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We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and
dynamo, using the local shearing-box model of a collisionless accretion disk. The kinetic magnetorota-
tional instability grows from a subthermal magnetic field having zero net flux over the computational
domain to generate self-sustained turbulence and outward angular-momentum transport. Significant
Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned
ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through
particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is
biased with respect to the magnetic-field direction and spatiotemporally variable. Energy spectra suggest an
Alfvén-wave cascade at large scales and a kinetic-Alfvén-wave cascade at small scales, with strong small-
scale density fluctuations and weak nonaxisymmetric density waves. Ions undergo nonthermal particle
acceleration, their distribution accurately described by a κ distribution. These results have implications for
the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.
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Introduction.—The theory of black-hole accretion is
central to many areas of theoretical, computational, and
observational astronomy. Not only does accretion power
some of the phenomenologically richest electromagnetic
sources in the Universe, but also black-hole accretion flows
serve as excellent laboratories for the study of basic plasma
physics and strong-field general relativity.
Recently, much attention has been paid to the latter

[1–13], with myriad computational efforts seeking to
connect the properties of simulated black-hole accretion
flows in curved spacetime with the observed millimeter and
submillimeter emission [14–19]. While fruitful, these
calculations suffer from ad hoc assumptions about the
nature of the accreting plasma, which is often so hot and
diffuse that the collisional mean free path is comparable to
(or even larger than) the system size and many orders of
magnitude larger than the particles’ Larmor radii. This
hierarchy of scales precludes a straightforward application
of the oft-employed magnetohydrodynamic (MHD) equa-
tions, and instead warrants a kinetic approach.
As a complement to these studies, we forego any

treatment of general relativity and instead focus on the
complex interplay between microscale plasma processes
and macroscale dynamics. Our starting point is the mag-
netorotational instability (MRI) [20], which two decades
worth of MHD simulations have shown enables mass
accretion by efficiently transporting angular momentum
outwards in the disk. In a weakly collisional plasma,
conservation of the particles’ adiabatic invariants during
magnetic-field amplification by the MRI and/or the

Keplerian shear renders the gas pressure anisotropic with
respect to the magnetic field [21]. On large scales, this
“pressure anisotropy” impacts viscous heating and dynamo
behavior, and can even transport as much angular momen-
tum as the Reynolds and Maxwell stresses [22]. On small
scales, this anisotropy drives high-frequency waves and
kinetic microinstabilities (e.g., firehose, mirror), which
provide an enhanced rate of particle scattering and affect
the topology of the magnetic field [23,24]. The magnetic
Prandtl number Pm, known to be important for the
saturation of the MRI [25–27], thus becomes a dynamical
quantity set by wave-particle interactions.
To elucidate the impact of these processes on collision-

less accretion, we present results from the first 3D kinetic
simulation of magnetorotational turbulence and dynamo.
This follows several recent papers on the linear stability of
collisionless accretion disks [21,28,29] and the nonlinear
evolution of 2D kinetic magnetorotational turbulence
[30–32], as well as one paper on the 3D nonlinear evolution
of a kinetic-MRI “channel”mode in a pair plasma [33]. Our
work also provides an ab initio kinetic foundation for
recent efforts to include kinetic effects into the equations of
general relativistic magnetohydrodynamics for studies of
black-hole accretion [34,35], as well as for the pioneering
simulations of magnetorotational turbulence in a collision-
less plasma by Sharma et al. [22], who used kinetic-MHD
equations with a Landau-fluid closure and pressure-
anisotropy limiters.
Hybrid-kinetic equations in the shearing box.—We

consider a differentially rotating (Keplerian) disk of
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nonrelativistic, quasineutral, collisionless, and initially
homogeneous plasma of electrons (mass me, charge −e)
and ions (mass mi, charge e) threaded by a magnetic field.
In a local Cartesian ðx; y; zÞ frame comoving with the disk
and centered at a fiducial radial location r0—the “shearing
box” [36,37]—the equations governing the evolution of the
ion distribution function fiðt; r; vÞ and the magnetic field
Bðt; rÞ are, respectively, the Vlasov equation
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and Faraday’s law
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whereΩrot ¼ Ωrotẑ is the angular velocity at r0. The x and y
dimensions coincide locally with the radial and azimuthal
dimensions in the disk. The electric field in the comoving
frame
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is obtained by expanding the electron momentum equation
in ðme=miÞ1=2, enforcing quasineutrality

ne ¼ ni ≡
Z

d3v fi; ð4Þ

assuming isothermal electrons (Te ¼ const), and using
Ampére’s law to solve for the mean electron velocity
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in terms of the mean ion velocity ui and the current density j
[38,39]. A resistivity η is included in Eq. (3) to remove
small-scale magnetic energy. Equations (1)–(5) constitute
the “hybrid” description of kinetic ions and fluid electrons
[39–42], tailored for the unstratified shearing box [28,32].
Method of solution.—We solve Eqs. (1)–(5) using the

second-order–accurate particle-in-cell code PEGASUS [32].
Np ¼ 64NxNyNz ion particles are drawn from a Maxwell
distribution with βi0 ≡ v2thi0=v

