited by the
gyrokinetic fluctuations regardless of whether the mean distribution function is proved
(or assumed) to be isotropic and Maxwellian, in what follows we allow for the possibility
of a background pressure anisotropy. In doing so, we relax two of the common assump-
tions of standard gyrokinetics – that the mean distribution functions of all species are
Maxwellian and that there is only one ionic species.

2.2. Gyrokinetic ordering

Our aim is to reduce (2.1)–(2.4) so that they describe only those fields whose fluctuating
parts are small compared to the mean field, are spatially anisotropic with respect to it,
have frequencies ω small compared to the Larmor frequency Ωs

.
= qsB0/msc, and have

parallel length scales k−1
‖ large compared to the Larmor radius ρs

.
= vth⊥s/Ωs. While

such specifications may appear to be quite restrictive, modern theories (e.g. Goldreich &
Sridhar 1995) and numerical simulations (e.g. Shebalin et al. 1983; Oughton et al. 1994;
Cho & Vishniac 2000; Maron & Goldreich 2001) of magnetized turbulence provide a
strong foundation for expecting such anisotropic low-frequency fluctuations to comprise
much of the turbulent cascade. Such spatial anisotropy is also now routinely measured
in the solar wind (e.g. Bieber et al. 1996; Horbury et al. 2008; Podesta 2009; Wicks et al.
2010; Chen et al. 2011) and suggested by observations of turbulent density fluctuations
in the interstellar medium (e.g. Armstrong et al. 1990; Rickett et al. 2002).

The reduction is carried out in detail in appendix C of Paper I; here we describe
its primary ingredients and principal consequences. The fields are split into their mean
parts (denoted with a subscript ‘0’) and fluctuating parts (denoted with δ), the former
characterized by spatial homogeneity. The latter are taken to satisfy the asymptotic
ordering

δf1s

f0s
∼ δB

B0
∼ δE

(vth‖s/c)B0
∼
k‖

k⊥
∼ ω

Ωs

.
= ε� 1, k⊥ρs ∼ 1, (2.11)

where we have expanded the distribution function in powers of ε:

fs = f0s + δfs = f0s + δf1s + δf2s + . . . . (2.12)

Note that the fluctuations are permitted to have (perpendicular) scales on the order
of the Larmor radius. We further assume that the collision frequency νs � ε2Ωs, thus
allowing non-Maxwellian f0s (cf. §A2.2 of Howes et al. 2006).

The gyrokinetic ordering guarantees that (to lowest order) all species drift perpen-
dicularly to the magnetic field with identical velocities, u⊥s = u⊥ = cE×B/B2. It
then follows that the mean drift of any species relative to the centre-of-mass velocity
u
.
=
∑
smsnsus/

∑
smsns must be in the parallel direction, viz., us = u + u′‖sb̂, with

u′‖s =
1

ns

∫
d3v (v‖ − u‖)fs. (2.13)

Our collisionless ordering permits parallel interspecies drifts (denoted by u′‖0s) in the



Kinetic turbulence in pressure-anisotropic plasmas 5

background state, and we formally take u′‖0s ∼ vth‖s for all species s. We further assume
that the Alfvén speed,

vA
.
=

B0√
4πρ0

, (2.14)

is of order the thermal speed, where ρ0 is the mean mass density of the plasma. This
implies that the parallel and perpendicular plasma beta parameters,

β‖s
.
=

8πp‖0s

B2
0

and β⊥s
.
=

8πp⊥0s

B2
0

(2.15)

respectively, are considered to be of order unity in the gyrokinetic expansion. The other
dimensionless parameters in the system – namely, the electron-ion mass ratio me/mi,
the charge ratio Z = qi/|qe| = qi/e, the parallel and perpendicular temperature ratios

τ‖s
.
=
T‖0s

T‖0e
and τ⊥s

.
=
T⊥0s

T⊥0e
, (2.16)

and the temperature anisotropy T⊥0s/T‖0s of species s – are all considered to be of order
unity as well. Subsidiary expansions with respect to these parameters can (and will) be
made after the gyrokinetic expansion is performed.

Since we have ω ∼ k‖vths ∼ k‖vA, fast magnetosonic fluctuations are ordered out of
our equations. Such fast-wave fluctuations are rarely seen in the solar wind (Howes et al.
2012). Observations of turbulence in the solar wind confirm that it is primarily Alfvénic
(e.g. Belcher & Davis 1971) and that its compressive component is substantially pressure-
balanced (Burlaga et al. 1990; Roberts 1990; Marsch & Tu 1993; Bavassano et al. 2004).
A more serious limitation of our analysis is perhaps the exclusion of cyclotron resonances,
which have been traditionally considered necessary to explain the strong perpendicular
heating observed in the solar wind (Leamon et al. 1998; Isenberg 2001; Kasper et al. 2013).
The same is true of Larmor-scale fluctuations whose amplitudes are large enough to break
adiabatic invariance and thus drive chaotic gyromotion and stochastic particle heating
(Chandran et al. 2010, 2013). That being said, the gyrokinetic framework does capture
a lot of physics within both the inertial and dissipative ranges of kinetic turbulence, and
so it is a sensible step to incorporate realistic background distribution functions into the
gyrokinetic description of weakly collisional astrophysical plasmas. It is with that goal
in mind that we commence with a presentation of the gyrokinetic theory.

2.3. Gyrokinetic reduction

2.3.1. Gyrotropy of the background distribution function

Under the ordering (2.11), the largest term in the Vlasov-Landau equation (2.1) cor-
responds to Larmor motion of the mean distribution about the uniform guide field:

− Ωsẑ ·
(
v× ∂f0s

∂v

)
= 0. (2.17)

This directional bias allows us to set up a local Cartesian coordinate system and decom-
pose the particle velocity in terms of the parallel velocity v‖, the perpendicular velocity
v⊥, and the gyrophase angle ϑ,

v = v‖ẑ + v⊥(cosϑ x̂ + sinϑ ŷ). (2.18)

Equation (2.17) then takes on the simple form

− Ωs
∂f0s

∂ϑ
= 0, (2.19)
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which states that the mean distribution function is gyrotropic (independent of the gy-
rophase):

f0s = f0s(v‖, v⊥, t). (2.20)

All velocity-space derivatives of f0s that enter (2.1) are thus with respect to v‖ and v⊥,
viz.

qs
ms

∂f0s

∂v
= −(v‖ − u′‖0s)b̂

qsf
‖
0s

T‖0s
− v⊥

qsf
⊥
0s

T⊥0s
, (2.21)

where

f
‖
0s

.
= −v2

th‖s
∂f0s

∂(v‖ − u′‖0s)2
and f⊥0s

.
= −v2

th⊥s
∂f0s

∂v2
⊥

(2.22)

are dimensionless derivatives of a species’ mean distribution function with respect to the
square of the parallel velocity (peculiar to the species drift velocity) and the perpendicular
velocity, respectively. Their weighted difference,

Df0s
.
=
T⊥0s

T‖0s
f
‖
0s − f⊥0s, (2.23)

measures the velocity-space anisotropy of the mean distribution function; for a bi-Maxwellian

distribution, f
‖
0s = f⊥0s = f0s and

Df0s =

(
T⊥0s

T‖0s
− 1

)
f0s

.
= ∆sf0s, (2.24)

where ∆s, defined in situ, is the temperature (or, equivalently, pressure) anisotropy of
the mean distribution function of species s.

2.3.2. Boltzmann response

At O(εΩsf0s), we learn from (2.1) that the first-order distribution function δf1s may
be split into two parts. The first of these is the so-called adiabatic (or ‘Boltzmann’)
response,

δf1s,Boltz = −qsϕ
′
s

T‖0s
f
‖
0s +

qs
T⊥0s

(
ϕ−

v‖A‖

c

)
Df0s, (2.25)

where

ϕ′s
.
= ϕ− u′‖0sA‖/c (2.26)

is the fluctuating electrostatic potential in the frame of the parallel-drifting species s.
This part of δf1s represents the (leading-order) evolution of f0s under the influence of
the perturbed electromagnetic fields. Indeed, if we introduce the total particle energy in
the parallel-drifting frame,

εs =
1

2
ms

∣∣v − u′‖0sẑ∣∣2 + qsϕ
′
s (2.27)

and the (gyrophase-dependent part of the) first adiabatic invariant,

µs =
msv

2
⊥

2B0
+
qs
B0

(
ϕ−

v‖A‖

c

)
, (2.28)

both written out to first order in the fluctuation amplitudes (e.g. Kruskal 1958; Hastie
et al. 1967; Taylor 1967; Catto et al. 1981; Parra 2013), it is straightforward to show (see
§I–C.4) that the sum of the mean distribution function and the Boltzmann response is
simply

f0s(v‖, v⊥) + δf1s,Boltz = f0s(εs, µs) +O(ε2). (2.29)



Kinetic turbulence in pressure-anisotropic plasmas 7

In other words, the Boltzmann response does not change the form of the mean distribution
function if the latter is written as a function of sufficiently precisely conserved particle
invariants.

2.3.3. Gyrokinetic response

The second part of δf1s, which we denote by hs, represents the response of charged
rings to the fluctuating fields, and is thus referred to as the gyrokinetic response. It
satisfies

v⊥ ·∇⊥hs − Ωs
∂hs
∂ϑ

∣∣∣∣
r

= −Ωs
∂hs
∂ϑ

∣∣∣∣
Rs

= 0, (2.30)

where we have transformed the ϑ derivative taken at constant position r to one taken at
constant guiding centre

Rs = r +
v× ẑ

Ωs
. (2.31)

Thus, hs is independent of the gyrophase angle at constant guiding centre Rs (but not
at constant position r):

hs = hs(t,Rs, v‖, v⊥). (2.32)

2.3.4. Gyrokinetic equation

At O(ε2Ωsf0s), we find from (2.1) that the gyrokinetic response evolves via the gyroki-
netic equation

∂hs
∂t

+ v‖
∂hs
∂z

+
c

B0
{〈χ〉Rs

, hs} =
qsf
‖
0s

T‖0s

(
∂

∂t
+ u′‖0s

∂

∂z

)
〈χ〉Rs

− qsDf0s

T⊥0s

(
∂

∂t
+ v‖

∂

∂z

)
〈χ〉Rs , (2.33)

where

χ
.
= ϕ−

v‖A‖

c
− v⊥ ·A⊥

c
(2.34)

is the gyrokinetic potential and

〈χ(t, r,v)〉Rs

.
=

1

2π

∮
dϑχ

(
t,Rs −

v× ẑ

Ωs
,v

)
(2.35)

denotes the ring average of χ at fixed guiding centre Rs. The Poisson bracket

{〈χ〉Rs
, hs}

.
= ẑ ·

(
∂〈χ〉Rs

∂Rs
× ∂hs
∂Rs

)
(2.36)

represents the nonlinear interaction between the gyrocentre rings and the electromagnetic
fields.