2
A0 ¼ 200 and placed on

a 3D shearing-periodic grid with Nx × Ny × Nz ¼ 384 ×
1536 × 384 cells spanning Lx × Ly × Lz ¼ H × 4H ×H,
where H ≡ vthi0=Ωrot is the disk scale height, vthi0 ≡
ð2T0i=miÞ1=2 is the ion thermal speed, and vA0 ≡
B0=ð4πmin0iÞ1=2 is the Alfvén speed; the subscript “0”
denotes an initial value. We assume zero mean magnetic
flux: initially, B0 ¼ B0 sinð2πx=HÞẑ. If amplified and

sustained by the MRI, this field configuration would
constitute a “magnetorotational dynamo” [43]. The initial
ion gyrofrequency Ωi0 ≡ eB0=mic ¼ 50Ωrot; the initial ion
Larmor radius ρi0 ≡ vthi0=Ωi0 ¼ 0.02H. The electrons are
Maxwellian and isothermal with Te ¼ Ti0, so that the
total initial plasma β0 ¼ βi0 þ βe0 ¼ 400. The magnetic
Reynolds number Rm≡ΩrotH2=η ¼ 37500. These param-
eters provide reasonable scale separation between the grid
scale, the Larmor scale, and the box size, one which
improves as the MRI grows and the plasma becomes more
magnetized. The moments ni and niui are low-pass filtered
once per time step to mitigate feedback from finite-particle-
number noise. A fourth-order hyper-resistivity is used to
damp dispersive fluctuations at the grid. In what follows, h·i
denotes a spatial average; ⟪·⟫ denotes a spatiotemporal
average.
Results.—Figure 1(a) presents the evolution of the box-

averaged magnetic and thermal pressures. In the early,
linear (channel) phase, the MRI grows the horizontal
components of the magnetic field exponentially. By
adiabatic invariance, this produces pressure anisotropy
[Fig. 1(c)], with hp⊥i > hp∥i. This anisotropy affects
the evolution of the MRI in three ways. First, it pushes the
instability to longer wavelengths by supplementing the
magnetic tension. Second, it provides a free-energy source
for ion-Larmor-scale mirror-mode parasites, some of which
can be seen in the Fig. 1(c) inset. These modes reduce the
pressure anisotropy, ultimately limiting it to be comparable
to the box-averaged magnetic pressure [44]. Finally, the
pressure anisotropy generates a “viscous” stress (Axy),
which supplements the angular-momentum transport cus-
tomarily afforded by the Reynolds (Rxy) and Maxwell
(Mxy) stresses:

Txy ¼ Rxy þMxy þ Axy

≡miniuxuy −
BxBy

4π
− ðp⊥ − p∥Þ

BxBy

B2
: ð6Þ

These stresses are shown, box averaged, in Fig. 1(d). At
Ωrott ≈ 25, the channel breaks down into magnetorotational
turbulence, with the magnetic energy dominated by its
azimuthal component [Fig. 1(a)], the kinetic energy being
comparable to the magnetic energy [Fig. 1(b)], the pressure
anisotropy regulated by the mirror instability to be com-
parable to the magnetic pressure [Fig. 1(c)], and the viscous
and Maxwell stresses supplying most of the angular-
momentum transport [Fig. 1(d)], with α ≐ ⟪Txy=p0⟫∼
0.1. With Keplerian rotation enforced by the shearing
boundaries, this stress does work on the plasma and heats
it continuously [Fig. 1(c) inset].
Figure 2 shows the data distribution in the ðT⊥i=T∥iÞ −

β∥i plane at four times. Approximate thresholds for the
mirror, ion-cyclotron, and firehose instabilities are from
Ref. [45] (assuming bi-Maxwellian ions and Maxwellian
βe ¼ 1 electrons). Initially (Fig. 2, top left), the ion
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distribution is isotropic, with β∥i ≈ 200 (the tail extending
to higher β∥i is due to the zero-net-flux configuration).
As the MRI exponentially amplifies the magnetic-field
strength, adiabatic invariance drives T⊥i > T∥i (Fig. 2,
top right), lifting the distribution upwards beyond the
mirror and ion-cyclotron thresholds. Thereafter, mirror-
mode parasites isotropize the distribution to lie close to the
mirror threshold, along which it runs to smaller (larger) β∥i
(T⊥i=T∥i) (Fig. 2, bottom left, at peak channel amplitude).