The gyrokinetic equation (2.33) can also be written in the following, perhaps more
physically illuminating form,

∂hs
∂t

+ 〈Ṙs〉Rs
· ∂hs
∂Rs

= −〈ε̇s〉Rs

∂f0s

∂εs
− 〈µ̇s〉Rs

∂f0s

∂µs
, (2.37)

where

〈Ṙs〉Rs
= v‖ẑ −

c

B0

∂〈χ〉Rs

∂Rs
× ẑ (2.38)
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is the ring velocity,

〈ε̇s〉Rs = qs

(
∂

∂t
+ u′‖0s

∂

∂z

)
〈χ〉Rs (2.39)

is the ring-averaged rate of change of the particle energy (equation (2.27)), and

〈µ̇s〉Rs
=

qs
B0

(
∂

∂t
+ v‖

∂

∂z

)
〈χ〉Rs

(2.40)

is the ring-averaged rate of change of the (gyrophase-dependent part of the) first adia-
batic invariant (equation (2.28)). The right-hand side of (2.37) represents the effect of
collisionless work done on the rings by the fields (the wave-ring interaction). Written in
this way, (2.33) is simply the ring-averaged Vlasov equation, 〈ḟs(t, r, εs, µs)〉Rs = 0 to
lowest order in ε.

It is a manifestly good idea in much of what follows to absorb the final term of (2.33)
(and, likewise, of (2.37)), into hs by writing the latter in terms of the velocity-space
coordinates (v‖, µs), where

µs
.
= µs −

qs
B0
〈χ〉Rs

(2.41)

is the full adiabatic invariant; to wit, 〈µ̇s〉Rs
∼ O(ε2ωT⊥0s/B0). Note that, at long

wavelengths satisfying k⊥ρs � 1,

µs '
ms|v − u⊥ − v · b̂b̂|2

2B

.
=
msw

2
⊥

2B
, (2.42)

which is simply the magnetic moment of a particle in a magnetic field of strength B
drifting across said field at the E×B velocity. Then, introducing

h̃s(v‖, µs)
.
= hs(v‖, v⊥) +

qsDf0s

T⊥0s
〈χ〉Rs , (2.43)

the gyrokinetic equation reads

∂h̃s
∂t

+ 〈Ṙs〉Rs
· ∂h̃s
∂Rs

=
qsf
‖
0s

T‖0s

(
∂

∂t
+ u′‖0s

∂

∂z

)
〈χ〉Rs

. (2.44)

This form of the gyrokinetic equation is particularly well suited for deriving the gyroki-
netic invariants (§4). Its right-hand side represents the collisionless work done on the
rings by the fields in a frame comoving with the parallel drift velocity of species s. It will
also prove useful in what follows to modify the energy variable εs to obtain

εs
.
= εs − qs〈ϕ′s〉Rs

, (2.45)

which is the kinetic energy of the particle as measured in the frame moving with the u′‖0s
and E×B drifts; indeed,

εs '
1

2
ms(v‖ − u′‖0s)

2 +
1

2
msw

2
⊥ (2.46)

at long wavelengths. If the mean distribution function is expressed in terms of these
new velocity-space variables, viz. fs = f̃0s(εs, µs) + δf̃s, then the perturbed distribution

function δf̃s becomes

δf̃s(εs, µs) = h̃s(v‖, µs)−
qsf
‖
0s

T‖0s
〈ϕ′s〉Rs

. (2.47)

This particular form of the perturbed distribution function is quite useful; it is the
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k⊥ρs ∼ 1 generalisation of the perturbed distribution function that prominently features
in the generalised free energy of KRMHD (§I–5.1), and thus is anticipated to appear in
the generalised free energy of the gyrokinetic theory. The latter is derived in Section 4.

2.3.5. Field equations

The equations governing the electromagnetic potentials are most easily obtained by
substituting the decomposition

fs = f0s(v‖, v⊥) + δf1s,Boltz + hs(t,Rs, v‖, v⊥) + δf2s + . . . (2.48)

into the leading-order expansions of the quasineutrality constraint (2.3) and Ampère’s
law (equation (2.4)). The result is (see Paper I, §C.3)

0 =
∑
s

qs

[∫
d3v 〈hs〉r −

qsn0s

T⊥0s

(
C⊥0sϕ− C⊥1s

u′‖0sA‖

c

)]
, (2.49)

∇2
⊥A‖ = −4π

c

∑
s

qs

[∫
d3v v‖〈hs〉r −

qsn0svth‖s

2T⊥0s

(
C⊥1sϕ

2u′‖0s

vth‖s
+ ∆̃s

vth‖sA‖

c

)]
,

(2.50)

∇2
⊥δB‖ = −4π

c
ẑ ·
[
∇⊥×

∑
s

qs

∫
d3v 〈vhs〉r

]
, (2.51)

where

∆̃s
.
=
T⊥0s

T‖0s
− C⊥2s

(
1 +

2u′2‖0s

v2
th‖s

)
(2.52)

is the temperature anisotropy of species s augmented by the parallel ram pressure from
background parallel drifts, C⊥`s are parallel moments of the perpendicular-differentiated
mean distribution function (all of which equate to unity for a drifting bi-Maxwellian
distribution; see Appendix B), and

〈hs(t,Rs, v‖, v⊥)〉r
.
=

1

2π

∮
dϑhs

(
t, r +

v× ẑ

Ωs
, v‖, v⊥

)
(2.53)

denotes the gyro-average of hs at fixed r. Together with the gyrokinetic equation (2.33),
the field equations (2.49)–(2.51) constitute a closed system that describes the evolution
of a gyrokinetic plasma with non-Maxwellian f0s and parallel interspecies drifts.

This completes our abbreviated review of the material derived in Paper I on the gy-
rokinetic framework for homogeneous, non-Maxwellian plasmas. Everything henceforth
is new.

3. Linear gyrokinetic theory

3.1. From rings to gyrocentres

The most straightforward way of making contact with the results of Paper I, while
facilitating the extension of the theoretical framework into the dissipation range, is via
the linear theory. This is obtained most easily by shifting the description of the plasma
from one composed of extended rings of charge that move in a vacuum to one of a gas
of point-particle-like gyrocentres moving in a polarisable medium. This transformation
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is enacted by working with the gyrocentre distribution function

gs
.
= h̃s −

qs
T‖0s

〈
ϕ′s −

v⊥ ·A⊥
c

〉
Rs

f
‖
0s (3.1a)

= 〈δf1s〉Rs
+

q

T0s

〈
v⊥ ·A⊥

c

〉
Rs

f⊥0s. (3.1b)

This new function not only helps simplify the algebra involved in deriving the linear
theory, but also makes a good deal of physical sense. In the electrostatic limit, the use of
gs (which, in this limit, equals 〈δf1s〉Rs) aids in the interpretation of polarisation effects
within gyrokinetics (Krommes 2012), places the gyrokinetic equation in a numerically
convenient characteristic form (Lee 1983), and arises naturally from the Hamiltonian
formulation of gyrokinetics (Dubin et al. 1983; Brizard & Hahm 2007). In the electro-
magnetic case, introducing gs takes advantage of the fact that the Alfvénic fluctuations
have a gyrokinetic response that is largely cancelled at long wavelengths by the Boltz-
mann response (Paper I, §C.4).

Using (3.1) to replace h̃s in the gyrokinetic equation (2.44), we find that gs evolves
according to

∂gs
∂t

+ v‖
∂gs
∂z

+
c

B0
{〈χ〉Rs , gs} = −qsf

‖
0s

T‖0s

(
v‖ − u′‖0s

)〈 1

B0
{A‖, ϕ− 〈ϕ〉Rs}

+
1

c

∂A‖

∂t
+ b̂ ·∇ϕ− b̂ ·∇

〈
v⊥ ·A⊥

c

〉
Rs

〉
Rs

, (3.2)

where

b̂ ·∇ =
∂

∂z
+
δB⊥
B0
·∇⊥ =

∂

∂z
− 1

B0

{
A‖ , . . .

}
(3.3)

is the spatial derivative along the perturbed magnetic field. We have used compact no-
tation in writing out the nonlinear terms: 〈{A‖ , ϕ − 〈ϕ〉Rs

}〉Rs
= 〈{A‖(r) , ϕ(r)}〉Rs

−
{〈A‖〉Rs

, 〈ϕ〉Rs
}, where the first Poisson bracket involves derivatives with respect to r

and the second with respect to Rs. We now proceed to develop the linear theory.

3.2. Linear gyrokinetic equation

We begin by linearizing the gyrokinetic equation (3.2) in the fluctuations amplitudes:

∂gs
∂t

+ v‖
∂gs
∂z

= −qsf
‖
0s

T‖0s

(
v‖ − u′‖0s

)〈1

c

∂A‖

∂t
+
∂ϕ

∂z
− ∂

∂z

v⊥ ·A⊥
c

〉
Rs

. (3.4)

Decomposing the perturbed distribution function gs and the fluctuating electromagnetic
potentials ϕ and A into plane-wave solutions,

gs(t,Rs, v‖, v⊥) =
∑
k

gsk(v‖, v⊥) e−i(ωt−k·Rs),

ϕ(t, r) =
∑
k

ϕk e−i(ωt−k·r), A(t, r) =
∑
k

Ak e−i(ωt−k·r),

and substituting these expressions into (3.4), we find that the Fourier coefficient

gsk = −

[
J0(as)

qs
T‖0s

(
ϕk −

ωA‖k

k‖c

)
+

2v2
⊥

v2
th‖s

J1(as)

as

δB‖k

B0

]
v‖ − u′‖0s
v‖ − ω/k‖

f
‖
0s, (3.5)
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where J0(as) and J1(as) are, respectively, the zeroth- and first-order Bessel functions of
as

.
= k⊥v⊥/Ωs (cf. equation I–B1).