As the channel breaks down into turbulence, the distribu-
tion settles into a configuration with minimum β∥i ∼ 1,
constrained near the mirror threshold at high β∥i and the
ion-cyclotron threshold at low β∥i (Fig. 2, bottom right).
The propensity for the MRI to amplify the magnetic field
and thus drive T⊥i > T∥i means that very little of the
plasma lies at the firehose threshold.
Figure 3 displays pseudocolor images of the magnetic-

field and momentum fluctuations at Ωrott ¼ 47.4. The
magnetic flux is arranged into thin, azimuthally extended
bundles with short perpendicular scales, separated by
patches of small-scale turbulence, all with Bx and By
anticorrelated. The momentum appears larger in scale,
with large swathes being comparatively laminar (especially

FIG. 2. Distribution of the ion temperature anisotropy T⊥i=T∥i
vs the parallel ion β∥i (top left) initially, (top right) during the
channel phase, (bottom left) at peak channel amplitude, and
(bottom right) in the saturated state. The solid, dot-dashed,
and dashed lines denote approximate mirror, ion-cyclotron,
and firehose instability thresholds, respectively.

FIG. 1. Evolution of box-averaged (a) magnetic energy and
thermal pressure, (b) kinetic energy, (c) pressure anisotropy
(compared to magnetic energy), and (d) xy components of the
total, Maxwell, viscous, and Reynolds stresses, all normalized to
the initial thermal pressure p0. The inset in (c) shows a slice of
the magnetic-field strength in the x-z plane at the time marked
by the dot; mirror-mode parasites, which feed off the pressure
anisotropy generated by the MRI, are evident. The plus sign in
panel (d) denotes the value of ⟪Txy=p0⟫ obtained in a MHD
simulation of the zero-net-flux MRI with Pm ¼ 16 [26].

FIG. 3. x and y components of the magnetic field (normalized
to B0) and the momentum (normalized to ni0vA0) at Ωrott ¼ 47.4.
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in the x component). This is a clear example of a
collisionless, magnetized, high-β plasma behaving as
though it were a large-Pm fluid (albeit with a stifled
cross-field viscosity due to the small Larmor radii).
Slices of the computational domain at z ¼ 0 showing the

Maxwell stress Mxy, the magnetic-field strength B, and the
perturbed density δni ≡ ni − hnii are given in the leftmost
two panels of Fig. 4. The Maxwell stress is largest in thin,
azimuthally extended filaments, separated by wide regions
of almost zero stress (cf. Fig. 4 of Ref. [46]). The field
strength is largely anticorrelated with the density fluctua-
tions, particularly in small-scale mirrors (where particles
congregate in regions of weak field) and in large-scale
bundles of compressed magnetic field (from which par-
ticles have been largely evacuated). Such large density
fluctuations (≳10%) on these scales are not seen in
comparable MHD runs. The prominent kz ¼ 0 nonaxisym-
metric density waves seen in compressible MHD simu-
lations of magnetorotational turbulence are absent here.
Only after integrating over height (Fig. 4, rightmost panel)
do nonaxisymmetric density waves appear, and then only at
relatively small amplitudes (compare to Figs 2 and 3 of
Ref. [47]). This may be due to strong the Landau damping
of sound waves, a feature absent in MHD.
Energy spectra of the magnetic-field, ion-velocity, and

density fluctuations in the turbulent saturated state are
given in Fig. 5. Above ion-Larmor scales (kρi < 1), the
kinetic and poloidal magnetic spectrum vary as k−3=2, while

the azimuthal magnetic energy ∝ k−2. These spectra
resemble those obtained in recent high-resolution incom-
pressible MHD simulations of the MRI [48]. By analogy
with the k−3=2 spectrum that is almost universally obtained
within the inertial range of driven, strong MHD turbulence
with a guide field [49–54], the spectra in Fig. 5 can be
viewed as describing small-scale Alfvénic turbulence
guided locally by a large-scale, predominantly azimuthal
field, whose k−2 spectrum is likely due to sharp
field-direction reversals at the boundaries of otherwise
coherent magnetic domains [48]. (Mirror instability is
predicted to produce a power-law spectrum ∝ k−5=3 at
kρi ≲ 1 [23], but with amplitudes too small to easily
distinguish in the spectrum.) Note the deficit of density

FIG. 4. Slices of (left) Maxwell stress (normalized to p0), (left
center) magnetic-field strength (normalized to B0), and (right
center) density fluctuation (normalized to n0i) at z ¼ 0. Right:
vertically averaged density fluctuation (normalized to n0i).
All frames are taken at Ωrott ¼ 47.4.