3.3. Gyrokinetic field equations

Next, we insert (3.5) into the field equations (2.49)–(2.51). This procedure involves com-
puting several v‖-, v⊥-, and Bessel-function–weighted Landau-like integrals over the mean

distribution function. These integrals (denoted Γ
‖
`m and Γ⊥`m for integral ` and m) are

defined and evaluated to leading order in αs
.
= (k⊥ρs)

2/2 in Appendix B. Using these def-
initions, the quasineutrality constraint (2.49) and the parallel (2.50) and perpendicular
(2.51) components of Ampère’s law may be written, respectively, as∑

s

q2
sn0sϕk

T⊥0s

[
T⊥0s

T‖0s
Γ
‖
00(ξs, αs) + C⊥0s − Γ⊥00(αs)

]

−
∑
s

q2
sn0su

′
‖0sA‖k

cT⊥0s

[
T⊥0s

T‖0s
Γ
‖
01(ξs, αs) + C⊥1s − Γ⊥01(αs)

]
+
∑
s

qsn0s

[
T⊥0s

T‖0s
Γ
‖
10(ξs, αs)− Γ⊥10(αs)

]
δB‖k

B0
= 0, (3.6)

∑
s

q2
sn0su

′
‖0sϕk

T⊥0s

[
T⊥0s

T‖0s
Γ
‖
01(ξs, αs) + C⊥1s − Γ⊥01(αs)

]
+

{
c2k2
⊥

4π
+
∑
s

q2
sn0s

ms

−
∑
s

q2
sn0s

ms

T‖0s

T⊥0s

(
1 +

2u′2‖0s

v2
th‖s

)[
T⊥0s

T‖0s
Γ
‖
02(ξs, αs) + C⊥2s − Γ⊥02(αs)

]}
A‖k

c

+
∑
s

qsn0su
′
‖0s

[
T⊥0s

T‖0s
Γ
‖
11(ξs, αs)− Γ⊥11(αs)

]
δB‖k

B0
= 0, (3.7)

∑
s

β⊥s
qsϕk

T⊥0s

[
T⊥0s

T‖0s
Γ
‖
10(ξs, αs)− Γ⊥10(αs)

]

−
∑
s

β⊥s
qsu
′
‖0sA‖k

cT⊥0s

[
T⊥0s

T‖0s
Γ
‖
11(ξs, αs)− Γ⊥11(αs)

]

+

{∑
s

β⊥s

[
T⊥0s

T‖0s
Γ
‖
20(ξs, αs)− Γ⊥20(αs)

]
− 2

}
δB‖k

B0
= 0, (3.8)

where ξs
.
= (ω − k‖u′‖0s)/k‖vth‖s is the dimensionless phase velocity of the fluctuations

in the parallel-drifting frame. The former two equations – quasineutrality (3.6) and the
parallel component of Ampère’s law (3.7) – can be combined by eliminating δB‖k/B0 to
yield what amounts to a statement of vorticity conservation:

ω

k‖

∑
s

q2
sn0sϕk

T⊥0s

{
C⊥0s − Γ⊥00(αs)−

k‖u
′
‖0s

ω

[
C⊥1s − Γ⊥01(αs)

]}

− ω

k‖

∑
s

q2
sn0su

′
‖0sA‖k

cT⊥0s

{
C⊥1s − Γ⊥01(αs)−

k‖u
′
‖0s

ω

[
C⊥2s − Γ⊥02(αs)

]}

=
A‖k

c

∑
s

q2
sn0s

ms

{
2αs
β⊥

+ 1− Γ00(αs)−
T‖0s

T⊥0s

[
C⊥2s − Γ⊥02(αs)

]}
. (3.9)
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Note that the lowest-order terms in this equation are first order in (k⊥ρs)
2.

3.4. Gyrokinetic dispersion relation for arbitrary f0s

The linear dispersion relation for pressure-anisotropic multispecies slab gyrokinetics is
obtained by combining (3.6)–(3.8) and demanding non-trivial solutions. We have found
its general form to be neither physically illuminating nor particularly useful for our
purposes. In lieu of numerically computing its general solutions across an expansive
parameter space, we opt instead to examine a number of illustrative asymptotic limits
for which analytical solutions may be obtained. These limits are treated in the remainder
of this section.

3.5. Long-wavelength limit for arbitrary f0s: Linear KRMHD

We first examine the long-wavelength (k⊥ρs � 1) limit of (3.6)–(3.8), which is obtained
by taking the leading-order expressions for the Γ`m(ξs, αs) factors given in (B 4) and
(B 5) and by dropping the k2

⊥c
2/4π term in (3.7). At this order, the parallel Ampère’s

law is redundant with the quasineutrality constraint. The remaining field equations
(viz. quasineutrality and the perpendicular Ampère’s law) may be written in the fol-
lowing compact form:

∑
s c

2
sC
‖
0s

2

β‖s

∑
s cs∆1s

∑
s cs∆1s

∑
s β⊥s∆2s − 1




4πen0e

B2
0

(
ϕk −

ωA‖k

k‖c

)
δB‖k

B0

 = 0. (3.10)

There are two types of solutions to (3.10). The first is straightforwardly obtained by
setting the determinant of the above 2×2 matrix to zero, yielding the dispersion relation(∑

s

c2sC
‖
0s

2

β‖s

)(∑
s

β⊥s∆2s − 1

)
=

(∑
s

cs∆1s

)2

.

This equation is identical to the KRMHD dispersion relation for the compressive fluctua-
tions (cf. I–B9).† The other type of solution is obtained by stipulating δB‖k = 0 and thus
requiring ϕk = ωA‖k/k‖c. Writing the potentials in terms of the perpendicular velocity
and magnetic-field fluctuations, viz.

u⊥ =
c

B0
ẑ×∇⊥ϕ(r), (3.11a)

δB⊥√
4πρ0

= − vA
B0

ẑ×∇⊥A‖(r), (3.11b)

this gives u⊥k = −(ω/k‖)(δB⊥k/B0), which we recognize as the eigenvector describ-
ing the Alfvénic fluctuations. To obtain the corresponding eigenvalues, we use ϕk =
ωA‖k/k‖c in (3.9) and examine the leading-order terms. After some straightforward al-
gebra, we find

c2k2
⊥

4π

[
ω2

k2
‖v

2
A

− 1−
∑
s

β‖s

2

(
∆s −

2u′2‖0s

v2
th‖s

)]
A‖k

c
= 0.

† There is a typo in (I–B8): the minus sign there should be a plus sign. This error does not
affect any of the subsequent formulae or analysis in that paper.



Kinetic turbulence in pressure-anisotropic plasmas 13

Setting the term in brackets to zero leads to the Alfvén-wave eigenvalues (cf. I–3.1),

ω = ±k‖vA

[
1 +

∑
s

β‖s

2

(
∆s −

2u′2‖0s

v2
th‖s

)]1/2

≡ ±k‖vA∗, (3.12)

where we have defined the effective Alfvén speed vA∗. For p⊥0−p‖0−
∑
smsn0su

′2
‖0s < 0,

the speed at which deformations in the magnetic field are propagated is effectively reduced
by the excess parallel pressure, which undermines the restoring force exerted by the
tension of the magnetic-field lines. When

1 +
∑
s

β‖s

2

(
∆s −

2u′2‖0s

v2
th‖s

)
< 0, (3.13)

the effective Alfvén speed becomes imaginary and the firehose instability results.
Thus, at long wavelengths, the Alfvén- and slow-wave branches are decoupled and the

linear gyrokinetic theory correctly reduces to the linear theory of KRMHD (Paper I).

3.6. Gyrokinetic dispersion relation for an electron-ion bi-Maxwellian plasma

As the ion gyroscale is approached, k⊥ρi ∼ 1, the Alfvén waves are no longer decoupled
from the compressive fluctuations and therefore can be collisionlessly damped. The frac-
tion of the Alfvén-wave energy that remains in the turbulent cascade is channeled to yet
smaller scales, where the Alfvén-wave cascade transitions into a cascade of dispersive ki-
netic Alfvén waves. This cascade proceeds further to electron Larmor scales, k⊥ρe ∼ 1, at
which point the kinetic Alfvén waves Landau damp on the electrons. In this section, the
linear theory of Maxwellian collisionless slab gyrokinetics that forms the basis of these
statements (Howes et al. 2006; Schekochihin et al. 2009) is extended to a bi-Maxwellian
plasma of single-species ions and electrons.†

Before proceeding with the derivation, we note that, for f0s = fbi-M,s(v‖, v⊥), the
integrals over the perpendicular velocity space in the Γ`m(ξs, αs) coefficients (B 4) and
(B 5) may be expressed in terms of the zeroth-order (I0) and first-order (I1) modified
Bessel functions:

Γ0(αs)
.
=

∫ ∞
0

dv2
⊥

v2
th⊥s

[
J0(as)

]2
e−v

2
⊥/v

2
th⊥s = I0(αs) e−αs , (3.14a)

Γ1(αs)
.
=

∫ ∞
0

dv2
⊥

v2
th⊥s

v2
⊥

v2
th⊥s

2J1(as)J1(as)

as
e−v

2
⊥/v

2
th⊥s =

[
I0(αs)− I1(αs)

]
e−αs , (3.14b)

Γ2(αs)
.
=

∫ ∞
0

dv2
⊥

v2
th⊥s

[
2v2
⊥

v2
th⊥s

J1(as)

as

]2

e−v
2
⊥/v

2
th⊥s = 2Γ1(αs). (3.14c)

In addition, we can express the integrals over the parallel velocity space in the Γ
‖
`m(ξs, αs)

coefficients in terms of the (Maxwellian) plasma dispersion function ZM (ξ):

1√
π

∫ ∞
−∞

dv‖

vth‖s

v‖

v‖ − ω/k‖
e−v

2
‖/v

2
th‖s = 1 + ξsZM (ξs), (3.15)

where ξs
.
= ω/k‖vth‖s is the dimensionless phase speed (Fried & Conte 1961). Thus,

† While this paper was in preparation, a paper appeared on the arXiv (Verscharen et al.
2017) in which the linear gyrokinetic theory for a bi-Maxwellian ion-electron plasma was derived
using the nonlinear gyrokinetic theory presented in Paper I and the long-wavelength limit was
analyzed. Where there is overlap with the results presented in this section, agreement is found.
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combining (3.14) and (3.15), we have

Γ
‖
0`(αs) = Γ`(αs)

[
1 + ξsZM (ξs)

]
(3.16)

for integer `. Similarly, C⊥`s = 1.
With these simplifications, (3.6)–(3.8) may be written succinctly in matrix form:

A A− B C

A− B A− B − α∗

ω2 C + E

C C + E D − 2

β⊥i





ϕk

−
ωA‖k

k‖c

T⊥0i

qi

δB‖k

B0


= 0, (3.17)

where we have employed the shorthand notation (cf. §2.6 of Howes et al. 2006)

A .
= 1 + Γ0(αi)

[
∆i + ξiZM (ξi)

T⊥0i

T‖0i

]
+
τ⊥i
Zi

{
1 + Γ0(αe)

[
∆e + ξeZM (ξe)

T⊥0e

T‖0e

]}
,

(3.18a)

B .
= 1− Γ0(αi) +

τ⊥i
Zi

[
1− Γ0(αe)

]
, (3.18b)

C .
= Γ1(αi)

[
∆i + ξiZM (ξi)

T⊥0i

T‖0i

]
− Γ1(αe)

[
∆e + ξeZM (ξe)

T⊥0e

T‖0e

]
, (3.18c)

D .
= Γ2(αi)

[
∆i + ξiZM (ξi)

T⊥0i

T‖0i

]
+ Γ2(αe)

Zi
τ⊥i

[
∆e + ξeZM (ξe)

T⊥0e

T‖0e

]
, (3.18d)

E .
= Γ1(αi)− Γ1(αe), (3.18e)

α∗
.
= αi +

β‖i

2
∆i

[
1− Γ0(αi)

]
+
β‖e

2
∆e

[
1− Γ0(αe)

] mi

Zime

τ⊥i
Zi

, (3.18f )

and ω
.
= ω/k‖vA.

Setting the determinant of the 3×3 matrix in (3.17) equal to zero yields the gyrokinetic
dispersion relation, which may be written in the following compact form after multiplying
by A (cf. eq. 41 of Howes et al. 2006):(

α∗A
ω2 −AB + B2

)
︸ ︷︷ ︸

Alfvén

(
2A
β⊥i
−AD + C2

)
︸ ︷︷ ︸

slow

=
(
AE + BC

)2
︸ ︷︷ ︸
FLR coupling

. (3.19)

We have labelled each factor in the dispersion relation (3.19) according to its physi-
cal meaning: the first term in parentheses corresponds to the Alfvén-wave branch, the
second corresponds to the slow-wave branch, and the right-hand side represents the finite-
Larmor-radius (FLR) coupling between the two branches that occurs as k⊥ρs approaches
and exceeds unity. For a hydrogenic plasma (i.e. Zi = 1, mi/me ≈ 1836), the complex
eigenvalue solution ω to (3.19) depends on five dimensionless parameters: the ratio of
the ion Larmor radius to the perpendicular wavelength, k⊥ρi; the ion plasma beta β‖i;
the ion-electron perpendicular temperature ratio, τ⊥i; the ion pressure anisotropy, ∆i;
and the electron pressure anisotropy, ∆e.† In what follows, we vary these parameters to
obtain asymptotic limits of the dispersion relation (3.19).

† Alternatively, one may specify τ⊥i, τ‖i, and ∆i, which, combined, implies a choice of ∆e.
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3.6.1. KRMHD limit: Zime/mi, k⊥ρi → 0

In the limit where k⊥ρi and the electron-ion mass ratio Zime/mi are both asymptot-
ically small, one should obtain the linear theory for bi-Maxwellian KRMHD (cf. §4.4 of
Paper I). In this limit, B ' αi, E ' −(3/2)αi, and the dispersion relation (3.19) becomes

A
(α∗
ω2 − αi

)( 2A
β⊥i
−AD + C2

)
= 0. (3.20)

Setting A = 0, we obtain the dispersion relation for Landau-damped ion acoustic
waves:

ξiZM (ξi) = −
(

1 +
τ‖i

Zi

)
. (3.21)

Setting the second factor of (3.20) to zero and simplifying α∗ ' αi[1 + (β‖i/2)∆i +
(β‖e/2)∆e] (see (3.18f)), we obtain the dispersion relation for undamped Alfvén waves
modified by the ion and electron pressure anisotropies:

ω = ±k‖vA

√
1 +

β‖i

2
∆i +

β‖e

2
∆e. (3.22)

Again, when

1 +
β‖i

2
∆i +

β‖e

2
∆e < 0, (3.23)

the effective Alfvén speed becomes imaginary and the firehose instability results (cf. (3.13)).
Setting the third factor of (3.20) to zero, and using the leading-order expressions for

C ' (T⊥0i/T‖0i)[1 + ξiZM (ξi)− τ‖i/τ⊥i] and D ' 2C + 2(1 + Zi/τ⊥i)∆e, we obtain after
some straightforward but tedious algebra the dispersion relation for the compressive
fluctuations, [

1 + ξiZM (ξi)− Λ+
][

1 + ξiZM (ξi)− Λ−
]

= 0, (3.24)

where

Λ± = −
τ‖i

Zi
+
p‖0i

p⊥0i

ςi
β⊥i
±

√(
τ‖i

τ⊥i
+
τ‖i

Zi

)2

+

(
p‖0i

p⊥0i

ςi
β⊥i

)2

, (3.25)

ςi
.
= 1− β⊥∆e. (3.26)

An important limit of (3.24) is obtained for βs ∼ 1/∆s � 1, in which the “+” compres-
sive branch, consisting primarily of magnetic-field-strength fluctuations, is collisionlessly
damped at a rate

γ
.
= −iω = −

|k‖|vA√
πβ‖i

p2
‖0i

p2
⊥0i

(
1−

∑
s

β⊥s∆s

)
. (3.27)

This expression captures the effect of pressure anisotropy on the Barnes (1966) damping
of slow modes (in the limit k‖/k⊥ � 1), which is due to Landau-resonant particles
interacting with the mirror force associated with the magnetic compressions in the wave.
When

1− β⊥i∆i + β⊥e∆e < 0, (3.28)

the proportional increase (for ∆s > 0) in the number of large-pitch-angle particles in
the magnetic troughs (δB‖ < 0) of the slow mode results in more perpendicular pressure
than can be stably balanced by the magnetic pressure. The result is the mirror instability
(e.g. Southwood & Kivelson 1993). We refer the reader to §4.4.2 of Paper I for further
analysis and discussion.
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Thus, the Alfvén- and slow-wave branches of the gyrokinetic dispersion relation de-
couple in the long-wavelength limit and we obtain the linear theory of KRMHD.

3.6.2. Kinetic-Alfvén-wave limit: k⊥ρe � 1� k⊥ρi

In the limit k⊥ρe � 1� k⊥ρi, we have Γ0(αi), Γ1(αi)→ 0 for the ions and Γ0(αe) '
Γ1(αe) ' 1 for the electrons, whence B ' 1 and E ' −1. We also drop the electron
plasma dispersion functions to lowest order in k⊥ρe, a simplification that will be justified
a posteriori. The gyrokinetic dispersion relation (3.19) becomes(

α∗A
ω2 −A+ 1

)(
2A
β⊥i
−AD + C2

)
=
(
−A+ C

)2
, (3.29)

where A ' 1 + T⊥0i/ZiT‖0e, C ' −∆e, and D ' 2(Zi/τ⊥i)∆e.† The solutions are

ω = ±
k‖vAk⊥ρi√

β⊥i + 2/(1 + ZiT‖0e/T⊥0i)− 2H

√(
1− β⊥e∆e +H

)(
1 +

β‖e

2
∆e

)
, (3.30)

where

2H .
=

β‖e∆
2
e

1 + ZiT‖0e/T⊥0i
. (3.31)

Equation (3.30) is a generalisation of the standard kinetic-Alfvén-wave dispersion relation
(e.g. Kingsep et al. 1990),

ω = ±
k‖vAk⊥ρi√

βi + 2/(1 + ZiT0e/T0i)
,

for bi-Maxwellian plasmas. Note that, for this solution, ξe ∼ O(k⊥ρe)� 1, as promised.
The equations governing the corresponding sub-ion-scale fluctuations in the electron

density, the parallel flow velocity, and the magnetic-field strength are obtained from the
gyrokinetic field equations (I–C88)–(I–C90) with all the Γ`m(αi) coefficients set to zero;
they are, respectively,

δne
n0e

= −Zieϕ
T⊥0i

= − 2√
β⊥i

Φ

ρivA
, (3.32a)

u‖e =
c

4πen0e

(
1 +

β‖e

2
∆e

)
∇2
⊥A‖ = − ρi√

β⊥i

(
1 +

β‖e

2
∆e

)
∇2
⊥Ψ, (3.32b)

u‖i = − c

4πZen0i
β‖i∆i

A‖

ρ2
i

=
ρi√
β⊥i

β‖i∆i
Ψ

ρ2
i

, (3.32c)

δB‖

B0
=
β⊥i
2

(
1 +

Zi
τ⊥i

)(
1− β⊥e

2
∆e

)−1
Zieϕ

T⊥0i

=
√
β⊥i

(
1 +

Zi
τ⊥i

)(
1− β⊥e

2
∆e

)−1
Φ

ρivA
, (3.32d)

where we have introduced the stream and flux functions Φ and Ψ (see (I–C54a,b)) via

ϕ =
B0

c
Φ and A‖ = −B0

vA
Ψ. (3.33)

Equations (3.32a,b,c,d) are to be compared with equations (221)–(223) of Schekochihin

† Note that the final term in the definition of α∗ (equation 3.18f) must be retained in this limit,
despite its dependence on the higher-order term 1 − Γ0(αe). This is because its leading-order
term is proportional to αe(mi/Zime)(τ⊥i/Zi) = αi � 1. Thus, α∗ ' α (1 + β‖e∆e/2).
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et al. (2009). They reflect the fact that, for k⊥ρi � 1, the ion response is effectively
Boltzmann (see (2.25)), with the gyrokinetic response hi contributing nothing to the
fields or flows. Note that the parallel ion flow velocity (3.32c) is ∼(k⊥ρi)

−2 � 1 smaller
than the corresponding pressure-anisotropic terms in the parallel electron flow velocity
(3.32b), and thus contributes almost nothing to the parallel current.