FIG. 5. Energy spectra of (top) magnetic fluctuations and
(bottom) velocity and density fluctuations in the saturated
state, defined by EAðkÞ≡

R
dΩkðkH=2πÞ2jAkj2 withR

dðkH=2πÞEAðkÞ ¼ hA2i. Characteristic slopes are shown as
labeled dashed lines; the vertical dotted line marks kρi ¼ 1.

FIG. 6. Box-averaged ion distribution function at Ωrott ¼ 51
(solid line), binned logarithmically in ε≡ ðmi=2Þjv − uiðrÞj2. A
κ ¼ 5 distribution and a Maxwell distribution, both with temper-
ature hTii≃ 5.4T0i, are overlaid; the former is a good fit,
indicating nonthermal particle acceleration.
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fluctuations at long wavelengths. At sub-ion-Larmor scales
(kρi > 1), the density and magnetic spectra steepen to take
on a slope (k−3) and polarization (δni ∼ β−1i δB) character-
istic of kinetic-Alfvén-wave turbulence [55–57]. This
marks the first time that such a cascade has been observed
in magnetorotational turbulence, and suggests that certain
aspects of gyrokinetic [55,58] and solar-wind turbulence
[59–62] may be useful for understanding dissipation in
collisionless accretion disks (e.g., Ref. [63]).
Finally, Fig. 6 presents the ion distribution function at

the end of the run versus ε≡ ðmi=2Þjv − uiðrÞj2, the particle
energy measured in the frame of the local mean ion velocity.
A Maxwell distribution fMðεÞ ∝

ffiffiffi
ε

p
expð−ε=TÞ and a κ

distribution fκðεÞ ∝
ffiffiffi
ε

p ½1þ ðε=TÞ=ðκ − 3=2Þ�−ðκþ1Þ with
κ ¼ 5 are provided for reference, with T ¼ hTii≡
ð2=3ÞhðR dε εfiÞ=ð

R
dε fiÞi≃ 5.4T0i. The distribution

function is clearly nonthermal, with fκ¼5 being a good fit
(although κ is likely still decreasing).
Summary.—Many of the gross qualitative features of the

turbulence found here are reminiscent of those obtained in
MHD simulations. These include correlated fluctuations
leading to efficient outward angular-momentum transport,
the amplification and sustenance of a subthermal magnetic
field, an azimuthally biased magnetic-field direction, and
some aspects of the energy spectra. Given that strong
particle-particle collisions have been replaced here by
wave-particle interactions, this resemblance is notable,
and lends hope to the idea that fluid models of collisionless,
magnetized plasmas might suffice in describing much of
the macroscale evolution.
But there are important differences, mostly due to the

allowed departures of the ion distribution function from an
isotropic Maxwellian. These departures, driven by adia-
batic invariance and shaped by the local magnetic-field
direction, produce additional angular-momentum transport
and generate ion-Larmor-scale fluctuations that trap and
pitch-angle scatter particles. The latter endow the plasma
with a large (but highly anisotropic and spatially variable)
magnetic Prandtl number. As a result, the magnetic-field
geometry is dominated by thin, azimuthally elongated flux
tubes with short perpendicular dimension. The velocity is
relatively laminar, with coherent large-scale features that
persist over several orbits. Other notable features include
the relatively weak excitation of nonaxisymmetric density
waves (as compared to MHD), the strong density inho-
mogeneities on small scales, the development of a sub-ion-
Larmor kinetic-Alfvén-wave cascade, and a broad ion
distribution function indicative of nonthermal particle
acceleration.
Our assumption of isothermal, Maxwellian electrons

makes comparison with observations difficult since elec-
trons dominate the emission. Electrons and ions are
expected to be heated differently depending upon local
plasma conditions [63–68], a feature that plays a defining
role in several theories of black-hole accretion [69–71].

Studying this requires a more sophisticated treatment of
electron thermodynamics than in our hybrid model. In the
meantime, our results provide ab initio evidence that
enhanced angular-momentum transport and nonthermal
particle acceleration in collisionless accretion disks is
facilitated by the kinetic MRI.
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