There are several things to note about the kinetic-Alfvén-wave dispersion relation
(3.30). First, kinetic Alfvén waves in a bi-Maxwellian plasma are unstable at both the
mirror (cf. (3.28)) and firehose (cf. (3.23)) instability thresholds, the geometric mean of
which appears as the final term in (3.30). This makes sense, as Alfvénic and compressive
fluctuations are coupled in the kinetic Alfvén wave by finite-Larmor-radius effects. Indeed,
the eigenfunctions corresponding to the frequencies (3.30) are (cf. (231) of Schekochihin
et al. 2009)

Θ±k =

√(
1 +

ZiT‖0e

T⊥0i

)[
2 + β⊥i

(
1 +

ZiT‖0e

T⊥0i

)
− β‖e∆2

e

]
(1− β⊥e∆e +H)1/2

1− β⊥e∆e/2

Φk

ρi

∓
√

1 +
β‖e

2
∆e k⊥Ψk. (3.34)

The factor 1 + β‖e∆e/2, related to the firehose threshold, is seen to be associated with
the Alfvénic fluctuation δB⊥k ∝ k⊥Ψk; the factor 1 − β⊥e∆e, related to the mirror
threshold, is seen to be associated with the compressive fluctuation δB‖k ∝ Φk/ρi. The

kinetic-Alfvén-wave eigenfunctions Θ±k combine both effects.
Secondly, the ion pressure anisotropy does not appear in (3.30). Physically, this is

because the ion response is essentially purely Boltzmann (see (2.25)), with an isothermal
pressure response,

δp⊥i = T⊥0iδni and δp‖i = T‖0iδni. (3.35)

By contrast, the electron response satisfies (see (I–2.45a,b))

δp⊥e = T⊥0eδne − p⊥0e∆e

δB‖

B0
and δp‖e = T‖0eδne, (3.36)

so that a magnetic-field-strength fluctuation produces a perpendicular temperature fluc-
tuation proportional to the electron pressure anisotropy. The difference is because, at
scales satisfying k⊥ρi � 1, the ions do not “see” the magnetic-field-strength fluctuation,
which varies rapidly along the ion gyro-orbit and is thus ring averaged away. In this
situation, the ions have no reason to adiabatically adjust their perpendicular pressure
according to the changes in field strength. (Note also that k⊥ρi � 1 implies |ξi| � 1.) The
ion pressure anisotropy is also absent from the firehose factor 1+(β‖e/2)∆e in (3.30) and
(3.34) for a similar reason: such pressure-anisotropy corrections to the effective tension in

the magnetic-field lines stem from the b̂δb̂(p⊥0s−p‖0s) term in the perturbed magnetized

pressure tensor, which is only effective if species s can “see” the field fluctuation δb̂.
Thirdly, the kinetic Alfvén wave in the gyrokinetic limit satisfies perpendicular pressure

balance:

B0δB‖

4π
+ δp⊥e + δp⊥i = p⊥0i

(
1− β⊥e

2
∆e

)
2

β⊥i

δB‖

B0
+ p⊥0i

(
1 +

Zi
τ⊥i

)
δne
n0e

= 0, (3.37)

which follows from combining (3.32a), (3.32d), (3.35), and (3.36). This equation states
that an increase in number density must be accompanied by a decrease in the magnetic-
field strength, the amount of decrease depending upon the factor 1−(β⊥e/2)∆e. If ∆e > 0,
then the magnetic-field lines must inflate further in order to maintain perpendicular
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pressure balance as large-pitch-angle particles are squeezed into the magnetic troughs.
When the concentration of these particles leads to more perpendicular pressure than
can be stably balanced by the magnetic pressure, the troughs must grow deeper to
compensate. In the long-wavelength limit, the pressure-balanced slow mode then goes
unstable to the mirror instability. In the short-wavelength limit, the kinetic Alfvén wave
goes unstable for the same reason.

Comparing (3.22) and (3.30), we see that the location of the wavenumber transition
from Alfvén waves to kinetic Alfvén waves during a turbulent cascade (at k⊥ρi ∼ 1
for a Maxwellian plasma) is generally a function of the electron pressure anisotropy.
This dependence may be tested by looking for a shift in the ion-Larmor-scale spectral
break in measurements of Alfvénic turbulence in the non-Maxwellian solar wind and
in simulations of gyrokinetic turbulence in bi-Maxwellian plasmas. Furthermore, in a
Maxwellian, high-β plasma, the dispersion relation exhibits a sharp frequency jump at the
Alfvén-wave–kinetic-Alfvén-wave transition (see Figure 8c of Schekochihin et al. 2009).
This jump is accompanied by very strong ion Landau damping. It is easy to imagine
from the above discussion that the electron pressure anisotropy, by affecting the rate of
collisionless damping, would thus play an important role in determining the fraction of
wave energy that is damped on the ions versus cascaded down to electron scales. This is
manifest in numerical solutions to (3.19), which we now present.

3.6.3. Numerical solutions

In Appendix A, we derive additional approximate solutions to (3.19) in the analytically
tractable limits of high and low β‖i. These solutions reveal that Alfvén waves suffer weak
collisionless damping at (k⊥ρi)

2 ∼ 1 in the high-beta limit . . . and other stuff. Here we
present numerical solutions of (3.19). Not yet finished. . .

4. Generalised free energy and the kinetic cascade

In Paper I, we showed that the long-wavelength Alfvénic and compressive fluctuations
satisfy the following nonlinear conservation law:

dWKRMHD

dt
= −

∫
d3r

∑
s

u′‖0s

(
qsδnsE‖ − δp⊥sb̂ ·∇

δB‖

B0

)
, (4.1)

where

WKRMHD
.
=

∫
d3r

{∑
s

∫
d3v

T‖0sδf̃
2
s

2f
‖
0s

+
ρ0u

2
⊥

2

+

[
1 +

∑
s

β‖s

2

(
∆s −

2u′2‖0s

v2
th‖s

)]
δB2
⊥

8π
+

(
1−

∑
s

β⊥s∆2s

)
δB2
‖

8π

}
(4.2)

is the generalised free energy of KRMHD,

δf̃s = δfs(v‖, w⊥) +
v2
⊥

v2
th⊥s

δB‖

B0
Df0s (4.3)

is the (long-wavelength) perturbed distribution function in the frame of the Alfvénic
fluctuations (see §I–4.2 and (2.47)), and

∆2s
.
=

(
1

n0s

∫
d3v

1

2

v4
⊥

v4
th⊥s

f
‖
0s

)
p⊥0s

p‖0s
− 1; (4.4)
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the parallel electric field E‖ on the right-hand side of (4.1) is given by (I–2.37) (we have no
need of restating it here). In the absence of background interspecies drifts where the right-
hand side of (4.1) is zero, WKRMHD is a quadratic invariant representing the turbulent
cascade of generalised free energy in a pressure-anisotropic plasma to small scales in
phase space. It is comprised of three parts: two Alfvénic invariants (I–3.10) representing
forward- and backward-propagating nonlinear Alfvén waves and a compressive invariant
(I–4.7), which, in the pressure-isotropic case (eq. (201) of Schekochihin et al. 2009), is
related to the perturbed entropy of the system. For a bi-Maxwellian distribution, the
compressive invariant factors further into three independent collisionless cascades (see
§I–4.5). In the presence of background interspecies drifts, the right-hand side of (4.1)
corresponds to the change in the free energy due to the work done on the system by the
fluctuating parallel electric and magnetic-mirror forces acting on the parallel drifts.

Our goal in this section is to derive the gyrokinetic version of (4.1), valid at both long
and short wavelengths. The starting point is the gyrokinetic equation (2.44), written

in terms of the gyrokinetic response h̃s. Multiplying that equation by T‖0sh̃s/f
‖
0s and

integrating over the velocities and gyrocentres, we find that the nonlinear term conserves
the variance of h̃s and so

d

dt

∫
d3v

∫
d3Rs

T‖0sh̃
2
s

2f
‖
0s

=

∫
d3v

∫
d3Rs qs

(
∂〈χ〉Rs

∂t
+ u′‖0s

∂〈χ〉Rs

∂z

)
h̃s. (4.5)

We now sum this equation over all species. The right-hand side becomes∑
s

qs

∫
d3v

∫
d3Rs

(
∂〈χ〉Rs

∂t
+ u′‖0s

∂〈χ〉Rs

∂z

)
h̃s

=

∫
d3r

∑
s

qs

∫
d3v

〈(
∂χ

∂t
+ u′‖0s

∂χ

∂z

)
h̃s

〉
r

=

∫
d3r

[
∂ϕ

∂t

∑
s

qs

∫
d3v 〈h̃s〉r −

1

c

∂A

∂t
·
∑
s

qs

∫
d3v 〈vh̃s〉r

+
∑
s

qsu
′
‖0s

∫
d3v

〈
∂χ

∂z
h̃s

〉
r

]
. (4.6)

The first term on the right-hand side of (4.6) can be written in terms of the potentials

(ϕ,A‖, δB‖) by using (2.43) to expand h̃s, employing the quasi-neutrality constraint
(2.49), and performing the resulting integrals using the notation defined in Appendix B.
The second term on the right-hand side is most easily dealt with by using Faraday’s law
(2.2) and Ampère’s law (2.4) to write

− d

dt

∫
d3r
|δB|2

8π
=

∫
d3rE · j =

∫
d3r

(
−1

c

∂A

∂t
·
∑
s

qs

∫
d3v vδfs

)

=

∫
d3r

[
−1

c

∂A

∂t
·
∑
s

qs

∫
d3v

〈
v

(
δf1s,Boltz −

qs〈χ〉Rs

T⊥0s
Df0s + h̃s

)〉
r

]
. (4.7)

Then, substituting (2.25) for δf1s,Boltz in the final equality above and performing the
resulting integrals (again, with the aid of Appendix B), we may use (4.7) to write the
second term on the right-hand side of (4.6) in terms of the potentials (ϕ,A‖, δB‖) and
the rate-of-change of the magnetic energy. The third and final term on the right-hand
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side of (4.6) is markedly simplified by using (3.1) to move from h̃s to gs:∫
d3r

∑
s

qsu
′
‖0s

∫
d3v

〈
∂χ

∂z
h̃s

〉
r

=

∫
d3r

∑
s

qsu
′
‖0s

∫
d3v

〈
∂χ

∂z
gs

〉
r

+

∫
d3r

∑
s

qsu
′
‖0s

∫
d3v

qsf
‖
0s

T‖0s

〈
∂χ

∂z

〈
χ+

(v‖ − u′‖0s)A‖
c

〉
Rs

〉
r

, (4.8)

from which we may remove the entire second line after integrating by parts with respect
to z (to eliminate the first term) and v‖ (to eliminate the second).

Assembling (4.6)–(4.8) and expending much algebraic effort, we find that (4.5), summed
over species, is equivalent to the following conservation law:

dWGK

dt
=

∫
d3r

∑
s

u′‖0s

∫
d3v qsgs

[〈
b̂
〉
Rs
·∇

〈
ϕ− v⊥ ·A⊥

c

〉
Rs

+
1

c

∂〈A‖〉Rs

∂t

]
, (4.9)

where

WGK
.
=

∫
d3r

{∑
s

∫
d3v

T‖0sδf̃
2
s

2f
‖
0s

−
∑
s

q2
sn0s

T⊥0s

(
Γ̂⊥00s − C⊥0s

)ϕ2

2
+
δB2
⊥

8π

+
∑
s

q2
sn0s

2T⊥0s

[
p⊥0s

p‖0s

(
Γ̂00s − 1

)
−
(

Γ̂⊥02s − C⊥2s
)(

1 +
2u′2‖0s

v2
th‖s

)]
v2
th‖sA

2
‖

2c2

+

[
1−

∑
s

β⊥s

(
p⊥0s

p‖0s

Γ̂
‖
20s

2
− Γ̂⊥20s

2

)]
δB2
‖

8π
−
∑
s

qsn0su
′
‖0sΓ̂

⊥
11s

A‖δB‖

cB0

}
(4.10)

is the appropriately generalised gyrokinetic free energy. Here, δf̃s is given by (2.47). The
differential operators in (4.10), conspicuously ornamented with the symbol ̂, are defined

in Appendix B by (B 7). To leading order in k2
⊥ρ

2
s � 1, they satisfy Γ̂⊥20s ≈ 2, Γ̂⊥11s ≈ 1,

Γ̂
‖
20s ≈ (1/n0s)

∫
d3v (v4

⊥/v
4
th⊥s)f

‖
0s, and(

Γ̂⊥00s − C⊥0s
)

Ψ2 ≈
(

Γ̂00s − 1
)

Ψ2 ≈
(

Γ̂⊥02s − C⊥2s
)

Ψ2 ≈ −
∑
k

1

2
k2
⊥ρ

2
s|Ψk|2

for any function Ψ(r). Substituting these long-wavelength expressions into (4.10), elim-
inating its final term by using

∑
s qsn0su

′
‖0s = 0, and manipulating (3.11) to write∑

k k
2
⊥|ϕk|2 and

∑
k k

2
⊥|A‖k|2 in terms of u2

⊥ and δB2
⊥, respectively, we find that the

gyrokinetic invariant reduces to its KRMHD counterpart (4.2), as it should.

Each of the terms in (4.9) deserves some discussion. The first term (∝δf̃2
s /f

‖
0s) is due to

the non-Alfvénic piece of the distribution function that represents changes in the kinetic
energy of the particles due to interactions with the compressive fluctuations. In it are
contributions from Landau-resonant particles, whose energy is changed by the parallel
electric and magnetic-mirror forces in such a way as to facilitate Landau and Barnes
damping of ion-acoustic waves and slow modes. In the pressure-isotropic case, this term
is simply the perturbed entropy of the system in the frame of the Alfvénic fluctuations.
The second term (∝ϕ2) represents the energy associated with the E×B motion. At
long wavelengths, it is equal to ρ0u

2
⊥/2 (see (3.11a)). The next two terms represent

the energetic cost of bending the magnetic-field lines, with an increase or decrease in
this cost dependent upon the pressure anisotropy of the mean distribution function and
the presence of interspecies drifts. The first term on the third line of (4.10) signals a
change in the energetic cost of compressing/rarefying the magnetic-field lines due pressure
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anisotropy. The final term has no long-wavelength limit. It is related to conservation of
helicity of the perturbed magnetic field,

∫
d3rA · δB, which is broken by parallel electric

fields.
The right-hand side of (4.9) is the fluctuating parallel force on gyrocentres multiplied

by the number density of gyrocentres and the parallel interspecies drifts. In the long-
wavelength limit, it is precisely the right-hand side of (4.10) – the work done on the system
by the fluctuating parallel electric and magnetic-mirror forces acting on the background
parallel drifts. The only difference is that, in the gyrokinetic limit, these (ring-averaged)
parallel forces act on the guiding centres instead of the particles.

In Paper I, the long-wavelength invariant WKRMHD was used to elucidate how the
generalized free energy is partitioned as it cascades to small scales in phase space across
the inertial range of KRMHD turbulence. It was shown that WKRMHD can be split
into three independent cascades of the generalised Alfvénic and compressive-fluctuation
energies: W+

AW , W−AW , and Wcompr. In the case of a single-ion-species bi-Maxwellian
plasma, Wcompr can be further decomposed into three independently cascading parts:
W+
compr, W

−
compr, and Wg̃i , the latter of which represents a purely kinetic cascade. All

three cascade channels lead to small perpendicular spatial scales via passive mixing by
the Alfvénic turbulence and to small scales in v‖ via the linear parallel phase mixing. The
rates of mixing are generally functions of the velocity-space anisotropy of the equilibrium
function.

With a general invariant WGK (4.10) in hand, valid across all scales (that satisfy the
gyrokinetic ordering), we now ask how the phase-space cascade begun in the inertial
range proceeds through the sub-Larmor dissipation range.

5. Sub-Larmor cascades

Not yet finished! Free energy conservation is from (4.10). Here we show that it has
two pieces: a kinetic-Alfvén-wave cascade and an ion-entropy cascade. Split occurs at
k⊥ρi ∼ 1; involves redistribution of power arriving from the inertial range (see Paper I).

5.1. Kinetic-Alfvén-wave cascade

In appendix C.8 of Paper I, we derived nonlinear equations describing the electron kinetics
for k⊥ρe ∼ k⊥ρi(me/mi)

1/2 � 1, obtained via a mass-ratio expansion. For the purposes
of this paper, the two most important electron equations are that specifying the parallel
electric field (see (I–C72)),

E‖
.
= −1

c

∂A‖

∂t
− b̂ ·∇ϕ = −b̂ ·∇

T‖0e

e

(
δne
n0e

+ ∆e

δB‖

B0

)
, (5.1)

and what amounts to a reduced electron continuity equation (see (I–C78) and accompa-
nying discussion in §I–C.8.3),

d

dt

(
δne
n0e
−
δB‖

B0

)
+ b̂ ·∇u‖e +

cT⊥0e

eB0

{
δne
n0e

,
δB‖

B0

}
= 0, (5.2)

where
d

dt
≡ ∂

∂t
+ uE ·∇ =

∂

∂t
+

c

B0
{ϕ, . . . } (5.3)

is the Lagrangian time derivative measured in a frame transported at the E×B drift
velocity, uE = −c∇⊥ϕ× ẑ/B0. Using (3.32a), (3.32b), and (3.32d) for the electron
density fluctuation, the parallel electron flow velocity, and the magnetic-field-strength



22 M. W. Kunz, I. G. Abel, A. A. Schekochihin, & K. G. Klein

fluctuation in the sub-ion-Larmor range, and introducing Φ and Ψ via (3.33), equations
(5.1) and (5.2) become, respectively,

∂Ψ

∂t
= vA

{
1 +

ZiT‖0e

T⊥0i

[
1− β⊥e

2
∆e

(
1 +

τ⊥i
Zi

)(
1− β⊥e

2
∆e

)−1
]}

b̂ ·∇Φ, (5.4)

∂Φ

∂t

[
2 + β⊥i

(
1 +

Zi
τ⊥i

)(
1− β⊥e

2
∆e

)−1
]

= −vA
(

1 +
β‖e

2
∆e

)
b̂ ·∇(ρ2

i∇2
⊥Ψ). (5.5)

These equations generalize the linear theory of kinetic Alfvén waves (§3.6.2) to the non-
linear regime. Introducing the perturbed magnetic-field vector

δB

B0
=

1

vA
ẑ×∇⊥Ψ + ẑ

δB‖

B0
(5.6)

with δB‖ given by (3.32d), equations (5.4) and (5.5) can be recast as two coupled evolution
equations for the perpendicular and parallel components of the perturbed magnetic field,
respectively.

It is straightforward to show that (5.4) and (5.5) conserve

WKAW
.
=

∫
d3r

min0i

2

{(
1 +

β‖e

2
∆e

)
|∇⊥Ψ|2

+
1− β⊥e∆e +H
(1− β⊥e∆e/2)2

(
1 +

ZiT‖0e

T⊥0i

)[
2 + β⊥i

(
1 +

ZiT‖0e

T⊥0i

)
− β‖e∆2

e

]
Φ2

ρ2
i

}
(5.7a)

=

∫
d3r

min0i

4

(
|Θ+|2 + |Θ−|2

)
, (5.7b)

which is the sum of the energies of the “+” and “−” linear kinetic-Alfvén-wave eigen-
modes (see (3.34)). At the firehose threshold, Ψ is energetically free; at the mirror thresh-
old, Φ is energetically free; gives link between linear stability and nonlinear stability.
WKAW is sum of the energies of the “+” and “−” linear kinetic-Alfvén-wave eigen-

modes, which are also exact nonlinear solutions. However, the two do not cascade inde-
pendently and can exchange free energy.

5.2. Entropy cascade

Not yet finished! Gyrokinetic equation in sub-ion-Larmor range is:

∂h̃i
∂t

+ v‖
∂h̃i
∂z

+ {〈χ〉Ri
, h̃i} =

2√
β⊥iρivA

T⊥0i

T‖0i

∂〈Φ〉Ri

∂t
f
‖
0i (5.8)

From this, can derive conservation law:

1

T‖0i

dWh̃i

dt
≡ d

dt

∫
d3v

∫
d3Ri

h̃2
i

2f
‖
0i

=
2√

β⊥iρivA

T⊥0i

T‖0i

∫
d3v

∫
d3Ri

∂〈Φ〉Ri

∂t
h̃i, (5.9)

where

h̃i = hi +
Zie

T⊥0i
∆i〈χ〉Ri

.

Source of entropy cascade (right-hand side of (5.9)) can be large or small depending
upon temperature anisotropy; at fixed ρi, more perpendicular energy gives more source,
which make sense: imagine if the perpendicular distribution function were very spiked,
then the different particles wouldn’t have very different v⊥/Ωi, so that the nonlinear
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phase mixing would be reduced. If the perpendicular distribution were very broad, then
different particles would have very different v⊥/Ωi, so that the nonlinear phase mixing

would be enhanced. The perpendicular phase mixing occurs from the {〈χ〉, h̃i} term in
the gyrokinetic equation.

See discussion in Section 7.9 of Schekochihin et al. (2009) for more on entropy cascade.
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Appendix A. Limiting cases of the bi-Maxwellian linear gyrokinetic
dispersion relation

In this Appendix, the transition between the long-wavelength solutions of Section 3.6.1
and the short-wavelength solutions of Section 3.6.2 is treated in the analytically tractable
limits of high and low β‖i. This follows the procedure in the appendix of Howes et al.
(2006) of identifying the analytically solvable cases.

A.1. High-β‖i limit: β‖i � 1, k⊥ρi ∼ 1

For β‖i � 1, we have ξi = ω/β
1/2
‖i � 1 and ξe = (me/mi)

1/2(T‖0i/T‖0e)
1/2ξi � 1, and we

can use the small-argument expansion of the plasma dispersion function, ZM (ξs) ' i
√
π.

[This requires τ‖i � (mi/me)β‖i, which is not particularly restrictive.] We also take
αe � 1 because me/mi � 1, as well as order the pressure anisotropy ∆s ∼ 1/β‖s.
Retaining k⊥ρi ∼ 1, the coefficients of the gyrokinetic dispersion relation (3.18) become

A ' 1 + Γ0(αi)∆i +
τ⊥i
Zi

T⊥0e

T‖0e
+ i
√
πξi

T⊥0i

T‖0i

[
Γ0(αi) +

(
τ‖i

Zi

)3/2(
Zime

mi

)1/2
]
, (A 1a)

B ' 1− Γ0(αi), (A 1b)

C ' Γ1(αi)∆i −∆e + i
√
πξi

T⊥0i

T‖0i

[
Γ1(αi)−

τ‖i

τ⊥i

(
τ‖i

Zi

Zime

mi

)1/2
]
, (A 1c)

D ' 2

[
Γ1(αi)∆i +

Zi
τ⊥i

∆e

]
+ 2i
√
πξi

T⊥0i

T‖0i

[
Γ1(αi) +

τ2
‖i

τ2
⊥i

(
Zi
τ‖i

Zime

mi

)1/2
]

.
=

2

β⊥i

[
1−F(αi)

]
+ 2i
√
πξiG(αi), (A 1d)

E ' Γ1(αi)− 1, (A 1e)

where we have dropped all terms of order 1 and higher in Zime/mi. As in Section 3.6.2,
we must be careful to retain the final term in the definition of α∗ (3.18f), despite its
dependence on the higher-order 1 − Γ0(αe) factor. The auxiliary functions F(αi) and
G(αi), which are defined implicitly by (A 1d), will become useful below.

We proceed by taking two instructive limits:
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(i ) The limit k⊥ρi ∼ O(β
−1/4
‖i ), ω ∼ O(1).

In this ordering, we have αi ∼ ξi ∼ O(β
−1/2
‖i ), and so we may expand Γ0(αi) ' 1− αi

and Γ1(αi) ' 1 − (3/2)αi. We find from (A 1) that A ∼ O(1) and B, C, D, and E ∼
O(β

−1/2
‖i ). Then, the dispersion relation (3.19) becomes

−
(α∗
ω2 − B

)
D = E2, (A 2)

where, to leading order, we have B ' αi, E ' −(3/2)αi, D ' 2iω(π/β‖i)
1/2, and α∗ '

αi[1 + (β‖i/2)∆i + (β‖e/2)∆e]. This is a quadratic equation for ω, whose solutions are

ω = −i
9

16

√
β‖i

π
αi ±

√√√√1 +
β‖i

2
∆i +

β‖e

2
∆e −

(
9

16

√
β‖i

π
αi

)2

. (A 3)

In the subsidiary limit, k⊥ρi � 1/β
1/4
‖i , we recover, as expected, the Alfvén wave, now

with weak collisionless damping (cf. equation 3.22):

ω = ±
√

1 +
β‖i

2
∆i +

β‖e

2
∆e − i

9

16

k2
⊥ρ

2
i

2

√
β‖i

π
. (A 4)

In the intermediate asymptotic limit β
−1/4
‖i � k⊥ρi � 1, we have

ω = −i
8

9

(
1 +

β‖i

2
∆i +

β‖e

2
∆e

)(
k2
⊥ρ

2
i

2

)−1√
π

β‖i
(weakly damped); (A 5a)

ω = −i
9

8

k2
⊥ρ

2
i

2

√
β‖i

π
(strongly damped). (A 5b)

(ii ) The limit k⊥ρi ∼ O(1), ω ∼ O(β
−1/2
‖i ).

In this ordering, αi ∼ O(1) and ξi ∼ O(β−1
‖i ). Then A, B, E ∼ O(1), and C, D ∼

O(β−1
‖i ). The dispersion relation (3.19) becomes

α∗

ω2

(
2

β⊥i
−D

)
= E2. (A 6)

Since D ' (2/β⊥i)[1 − F(αi)] + 2i
√
πξiG(αi), this is again a quadratic equation for ω,

with solutions given by

ω = −i

√
π

β‖i

α∗ G(αi)[
Γ1(αi)− 1

]2 ±
√√√√ 2

β⊥i

α∗ F(αi)[
Γ1(αi)− 1

]2 −
{√

π

β‖i

α∗ G(αi)[
Γ1(αi)− 1

]2
}2

. (A 7)

In the long-wavelength limit, k⊥ρi � 1, these become

ω = − i√
πβ‖i

p2
‖0i

p2
⊥0i

(
1− β⊥i∆i − β⊥e∆e

)
(A 8a)

ω = −i
8

9

(
1 +

β‖i

2
∆i +

β‖e

2
∆e

)(
k2
⊥ρ

2
i

2

)−1√
π

β‖i

p⊥0i

p‖0i
. (A 8b)

The first solution is the Barnes-damped (or mirror-unstable) slow wave (cf. I–4.33);
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the second solution matches the weakly damped Alfvén wave in the intermediate limit
(equation A 5a).

In the short-wavelength limit, k⊥ρi � 1, we have Γ1(αi)→ 0, F(αi)→ 1−β⊥e∆e, and
G(αi)→ (T⊥0e/T‖0e)(τ‖i/τ⊥i)(Zi/τ‖i)

1/2(Zime/mi)
1/2. Equation (A 7) then reproduces

the β‖i � 1 limit of the kinetic-Alfvén-wave dispersion relation (cf. 3.30):

ω = ± k⊥ρi√
β⊥i

(
1 +

β‖e

2
∆e

)1/2 (
1− β⊥e∆e

)1/2

− i
k2
⊥ρ

2
i

2

√
π

β‖i

(
1 +

β‖e

2
∆e

)
T⊥0e

T‖0e

τ‖i

τ⊥i

(
Zi
τ‖i

Zime

mi

)1/2

.

A.2. Low-β‖i limit: β‖i � 1, k⊥ρi ∼ 1

For β‖i � 1 and ∆s ∼ 1, the coefficients A, B, C, D, and E ∼ O(1). Then the gyrokinetic
dispersion relation (3.19) reduces to(

α∗A
ω2 −AB + B2

)
2A
β⊥i

= 0. (A 9)

The long-wavelength limit of the second factor (A = 0) gives the Landau-damped ion
acoustic wave (equation 3.21). For the first factor, we order ω ∼ O(1) and consider two
interesting limits:

(i ) The limit (Zime/mi)(τ⊥i/Zi)� β‖i � 1.

In this limit, ξi = ω/
√
β‖i � 1 and ξe = (Zime/mi)

1/2(τ⊥i/Zi)
1/2 � 1 (slow ions,

fast electrons). Expanding the ion and electron plasma dispersion functions in large and
small arguments, respectively, we get

A ' 1− Γ0(αi) +
τ⊥i
Zi

[
1 + Γ0(αe)∆e

]
+ iω

√
π

β‖i

T⊥0i

T‖0i

[
Γ0(αi) exp

(
− ω

2

β‖i

)
+

(
τ‖i

Zi

)3/2(
Zime

mi

)1/2

Γ0(αe)

]
. (A 10)

The dispersion relation (A 9) then becomes

τ⊥i
Zi

T⊥0e

T‖0e
BΓ0(αe)ω

2 − α∗
{

1− Γ0(αi) +
τ⊥i
Zi

[
1 + ∆eΓ0(αe)

]}
= −i

(
Bω2 − α∗

)
Im(A).

(A 11)
This equation may be iteratively solved to find

Re(ω) = ±

√
α∗
{

1− Γ0(αi) + (τ⊥i/Zi)
[
1 + ∆eΓ0(αe)

]}
(τ⊥i/Zi)(T⊥0e/T‖0e)BΓ0(αe)

, (A 12a)

γ = − α∗

2
[
(τ‖i/Zi)Γ0(αe)

]2√ π

β‖i

T‖0i

T⊥0i

×

[
Γ0(αi) exp

(
− ω

2

β‖i

)
+

(
τ‖i

Zi

)3/2(
Zime

mi

)1/2

Γ0(αe)

]
, (A 12b)

where γ
.
= Im(ω)/k‖vA. In the limit αi � 1, (A 12a) reduces to the Alfvén wave solution

(3.22).

(ii ) The limit β‖i ∼ Zime/mi � 1, τ⊥i/Zi � 1.
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In this limit, ξi ∼ (mi/me)
1/2 � 1, and so ξe ∼ (τ⊥i/Zi)

1/2 � 1 (cold ions and elec-
trons). Expanding all plasma dispersion functions in their large arguments, the coefficient

A ' B − Γ0(αe)

2ω2

mi

Zime
β⊥i + iω

√
π

β‖i

T⊥0i

T‖0i

×

[
Γ0(αi) exp

(
− ω

2

β‖i

)
+

(
τ‖i

Zi

)3/2(
Zime

mi

)1/2

Γ0(αe) exp

(
−
T‖0i

T‖0e

me

mi

ω2

β‖i

)]
.

(A 13)

The dispersion relation (A 9) then becomes

α∗Γ0(αe)

2ω2

mi

Zime
β⊥i − B

[
α∗ +

Γ0(αe)

2

mi

Zime
β⊥i

]
= −i

(
Bω2 − α∗

)
Im(A), (A 14)

which may be iteratively solved to find†

ω = ±

√
α∗Γ0(αe)(mi/Zime)β⊥i[

2α∗ + Γ0(αe)(mi/Zime)β⊥i
]
B
, (A 15a)

γ = − 2α3
∗Γ0(αe)(mi/Zime)β⊥i[

2α∗ + Γ0(αe)(mi/Zime)β⊥i
]3B2

√
π

β‖i

T⊥0i

T‖0i

×

[
Γ0(αi) exp

(
− ω

2

β‖i

)
+

(
τ‖i

Zi

)3/2(
Zime

mi

)1/2

Γ0(αe) exp

(
−
T‖0i

T‖0e

me

mi

ω2

β‖i

)]
.

(A 15b)

Appendix B. Definitions of C⊥
`s, C

‖
`s, Γ⊥

`m, and Γ
‖
`m coefficients

This paper is replete with velocity-space integrals, which we have allowed to mas-
querade as deceptively benign coefficients. The first set of these are the C⊥`s coefficients:

C⊥0s
.
=

1

n0s

∫
d3v f⊥0s, (B 1a)

C⊥1s
.
=

1

n0s

∫
d3v

v‖

vth‖s
f⊥0s ×

(
u′‖0s

vth‖s

)−1

, (B 1b)

C⊥2s
.
=

1

n0s

∫
d3v

v2
‖

v2
th‖s

f⊥0s ×

(
1

2
+
u′2‖0s

v2
th‖s

)−1

, (B 1c)

normalized so that C⊥`s = 1 for a parallel-drifting bi-Maxwellian distribution function.
The next set of coefficients were borne out of the linear theory:

C
‖
`s(ξs) =

1

n0s

∫
d3v

1

`!

(
v⊥
vth⊥s

)2` v‖ − u′‖0s
v‖ − ω/k‖

f
‖
0s (B 2)

for integer `, where ξs
.
= (ω− k‖u′‖0s)/k‖vth‖s is the dimensionless Doppler-shifted phase

velocity of the (linear) fluctuations. The functions defined by (B 2) engender suitable

† There is a type-setting error in equation (D25) of Howes et al. (2006).
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generalisations of the plasma dispersion function for non-Maxwellian distributions: e.g.

C
‖
`s(ξs) = 1 + ξsZM (ξs) for a bi-Maxwellian, where ZM (ξ)

.
=

1√
π

∫ ∞
−∞

dx
e−x

2

x− ξ
(B 3)

is the plasma dispersion function (Fried & Conte 1961).

Accounting for finite-Larmor-radius effects is most easily achieved in the Fourier do-
main, and the above C`s coefficients can be profitably generalised by including various
combinations of the nth-order Bessel function Jn(as), where as

.
= k⊥v‖/Ωs. Suitably

normalised, they are

Γ00(αs)
.
=

1

n0s

∫
d3v

[
J0(as)

]2
f0s = 1− αs + . . . (B 4a)

Γ⊥00(αs)
.
=

1

n0s

∫
d3v

[
J0(as)

]2
f⊥0s = C⊥0s − αs + . . . (B 4b)

Γ⊥01(αs)
.
=

1

n0s

∫
d3v

[
J0(as)

]2( v‖

vth‖s

)
f⊥0s ×

(
u′‖0s

vth‖s

)−1

= C⊥1s − αs + . . . (B 4c)

Γ⊥02(αs)
.
=

1

n0s

∫
d3v

[
J0(as)

]2( v‖

vth‖s

)2

f⊥0s ×

(
1

2
+
u′2‖0s

v2
th‖s

)−1

= C⊥2s − αs + . . .

(B 4d)

Γ⊥10(αs)
.
=

1

n0s

∫
d3v

v2
⊥

v2
th⊥s

2J0(as)J1(as)

as
f⊥0s = 1− 3

2
αs + . . . (B 4e)

Γ⊥11(αs)
.
=

1

n0s

∫
d3v

v2
⊥

v2
th⊥s

2J1(as)J1(as)

as

(
v‖

vth‖s

)
f⊥0s ×

(
u′‖0s

vth‖s

)−1

= 1− 3

2
αsC11s + . . .

(B 4f )

Γ⊥20(αs)
.
=

1

n0s

∫
d3v

[
2v2
⊥

v2
th⊥s

J1(as)

as

]2

f⊥0s = 2

(
1− 3

2
αsC20s + . . .

)
, (B 4g)
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Γ
‖
00(ξs, αs)

.
=

1

n0s

∫
d3v

[
J0(as)

]2 v‖ − u′‖0s
v‖ − ω/k‖

f
‖
0s = C

‖
0s − αsC

‖
1s + . . . , (B 5a)

Γ
‖
01(ξs, αs)

.
=

1

n0s

∫
d3v

[
J0(as)

]2( v‖

vth‖s

)
v‖ − u′‖0s
v‖ − ω/k‖

f
‖
0s ×

(
u′‖0s

vth‖s

)−1

=
ω

k‖u
′
‖0s

Γ
‖
00(ξs, αs), (B 5b)

Γ
‖
02(ξs, αs)

.
=

1

n0s

∫
d3v

[
J0(as)

]2( v‖

vth‖s

)2 v‖ − u′‖0s
v‖ − ω/k‖

f
‖
0s ×

(
1

2
+
u′2‖0s

v2
th‖s

)−1

=

[
Γ00(ξs, αs) +

2u′2‖0s

v2
th‖s

ω2

k2
‖u
′2
‖0s

Γ
‖
00(ξs, αs)

](
1 +

2u′2‖0s

v2
th‖s

)−1

, (B 5c)

Γ
‖
10(ξs, αs)

.
=

1

n0s

∫
d3v

v2
⊥

v2
th⊥s

2J0(as)J1(as)

as

v‖ − u′‖0s
v‖ − ω/k‖

f
‖
0s = C

‖
1s −

3

2
αsC

‖
2s + . . . ,

(B 5d)

Γ
‖
11(ξs, αs)

.
=

1

n0s

∫
d3v

v2
⊥

v2
th⊥s

2J0(as)J1(as)

as

(
v‖

vth‖s

)
v‖ − u′‖0s
v‖ − ω/k‖

f
‖
0s ×

(
u′‖0s

vth‖s

)−1

=
ω

k‖u
′
‖0s

Γ
‖
10(ξs, αs), (B 5e)

Γ
‖
20(ξs, αs)

.
=

1

n0s

∫
d3v

[
2v2
⊥

v2
th⊥s

J1(αs)

as

]2 v‖ − u′‖0s
v‖ − ω/k‖

f
‖
0s = 2

(
C
‖
2s −

3

2
αsC

‖
3s + . . .

)
,

(B 5f )

where the argument αs
.
= (k⊥ρs)

2/2, and

C11s
.
=

1

n0s

∫
d3v

v2
⊥

v2
th⊥s

v‖

u′‖0s
f0s and C20s

.
=

1

n0s

∫
d3v

1

2

v4
⊥

v4
th⊥s

f0s, (B 6)

both of which equate to unity for a drifting bi-Maxwellian distribution (2.9). To facilitate
comparison with the long-wavelength results of Paper I, the final equalities in (B 4) and
(B 5) provide their leading-order expansions in αs � 1. It is helpful to note the numbering
scheme used for the Γ`m subscripts, which reflects the number of powers ` of v2

⊥ and m
of v‖ in the integrand.

In Section 4, we promoted several of these Fourier-space Γ`m(αs) integrals to real-space
operators by dressing them with hats. Their action on an arbitrary squared function
Ψ2(r) is best expressed in Fourier space, where Ψ(r) =

∑
k Ψk exp(ik · r):∫

d3r Γ̂00Ψ2(r) =
∑
k

Γ00(αs)|Ψk|2,
∫

d3r Γ̂⊥00Ψ2(r) =
∑
k

Γ⊥00(αs)|Ψk|2, (B 7a,b)∫
d3r Γ̂⊥02Ψ2(r) =

∑
k

Γ⊥02(αs)|Ψk|2,
∫

d3r Γ̂⊥11Ψ2(r) =
∑
k

Γ⊥11(αs)|Ψk|2, (B 7c,d)∫
d3r Γ̂

‖
20Ψ2(r) =

∑
k

Γ
‖
20(0, αs)|Ψk|2,

∫
d3r Γ̂⊥20Ψ2(r) =

∑
k

Γ⊥20(αs)|Ψk|2. (B 7e,f )

This completes our catalog of integrals.
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B.1. Gyrokinetic dispersion relation for an electron-ion bi-kappa plasma

A bi-kappa distribution function is often used to describe the non-thermal electron pop-
ulation in the solar wind and, in particular, its suprathermal (Te ∼ 60 eV) halo (e.g.
Vasyliunas 1968; Maksimovic et al. 1997a,b, 2005). In this section, we specialize the
linear gyrokinetic theory of Section 3.3 for a mean distribution function equal to

fbi-κ,s(v‖, v⊥)
.
=

n0s√
πκθ‖s

1

πκθ2
⊥s

Γ(κ+ 1)

Γ(κ− 1/2)

[
1 +

(v‖ − u′‖0s)
2

κθ2
‖s

+
v2
⊥

κθ2
⊥s

]−(κ+1)

, (B 8)

where Γ is the Gamma function, κ > 3/2 is the spectral index, and

θ‖s
.
= vth‖s

√
1− 3

2κ
and θ⊥s

.
= vth⊥s

√
1− 3

2κ
(B 9)

are the effective parallel and perpendicular thermal speeds, respectively. At low and ther-
mal energies, the bi-kappa distribution approaches a Maxwellian distribution, whereas at
high energies it exhibits a non-thermal tail that can be described as a decreasing power
law.

Coefficients evaluated for fbi-κ,s in Appendix D of Paper I.
KAW limit:

ω = ±
k‖vAk⊥ρi√

β⊥i + 2/(1 + ZiT‖0e/T⊥0i)− 2Hκ

(
1 +

β‖e

2
∆e

)1/2(
1− β⊥e∆e +

H
Cκ

)1/2

,

(B 10)
where

Hκ
.
= H

(2Cκ − 1)T⊥0e/T‖0e − 1

T⊥0e/T‖0e − 1
and Cκ

.
=

(
1− 1

2κ

)(
1− 3

2κ

)−1

. (B 11)

B.2. GK section including drifts
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